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Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly
effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a
possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment
of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS
injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also
discussed.

1. Introduction

Few diseases have the global health and economic impact
of malaria [1]. In 2009, an estimated 225 million people
were infected with malaria and close to a million people
succumbed to their infection [2]. Malaria is caused by api-
complexan parasites belonging to the genus Plasmodium.
Five species infect humans, Plasmodium falciparum, P. vivax,
P. ovale, P. malariae, and most recently, P. knowlesi [3].
The majority of morbidity and mortality is caused by
P. falciparum infection, with the highest burden born by
children and pregnant women. In the absence of prompt
and effective treatment, P. falciparum infection can progress
quickly, rapidly becoming severe and fatal. The rise in drug-
resistant parasites complicates the administration of effective
treatment.

Severe malaria has multiple manifestations that can
occur singly or in combination. They include hyperpar-
asitemia, high fever, haemoglobinuria, acute renal failure,
acute pulmonary edema, metabolic acidosis and respiratory
distress, hypoglycemia, anemia, and cerebral malaria, which
is characterized by coma and convulsions. Cerebral malaria
has the highest mortality rate of all the severe complications
and is associated with long-term cognitive and neurological
deficits in surviving children [4–6].

Intravenous artesunate is now the standard of care
for severe malaria in both adults and children following
the landmark SEAQUAMAT and AQUAMAT trials that
demonstrated the superiority of artesunate over quinine
in adults and in children [7, 8]. However, even with the
improved efficacy of artesunate, fatality rates remained high,
15% in adults and 10.9% in children. Adjunctive therapies,
defined as therapies administered in combination with
antiparasitic drugs that modify pathophysiological processes
caused by malaria, have been pursued as a way to improve
the outcome of severe malaria. Adjunctive therapies may
also help extend the efficacy of antiparasitic drugs, an
important consideration given the emergence of artemisinin
resistance [9, 10]. Several adjunctive therapeutic strategies
have been tested in P. falciparum cerebral and severe malaria
so far, unfortunately with-out much success (see [11] for a
recent review). A number of adjunctive therapies (includ-
ing nitric oxide, arginine, erythropoietin, levamisole) have
demonstrated encouraging results in experimental models of
cerebral malaria or in clinical trials in uncomplicated malaria
and are awaiting evaluation in severe malaria [11].

This review will focus on the utility of PPARγ agonists as
an adjunctive therapy for the treatment of cerebral malaria.
The current knowledge of PPARγ agonist use in malaria will
be summarized. We will also summarize data on additional
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mechanisms of action attributed to PPARγ agonists that may
be of benefit in cerebral malaria.

2. The Pathogenesis of Cerebral Malaria

Cerebral malaria is a severe complication of P. falciparum
infection. It occurs in nonimmune individuals, with the
greatest burden born by children in sub-Saharan Africa.
Although the parasite is a key player in the development
of cerebral malaria, hyperparasitemia does not necessarily
correlate with disease severity, and cerebral pathology can
develop even with the use of effective antiparasitic therapy.
It has long been recognized that the host immune response
plays an important role in mediating pathology in malaria,
and this has fueled the search for effective immunomodula-
tory adjunctive therapies.

Sequestration of parasitized erythrocytes (PEs) in the
microvasculature of the brain (and other organs), resulting
in vascular occlusion and local tissue hypoxia and ischemia,
is the hallmark feature of cerebral malaria [12]. Sequestration
of PEs occurs via receptor-ligand interactions, with parasite-
derived ligands expressed on the surface of PEs (a major
one being P. falciparum erythrocyte membrane protein-1 or
Pfemp-1) binding to receptors expressed on microvascular
endothelial cells. Postmortem, in vitro, and genetic studies
support that ICAM-1 is the major sequestration receptor for
PEs in the brain, while the scavenger receptor CD36 is the
major receptor outside the brain [13–21].

Parasites produce a variety of bioactive molecules that
can elicit innate immune responses in the host [22]. An
excessive inflammatory response with elevated levels of pro-
inflammatory cytokines, especially TNF, is a major con-
tributor to cerebral malaria pathology [23]. TNF, produced
by activated endothelium and recruited leukocytes, can
upregulate cell adhesion molecules, including ICAM-1, and
exacerbate PE sequestration. Higher levels of TNF have been
observed in cerebral malaria and correlated with mortality
[24–26], and genetic predisposition to overproduce TNF in
response to infection has been associated with susceptibility
to cerebral malaria [27, 28]. Elevated levels of TNF are also
seen in the cerebral spinal fluid (CSF) of infected children
and correlated with encephalopathy [29]. Interestingly, CSF
TNF levels did not correlate with serum levels, implying
independent cerebral generation of TNF. Elevated levels of
additional inflammatory mediators including IFNγ, IL-6, IL-
1β, IL-1ra, IL-10, MIP-1α and MIP-1β, MCP-1, and IP-10
have been observed in cerebral malaria patients [26, 30–34].

Parasite sequestration and inflammation can lead to
endothelial activation and dysfunction. Activated endothe-
lium can lead to monocyte and platelet recruitment further
impeding vessel flow and contributing to tissue hypoxia and
ischemia [35]. Widespread endothelial activation (including
increased ICAM-1 expression and the disruption of cell-
junction proteins) has been observed in postmortem studies
of cerebral malaria patients [36], and markers of endothelial
activation and dysfunction such as soluble ICAM-1, von
Willebrand factor, and angiopoietin-2 are elevated in cere-
bral malaria [37–39]. Low nitric oxide (NO) bioavailability

(potentially due to quenching by cell-free hemoglobin re-
leased during hemolysis) contributes to the development of
endothelial dysfunction in malaria infection [40, 41].

Sequestration, inflammation, and endothelial dysfunc-
tion can lead to a breakdown of the blood-brain barrier
(BBB). Hemorrhages are common autopsy findings in cere-
bral malaria [12, 42, 43], as are focal disruptions of the BBB
[44]. The activation of perivascular macrophages and axonal
damage observed in cerebral malaria may be the result of
cytokines, parasite antigens, and plasma proteins crossing the
BBB, in addition to local hypoxic and inflammatory condi-
tions [36, 45, 46].

Metabolic perturbations are also common in children
with cerebral malaria and may contribute to pathology.
Vascular obstruction leading to hypoxia, or TNF-induced
cytopathic hypoxia, have been proposed as possible causes
[47–49].

Recent investigations using fluorescein angiography and
fundoscopy have permitted a view of the brain microvascu-
lature in living patients with cerebral malaria, by imaging the
retina (the only part of the central nervous system (CNS)
vasculature that is available for direct observation). Pediatric
cerebral malaria patients had evidence of PE sequestration
and thrombi (containing both fibrin and platelets) in their
vasculature that were associated with perfusion abnormali-
ties and areas of ischemia and tissue damage (retinal whiten-
ing). Focal disruptions of the BBB were observed most often,
but not always, in association with hemorrhages [44, 50, 51].
Postmortem analysis revealed axonal damage not only in
areas of hemorrhage but also in areas of vascular occlusion
by sequestered parasites and/or fibrin-platelet thrombi [51].

Cerebral malaria is a complex disorder that is as yet not
fully understood. Multiple processes likely contribute to its
development including peripheral and CNS inflammation,
PE sequestration, vascular endothelial activation, prothrom-
botic activation, blood flow obstruction, tissue hypoxia and
ischemia, metabolic changes, and BBB dysfunction, leading
to neurodegeneration. These processes can contribute to
the seizures and coma seen in cerebral malaria patients
and the neurologic and cognitive deficits which persist in a
portion of cerebral malaria survivors [4, 29]. The activation
of PPARγ appears to play an important role in recovery
in several models of CNS injury and disease, by limiting
inflammation and cytotoxicity and promoting reparative
mechanisms. These mechanisms may also be protective in
the context of cerebral malaria as well. Interestingly, PPARγ
was one of only two genes in a malaria-resistance locus
identified using a genome-wide analysis of inbred mouse
lines [52], supporting a protective role for PPARγ in malaria.

3. PPARγ and Its Agonists

PPARγ is a member of the family of nuclear hormone
receptors which function as ligand-activated transcription
factors [53]. PPARγ endogenous ligands include oxidized
fatty acids and prostanoids, and synthetic ligands include the
thiazolidinedione (TZD) class of antidiabetic drugs (e.g., ros-
iglitazone and pioglitazone). Upon ligand activation, PPARγ
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heterodimerizes with the retinoid X receptor (RXR), a nu-
clear receptor for 9-cis-retinoic acid. The ligand-bound
PPARγ-RXR heterodimer regulates gene transcription by
binding to conserved DNA sequences called PPRE (PPAR
response elements) on target genes. PPARγ can also regulate
other transcription factors, through nongenomic trans-
repression, where the inhibition of transcription occurs by
preventing the dissociation of corepressors or by sequestering
the coactivators necessary for the binding of the transcription
factor to DNA [54].

Originally characterized in adipocytes as a regulator of
lipid and glucose metabolism, current evidence indicates
that PPARγ is present in most cell types (including immune
cells, endothelial cells, and neurons) and mediates multiple
functions in both physiological and pathological conditions
[55, 56].

PPARγ agonists have been extensively studied in many
inflammatory settings, in vitro, in animal models, and
in humans, and in most cases they have demonstrated
anti-inflammatory properties [57]. These anti-inflammatory
properties are early events (observed prior to any metabolic
effects) and occur even with low-dose administration of the
agonists [58]. PPARγ agonists can inhibit proinflammatory
responses from a variety of cells including macrophages,
dendritic cells, T cells, endothelial cells, vascular smooth
muscle cells, microglia, and astrocytes [59–74]. The anti-
inflammatory properties of the agonists are mediated by the
transrepression effects of activated PPARγ on transcription
factors including activator protein-1 (AP-1), signal transduc-
ers and activators of transcription 1 (STAT-1), nuclear factor
kB (NF-κB), and nuclear factor of activated T cells (NFAT).
PPARγ agonists can also suppress inflammation by PPARγ-
independent mechanisms, for example, the suppression of
JAK-STAT-dependent inflammatory responses in activated
microglia and astrocytes via the induction of members of the
suppressor of cytokine signaling (SOCS) family [75, 76].

Data have also been accruing on the neuroprotective
properties of PPARγ agonists in models of CNS injury,
ischemic stroke, and diseases of the CNS including multiple
sclerosis, ALS, and Parkinson’s disease [77–80]. These data
suggest that PPARγ may be involved in coordinating cellular
responses to CNS injury and disease. The potential benefit
of the anti-inflammatory and neuroprotective properties of
PPARγ agonists in cerebral malaria will be discussed below.

4. Generation of Endogenous PPARγ Ligands in
Malaria Infection

Plasmodium falciparum may itself activate PPARγ, perhaps
as part of a strategy aimed at enhancing symbiotic survival
between the parasite and the host. Hemozoin, a pigment pro-
duced by Plasmodium to detoxify free heme generated by
the degradation of haemoglobin [81], can produce large
amounts of hydroxyl-fatty acids, including 15-hydroxyecosa-
tetraenoic acid (15-HETE), 13-hydroxyoctadecadienoic acid
(13-HODE), and 4-hydroxynonenal (4-HNE) by heme-cata-
lyzed lipoperoxidation [82]. 15-HETE and 13-HODE are
specific ligands of PPARγ, and 4-HNE is an inducer of PPARγ

[83]. Hemozoin-mediated immunosuppressive effects on
myeloid cell functions including phagocytosis, inflammatory
responses, oxidative burst, and dendritic cell differentiation
and maturation have been reported [84–89]. Hemozoin was
able to induce the upregulation of PPARγ mRNA, while the
inhibition of PPARγ reversed some of the hemozoin-mediat-
ed effects, suggesting that the immunomodulatory effects of
hemozoin may be, at least partly, mediated by PPARγ activa-
tion [90].

5. The Use of PPARγ Agonists in Malaria:
What We Know So Far

The use of PPARγ agonists to modulate immune responses
to malaria was initially motivated by reports demonstrating
that PPARγ regulates CD36 transcription and that PPARγ
agonists have anti-inflammatory properties [61, 63].

At that time, the scavenger receptor CD36 was revealed to
be a major, noninflammatory, phagocytic receptor for non-
opsonised mature-stage PEs [91]. It was speculated that
CD36-mediated phagocytosis of PEs represented an innate
immune mechanism for controlling the parasite burden in
nonimmune individuals (who are most at risk of developing
severe disease) [91–94]. Later, CD36-mediated phagocytosis
of ring-stage PEs and stage I and IIa gametocytes was also
reported [95, 96]. The importance of CD36-mediated innate
control of acute blood-stage malaria was demonstrated in
vivo, in a murine model of hyperparasitemia (P. chabaudi AS
infection) [97]. In this model, mice deficient in CD36 had
higher parasitemia levels and higher mortality compared to
CD36-sufficient mice [97].

Various PPARγ agonists including the natural ligands
15d-PGJ2 and 9-cis-retinoic acid (which binds RXR to acti-
vate the PPARγ-RXR heterodimer), and the synthetic TZDs,
ciglitazone, troglitazone, and rosiglitazone, were shown to
upregulate the CD36 expression on monocytes and enhance
the CD36-mediated phagocytosis of PEs [92, 95, 96, 98]. And
unlike Fc-mediated phagocytosis, CD36-mediated uptake
of PEs occurred in a noninflammatory manner that was
not associated with release of TNF or IL-6 [91, 99]. This
process appeared similar to the CD36-mediated clearance
of apoptotic cells, which is also non-inflammatory, but
did not appear to involve cooperation with integrins [91,
100, 101]. PPARγ agonists also dramatically upregulated the
uptake of ring-stage PEs and gametocytes [95, 96]. These
findings where extended in vivo using the mouse model
of hyperparasitemia. Mice receiving rosiglitazone had lower
parasitemia compared to controls [102]. This reduction in
parasitemia was CD36 dependent, as it was not observed in
mice deficient in CD36.

These data are consistent with the reported ability of
PPARγ activation to polarize macrophages towards an alter-
natively activated phenotype [57]. Alternatively activated
macrophages have reduced expression of proinflamma-
tory cytokines, enhanced expression of anti-inflammatory
cytokines, in particular IL-10, and enhanced expression of
pattern-recognition receptors, including CD36. They have
been implicated in pathogen sequestration, wound healing,
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and phagocytosis of apoptotic cells. In the context of malaria,
alternatively activated macrophages could help control par-
asite burden while limiting associated inflammation, thus
reducing host pathology [103].

Although reducing the parasite burden by enhancing
phagocytic clearance of parasites (especially ring-stage PEs)
will undoubtedly be beneficial to the outcome of infection
and may be a contributing mechanism to the genetic resis-
tance offered by hemoglobinopathies (sickle cell and both
α-thalassemia and β-thalassemia) and glucose-6-phosphate
dehydrogenase and pyruvate kinase deficiencies [104–106],
in the context of cerebral malaria, parasitemia levels are
not correlated with disease severity. Rather, inflammation,
and especially TNF levels seem to correlate with disease
severity, encephalopathy, and death [23, 29]. Thus, the anti-
inflammatory properties of PPARγ agonists may be their
most important quality when it comes to the treatment of
cerebral malaria.

Human monocytes and murine macrophages treated
with PPARγ agonists generate significantly less TNF in
response to malaria-related inflammatory stimuli including
parasite lysates and P. falciparum glycosylphosphatidyl inos-
itol (GPI), a malaria toxin that interacts with TLR2 [98, 107,
108]. This was associated with the inhibition of NF-κB and
MAPK signaling [102]. PPARγ is known to inhibit the NF-
κB signaling [54], and a PPARγ-mediated inhibitory effect on
MAPK signaling has recently been described [109]. However,
whether the anti-inflammatory effects of the agonists were
related to PPARγ activation was not directly examined.

The effects of PPARγ agonists in vivo have been tested in
a mouse model of experimental cerebral malaria (P. berghei
ANKA). Cerebral pathology in this model is the result of
an uncontrolled proinflammatory response to infection [47,
110]. Infected mice treated with rosiglitazone had a more
balanced inflammatory response, with reduced plasma levels
of TNF, a reduced TNF to TGFβ ratio, and higher IL-10 levels
([102], and unpublished results by Serghides et al.). Mice
receiving rosiglitazone were also protected from developing
signs of cerebral pathology and had significantly improved
survival rates. This was evident even when rosiglitazone was
administered as late as 5 days postinfection, just prior to the
initiation of cerebral pathology [102]. The effects of rosigli-
tazone treatment on endothelial dysfunction and cerebral
pathology in this model are currently under investigation in
our lab.

Given the encouraging data in the mouse models, a phase
I/IIa randomized double-blind placebo-controlled trial was
undertaken to test the safety, tolerability, and efficacy of
rosiglitazone adjunctive therapy in 140 Thai adults with
uncomplicated falciparum malaria [111]. Rosiglitazone (4mg
twice daily for 4 days) was administered as an adjunctive
therapy in combination with atovaquone-proguanil and was
found to be safe and well tolerated. Patients receiving rosigli-
tazone had significantly reduced 50% and 90% parasite
clearance times, with the mean 90% parasite clearance time
being reduced by 25% in the rosiglitazone group (from 40.4 h
in placebo to 30.9 h in the rosiglitazone group). It is tempting
to speculate that improved parasite clearance was due to
enhanced CD36-mediated clearance, but direct evidence is

lacking. However, these findings do corroborate the effects of
rosiglitazone on parasitemia observed in the mouse model, a
process that was CD36 dependent [102]. A nonstatistically
significant trend towards greater fever clearance at 4 hours
posttreatment was observed in those receiving rosiglitazone
(43% afebrile in the rosiglitazone group compared to 27%
afebrile in the placebo group, P = .073). Patients receiving
rosiglitazone also had significantly lower levels of IL-6 and
MCP-1 and trended towards significantly lower levels of
TNF at 24 and 48 hours posttreatment [111]. Both the
fever reduction and the lower levels of proinflammatory
biomarkers suggest that treatment with rosiglitazone was
associated with anti-inflammatory effects that were obvious
early during the course of therapy in these patients.

The findings in the rosiglitazone trial share some
similarities to those of a randomized trial of vitamin A
supplementation in children from Papua New Guinea [112].
9-cis-retinoic acid is a metabolite of vitamin A and an agonist
of PPARγ (via RXR ligation), and like rosiglitazone, has been
shown to enhance CD36-mediated PE uptake and reduce
malaria-induced TNF production in vitro [113]. Children
supplemented with vitamin A had lower parasitemia levels
and fewer febrile episodes than did children in the control
group, although both groups had the same rate of infection
[112], suggesting a common mechanism of enhanced innate
clearance of PEs and reduced inflammation.

6. Lessons from the Use of
PPARγ Agonists in Neuroinflammatory and
Neurodegenerative Diseases

Data on the anti-inflammatory and neuroprotective proper-
ties of PPARγ agonists in models of neuroinflammatory and
neurodegenerative disease states may give us an insight into
how PPARγ agonist could function in cerebral malaria [77–
80].

Relevant to cerebral malaria pathology, PPARγ is ex-
pressed not only in immune cells and in peripheral organs,
but also in the CNS (microglia, astrocytes, perivascular
macrophages, oligodendrocytes, and neurons) and in human
brain microvascular endothelial cells [114–116]. Further,
PPARγ agonists such as rosiglitazone and pioglitazone can
cross the BBB [117], and thus, can exert their effects not only
peripherally but also directly on the CNS.

As mentioned above cerebral malaria is an inflammatory
disease [23, 49]. Proinflammatory cytokines, especially TNF,
initiate an inflammatory cascade that leads to endothelial
activation, cell adhesion molecule upregulation, enhanced
PE, leukocyte- and platelet-endothelial adhesion, endothe-
lial dysfunction, and BBB breakdown [47]. Perivascular
macrophages, astrocytes, and microglia are also activated
in cerebral malaria and can produce inflammatory medi-
ators leading to neuronal damage [118]. Several anti-
inflammatory properties of relevance to cerebral malaria
pathology have been ascribed to PPARγ agonists. PPARγ
agonists have been shown to inhibit the following: the
expression of inflammatory mediators, such as TNF, IL-6,
IL-1b, and COX-2, from activated monocytes and microglial
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[74, 119]; the release of chemokines including MCP-1, MIP-
1a, and MIP-1b; the expression of chemokine receptors
on leukocytes; the inflammation-induced upregulation of
cell adhesion molecules on vascular endothelium, including
ICAM-1 [120, 121]; the recruitment of leukocytes to injured
sites [74, 122]; the release of matrix metalloproteinases
(which degrade the extracellular matrix and contribute to
BBB dysfunction) from macrophages and glial cells [123,
124]. In the context of cerebral malaria, these activities
could result in less proinflammatory cytokines peripherally
and in the CNS, a reduction in PE adhesion and leukocyte
recruitment in the brain, and protection of the BBB integrity.

Malaria is associated not only with inflammation, but
also with oxidative stress, conditions that together can lead
to increased cytotoxicity. Elevated levels of TNF in addition
to oxidants such as superoxide and free heme can lead
to neuronal damage [125, 126]. TNF, superoxide, and free
heme (caused by hemolysis) are all elevated in cerebral
malaria and may contribute to the neuronal damage detected
in brains of cerebral malaria patients [43, 45, 46, 127].
In addition to their anti-inflammatory properties, PPARγ
agonists also have antioxidant properties. PPARγ agonists
enhance the endothelial and neuronal expression and activity
of superoxide dismutase-1 (SOD-1) and catalase (both of
them have functional PPREs in their promoter) [128–
132]. SOD-1 and catalase detoxify superoxide by catalyzing
its conversion into water and oxygen. PPARγ can also
suppress superoxide generation by decreasing the expression
of components of the NAD(P)H oxidase complex [129,
130, 133]. Rosiglitazone-induced reduction in NAD(P)H
oxidase activity has been detected in models of hypertension
and diabetes [128, 134]. Heme oxygenase-1 (HO-1) also
contains a PPRE in its promoter and can be upregulated by
PPARγ activation [135]. HO-1 is induced during conditions
of oxidative stress and catalyses the breakdown of heme
into biliverdin, iron, and CO. CO is anti-inflammatory and
can inhibit TNF while inducing IL-10 release [136]. HO-1
induction protects astrocytes from heme-mediated oxidative
injury, and astrocytes deficient in HO-1 are much more
susceptible to cell death [137]. HO-1 and CO have been
shown to be protective in experimental cerebral malaria and
were associated with reduced inflammation, protection of
the BBB, and enhanced survival [138].

Oxidative stress can also result in decreased NO bioavail-
ability, via scavenging by cell-free hemoglobin and/or
superoxide-mediated formation of the toxic peroxynitrite
[139]. Low NO bioavailability has been associated with
disease severity, while NO supplementation improves disease
outcome in human and experimental cerebral malaria ([40,
41, 140–143], submitted by Serghides et al.). By enhancing
cell-free hemoglobin detoxification (via HO-1 upregulation)
and by reducing the levels of reactive oxygen species (via
SOD-1 and catalase upregulation), PPARγ agonist activity
may enhance NO bioavailability [144]. A trial in diabetic
patients is currently underway examining whether pioglita-
zone will improve NO bioavailability (clinicaltrials.gov ID
NCT00770367).

An additional neuroprotective property of PPARγ
agonists is their ability to regulate the expression of the

glutamate receptor GLT1/EAAT2 (GLT1/EAAT2 has six
putative PPREs in its promoter region) [145]. Glutamate
is the major excitatory neurotransmitter in the mammalian
CNS, but high amounts of glutamate released in the inter-
synaptic spaces can cause neurodegeneration and excitotoxic
neuronal death. Glutamate plays an important role in many
CNS pathologic conditions including ischemia, trauma, and
neurodegenerative disorders [146]. Glutamate levels have
not been measured in humans but were shown to be
elevated in the CSF and in the cerebral cortex of mice with
experimental cerebral malaria, suggesting that glutamate
toxicity may occur in cerebral malaria. In these mice,
glutamate levels correlated with the development of cerebral
symptoms [147, 148]. The mechanism for maintaining
low extracellular glutamate levels is astrocytic uptake via
glutamate transporters including GLT1/EAAT2, which is
responsible for the removal of up to 90% of extracellular
glutamate. PPARγ agonists increased astrocytic expression
of GLT1/EAAT2 mRNA and protein in vitro [145] and
protected astrocytes and neurons from glutamate-induced
cell death [145, 149, 150]. In rats, rosiglitazone prevented the
stress-induced decrease in synaptosomal glutamate uptake,
by enhancing glial expression of GLT1/EAAT2 [151].

Collectively these data support a neuroprotective role for
PPARγ agonists via the attenuation of inflammation, oxida-
tive stress, and cytotoxicity [152]. Such protective effects
have been observed with PPARγ agonist use in models of
ischemic and hemorrhagic stroke [153–158], and in models
of CNS disease including Alzheimer’s disease, multiple
sclerosis (MS), amyotrophic lateral sclerosis, and Parkinson’s
disease [152]. In the ischemic models, PPARγ agonist use
was associated with reduced brain injury and with improved
neurological outcomes [124, 154, 159–162]. In the CNS
disease models, PPARγ agonists attenuated neuron loss, pre-
vented motor dysfunction, improved motor performance,
and reversed memory decline [163–166]. Supporting data
from human trials also exist. In a pilot study in Alzheimer’s
patients, rosiglitazone administration improved cognitive
function [167, 168]. In a small placebo-controlled trial of
pioglitazone use in patients with relapsing MS, gray matter
atrophy and lesion burden, as assessed by MRI, were reduced
in the pioglitazone group [169]. Diabetic patients receiving
pioglitazone or rosiglitazone had improved functional recov-
ery after stroke compared to patients not taking TZDs [170].
Clinical trials are underway testing the efficacy of TZDs in
Alzheimer’s (phase III), ALS (phase I/II), and Friedreich’s
ataxia (pilot).

7. Are PPARγ Agonists Promising
Candidates for Adjunctive Therapy in
Cerebral Malaria?

PPARγ activation may enhance the tolerance of the host
to malaria infection by immunoregulatory mechanisms
(modulation of the inflammatory response to infection), and
by mechanisms that render tissues more resistant to inflam-
matory damage. Such immunomodulatory effects are likely
to be protective in the context of cerebral malaria. However,
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whether PPARγ activation following the onset of cerebral
malaria (once the inflammatory cascade has begun) will be
protective is an open question. Other immunomodulatory
therapies tested in cerebral malaria in the past (e.g., anti-TNF
antibodies, dexamethasone) have failed [11]. That PPARγ
activation impacts several pathways and may have not only
neuroprotective but also neuroregenerative effects improves
the likelihood of efficacy. However, it is unknown whether
the regenerative effects seen with long-term PPARγ agonist
use in chronic CNS disease will also be obvious with a
short treatment course, as would be administered in cerebral
malaria.

Rosiglitazone (4 mg twice daily for 4 days administered
in combination with atovaquone-proguanil) was found to
be safe and well tolerated in uncomplicated malaria. Mean
serum glucose, alanine aminotransferase, and aspartate ami-
notransferase levels did not differ between patients receiving
placebo and those receiving rosiglitazone [111]. In addi-
tion, there were no differences observed in the incidences
of adverse events including headache, myalgia, weakness,
nausea, vomiting, diarrhea, or palpitations between the two
groups [111]. TZDs are antidiabetic drugs, and so a concern
would be the possible exacerbation of the hypoglycemia
commonly seen in severe malaria; however, rosiglitazone and
other TZDs function as insulin sensitizers and are generally
not known to cause hypoglycemia, and as mentioned above,
rosiglitazone did not cause hypoglycemia in patients with
uncomplicated malaria [111]. Rosiglitazone may also worsen
edema by increasing fluid retention, but clinically significant
fluid retention tends to occur only with long-term use [171].
Increased risk of myocardial infarction and hepatotoxicity
are risk factors associated with rosiglitazone use, but again
these are complications associated with long-term use [172].
Finally, it is worth considering whether PPARγ agonists
could have an impact on the acquisition of adaptive immu-
nity to malaria via modulatory effects on dendritic cells, T
cells, and B cells [57].

The existing data on the use of PPARγ agonists in malaria
are encouraging, with rosiglitazone being safe, well tolerated,
and efficacious in uncomplicated malaria patients. Given the
anti-inflammatory, neuroprotective, and neuroregenerative
properties reported for PPARγ agonists in models of CNS
injury, ischemic stroke, and diseases of the CNS, we can
hypothesize that PPARγ activation in cerebral malaria may
lead to improved outcome and possibly less long-term
cognitive and neurological deficits. However, a randomized
double-blind placebo-controlled trial in patients with cere-
bral malaria will be required to determine if these hypotheses
are correct.
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