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Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease,
and Huntington’s disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for
maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including
excitotoxicity, Ca2+ overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As
expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing
evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent
neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of
neurotrophic factors and estrogen within this system.

1. Introduction

It is well established that the brain consumes a large quantity
of oxygen and glucose [1–5]. Brain neurons utilize such
nutrients, requiring a consistent and steady supply in order
to function appropriately. Not surprisingly, brain neurons
are vulnerable to oxidative stress [6], which threatens the
overall functionality of the brain. Though various systems
protecting against oxidative toxicity exist in the brain at
cellular and molecular levels, a disruption of the defensive
system may be involved in neurological deficits observed
in neurodegenerative diseases. Indeed, many studies suggest
that oxidative toxicity is related to Alzheimer’s disease (AD),
Parkinson’s disease (PD), and Huntington’s disease (HD)
[7]. In addition, a correlation between an accumulation of
oxidative stress and aging has also been established [8]. Thus,

it is important to clarify the detailed relationship between
oxidative stress and cellular damage in neurodegenerative
diseases and the aging process. In the cellular and molecular
mechanisms underlying oxidative stress-induced cell death,
it is well known that excitotoxicity, Ca2+ overload, mito-
chondrial dysfunction, and the stimulation of intracellular
signaling cascades play a role [9]. As expected, antioxidants
including many phytochemicals and vitamins have been
found to support the survival of neurons under oxidative
stress.

Brain-derived neurotrophic factor (BDNF), a member of
the neurotrophin family, is known to be a strong survival-
promoting factor against various neuronal insults. As a
result, the molecular mechanisms underlying neurotrophin-
dependent survival promotion when exposed to oxidative
stress have been extensively studied. BDNF plays a critical
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role in cell proliferation, cell differentiation, neuronal pro-
tection, and the regulation of synaptic function in the central
nervous system (CNS) via stimulating key intracellular sig-
naling cascades [10, 11]. In addition to BDNF, glial cell line-
derived neurotrophic factor (GDNF) and hepatocyte growth
factor (HGF) are also effective for neuronal survival [12, 13].
Furthermore, estrogens, which regulate synaptic plasticity in
addition to sex differentiation of the brain [14–16], are found
to exert protective actions against toxic conditions such as
oxidative stress [17]. Here, we review the current issues
concerning protective functions of neurotrophic factors and
estrogen on neurons under oxidative stress.

2. The Role of Oxidative Stress in
Neurodegenerative Diseases

Low levels of ROS and RNS have a physiological effect
on cellular functions including neuronal plasticity [18].
However, in excess, ROS/RNS cause oxidation/nitrosylation
of lipids, proteins, and nucleic acids, resulting in neuronal
cell death (Figure 1). Such damage occurs as a result of
either overproduction of ROS/RNS or reduced activity
of enzymatic and nonenzymatic antioxidants. Thus, the
delicate balance between pro- and antioxidant reactions is
critical for maintaining normal neuronal function.

Oxidative stress-mediated toxicity may be closely related
to the pathogenesis of neurodegenerative diseases such as
AD, PD, and HD [7]. For example, in AD brains, mark-
ers for protein oxidation (protein carbonyls and 3-nitro-
tyrosine (3-NT)), lipid oxidation (4-hydroxy-2′-nonenal (4-
HNE)), and DNA oxidation (8-hydroxy-2-deoxyoguanine
(8-OHdG)) are elevated [19]. Indeed, the accumulation
of amyloid beta (Aβ), a hallmark of AD, produces ROS
including hydrogen peroxide (H2O2) in the presence of
Fe3+ or Cu2+ [20–22], but see [23]. In PD brains, in
which a selective and progressive loss of dopamine (DA)
neurons in the substantia nigra pars compacta occurs, 4-
HNE, protein carbonyls, 3-NT, and 8-OHdG are all increased
while glutathione (GSH, a major intracellular antioxidant)
is decreased [24]. Interestingly, 4-HNE covalently binds to
alpha-synuclein (α-Syn), a central protein in PD patho-
genesis, resulting in neurotoxic effects on DAergic and
GABAergic neuronal cultures [25]. Similarly, HD brains
(where significant neuronal loss in the striatum and cor-
tex is observed) demonstrate elevated 3-NT, lipofuscin (a
product of unsaturated fatty acid peroxidation), malondi-
aldehyde (a marker for lipid oxidation), and 8-OHdG [26].
Reduced levels of GSH were also confirmed in cultured
neurons from mice expressing mutant Huntingtin protein
(Htt140Q/140Q) [27].

Oxidative toxicity is also involved in cerebral ischemia/
reperfusion injury. Brain regions and types of neurons that
are vulnerable to ischemia are limited. It may be because
cerebral blood flow is highly spatiotemporally modulated
[2], and this view could also be important to understand
why specific types of neurons in different brain regions
are affected in each neurodegenerative disease. In addition,
a large body of evidence suggests that accumulation of

oxidative stress-dependent damage occurs during normal
aging, which may cause a noticeable decline in cognitive
function [8, 28]. Considering that cognitive deficits are
observed in neurodegenerative diseases such as AD as well,
a common mechanism underlying oxidative stress-mediated
neuronal cell death may exist. In the following section,
we summarize the current knowledge concerning oxidative
stress-mediated neuronal cell death.

3. Oxidative Stress-Mediated Neuronal
Cell Death

3.1. Mitochondrial Dysfunction, Ca2+ Overload and Excito-
toxicity. Apoptosis, a prototypic form of programmed cell
death, is a major mode of cell death in neurodegenerative
diseases. Various mechanisms including excitotoxicity, Ca2+

overload, mitochondrial dysfunction, endoplasmic reticu-
lum stress, and oxidative stress have been found to contribute
to apoptosis [9] (Figure 1). Mitochondria produce low levels
of ROS in a process known as cellular respiration through
the electron transport chain (ETC). The ETC consists of
five protein complexes (I–V), and a disruption of this
electron transport system leads to excess generation of ROS
[29]. Importantly, a number of studies reported possible
involvement of mitochondrial dysfunction, including altered
activity of the ETC, in patients and animal models for AD
[30], PD [31], HD [32], and stroke [33]. Some reports
suggest that patients with psychiatric disorders, such as
schizophrenia [34], depression [35], and bipolar disorder
[36], also display mitochondrial dysfunction.

In addition, mitochondria regulate/impact/affect Ca2+

homeostasis by sequestering excess cytosolic Ca2+ into their
matrix (named Ca2+ loading). However, an uncontrolled
Ca2+ loading may be involved in neurodegeneration. In a
study investigating striatal mitochondria of Hdh150 knock-
in HD mice, a disrupted Ca2+ homeostasis was found
[37]. Another study discovered that a deficiency of phos-
phatase and tensin homolog deleted on chromosome 10
(PTEN)-induced putative kinase 1 (PINK1, a mitochondrial
kinase linked to familial PD) results in mitochondrial
Ca2+ accumulation in cultured neurons [38]. Endoplasmic
reticulum also regulates intracellular Ca2+ concentration
through inositol-1,4,5-triphosphate receptors (InsP3Rs) and
ryanodine receptors (RyRs). Interestingly, presenilin (PS) 1
and 2, genes involved in the pathogenesis of AD, acted as
a passive endoplasmic reticulum Ca2+ channel to maintain
steady-state Ca2+ levels, which was disrupted by mutant PS1-
M146V and PS2-N141I [39, 40]. These PS mutants enhanced
the gating activity of InsP3Rs, leading to Aβ generation [41].
Furthermore, it was shown that Aβ-containing senile plaques
cause Ca2+ overload [42]. Taken together, it seems likely that
mutant PSs and Aβ contribute to the disruption of Ca2+

homeostasis, which may cause mitochondrial dysfunction
leading to neuronal degeneration [30].

Remarkably, nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase (Nox) may generate ROS in
a mitochondria-independent manner. In cultured corti-
cal neurons lacking p47(phox), a cytosolic subunit of
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Figure 1: Mechanisms underlying oxidative stress-mediated neuronal apoptosis. Accumulation of oxidative stress is involved in the
development/progression of neurodegenerative diseases. A number of events including excitotoxicity, mitochondrial dysfunction, Ca2+

overload, and endoplasmic reticulum stress are associated with excess reactive oxygen species (ROS) and reactive nitrogen species (RNS)
generation. High levels of ROS/RNS lead to oxidation of proteins, lipids, and DNA. Oxidized lipids induce damage of the ubiquitin-
proteasome system (UPS). The UPS dysfunction and oxidation of proteins result in aggregation of proteins, recognized as a hallmark
of several neurodegenerative diseases. Under oxidative stress, death signaling pathways (p53, mitogen-activated protein kinase (MAPK),
etc.) are activated. Activation of p53 leads to induction of proapoptotic proteins such as Bax and p53-upregulated modulator of apoptosis
(PUMA), followed by translocation of these proteins into mitochondria. Finally, mitochondrial cytochrome c is released, which then
stimulates the activation of caspase 9/caspase 3. Alternatively, mitochondria secrete apoptosis-inducing factor (AIF), leading to caspase-
independent apoptosis. As shown, recent studies suggest antioxidant effects of phytochemicals, vitamin E, estrogen, and neurotrophic
factors including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and hepatocyte growth
factor (HGF), leading to increased preservation of neuronal function.

Nox, extensive N-methyl-D-aspartic acid (NMDA) receptor
activation failed to produce ROS, while H2O2 or the
mitochondrial complex III inhibitor (antimycin) increased
ROS [43]. Furthermore, ROS production and oxidative
damage in the hippocampal CA1 neurons after ischemia
were dramatically attenuated in mice either treated with
Nox inhibitor or lacking gp91(phox), another Nox subunit
[44]. Considering the fact that overactivation of NMDA
receptors occurs in ischemia [45], it is possible that
NMDA-mediated excitotoxicity may cause mitochondria-
independent, but Nox-dependent, ROS production in cere-
bral ischemia/reperfusion injury.

3.2. Signaling Pathways in Apoptosis. p53, a transcription
factor, is activated by ROS, and induces the upregulation
of mitochondrial proapoptotic proteins including B-cell
lymphoma-2-associated X protein (Bax) and members of the
B-cell lymphoma-2-homology 3 (BH3) family consisting of
BH3 interacting death agonist (Bid), Nox activator 1 (Noxa),
and p53-upregulated modulator of apoptosis (PUMA) [33].
Indeed, oxidative stressors including H2O2 increased Noxa,
Bim, and PUMA (but not Bid) in cultured cortical neurons

[46]. Importantly, PUMA, but not Noxa or Bim, was
involved in Bax-dependent apoptosis [46]. The contribution
of p53/PUMA to delayed cell death of hippocampal neurons
after stroke was also reported [47]. These studies suggest
that p53-mediated PUMA expression may be a key event in
neuronal apoptosis (Figure 1).

As the final step of apoptosis, cytochrome c is released
from mitochondria via the permeability transition pore
(PTP), which consists of the mitochondrial inner and outer
membrane proteins including B-cell lymphoma-2 (Bcl-2)
and Bax (Figure 1). Cytosolic cytochrome c participates in
the formation of the apoptosome, a multiprotein complex
including apoptosis protease-activating factor 1 (Apaf-1) and
caspase-9, which activates caspase-3, an executioner in cell
death [48]. On the other hand, apoptosis-inducing factor
(AIF) is involved in mitochondria-mediated, but caspase-
independent, apoptosis [49] (Figure 1).

3.3. Antioxidative Factors. Considering that oxidative stress
may be associated with the pathogenesis of neurodegen-
erative diseases, a key therapeutic intervention would be
to block or delay accumulating oxidative stress levels via
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increasing the function of endogenous antioxidants and/or
suppressing ROS production (Figure 1). Well-known antiox-
idants include glutathione precursor [50, 51], polyphe-
nols [52–54], catechins [55], flavonoids [56], and sulfated
polysaccharides [57]. As the toxicity of phytochemicals is
low, these substances offer a new therapeutic approach
against neurodegenerative diseases [58]. On the other hand,
whether oxidative stress is a cause or consequence of
neurodegenerative disease remains to be elucidated [7]. A
growing body of evidence suggests that oxidative stress
directly initiates and progresses to neuronal cell death.
However, it is possible that accumulation of oxidative stress
is easily induced in neurons weakened by other insults.
Indeed, in the apoptotic process, many cellular events
including mitochondrial dysfunction, Ca2+ overload, and
excitotoxicity activate death signaling cascades (Figure 1).
Such negative feedback loops may influence cell viability.
These events probably occur in parallel and have an additive
or synergic effect in the induction of cell death. Therefore,
in addition to blocking accumulation of oxidative stress,
inhibiting death-signaling cascades and activating survival
signaling would also be effective. In the following section,
we focus specifically on neurotrophic factors and steroid
hormones that may exert a beneficial influence.

4. Neurotrophins and Oxidative Stress in
Neurodegenerative Diseases

As mentioned above, oxidative stress may be involved
in the onset of HD, AD, PD, and amyotrophic lateral
sclerosis (ALS) [7, 9]. Interestingly, neurotrophic factors,
including neurotrophins, may also be associated with the
pathology of these neurodegenerative diseases. For example,
both mRNA and protein levels of BDNF are decreased in
patients and animal models of HD [59–61]. In addition,
the level of TrkB (tropomyosin-related kinase B), a high
affinity receptor for BDNF, is also reduced in knockin
HD striatal cells, in which mutant huntingtin with 111
glutamines (7 glutamines in normal) is expressed [62].
Following TrkB activation stimulated by BDNF, the mitogen-
activated protein kinase/extracellular signal-regulated pro-
tein kinase (MAPK/ERK), phospholipase Cγ (PLCγ), and
phosphatidylinositol 3-kinase (PI3K) pathways are primarily
triggered [10]. In the knock-in HD striatal cells, a down-
regulation of ERK signaling occurred, while PI3K/Akt and
PLCγ pathways were intact. Such a decrease in ERK signaling
in these striatal cells resulted in an increase in the cell death
caused by H2O2 [63]. As expected, it was revealed that BDNF,
neurotrophin-3 (NT-3), and NT-4/5 prevent neuronal cell
death in an animal model of HD [64].

Recent reports suggest that the upregulation of BDNF
expression/function plays a role in neuroprotection within
AD models. Counts and Mufson showed that noradrenaline
(NA) is neuroprotective against Aβ-dependent toxicity in
human NTera-2N (hNT) neurons and rat hippocampal
neurons [65]. NA prevented an increase in ROS caused
by Aβ. Notably, coapplication with functional blocking
antibodies for BDNF or nerve growth factor (NGF) signifi-
cantly inhibited the NA-dependent protective effect against

Aβ toxicity [65]. As AD is well known as an age-related
neurodegenerative illness, the senescence-accelerated mouse
prone 8 (SAMP8) mice, which show age-related impairment
of cognitive function, is a useful model of AD [66]. Using
the SAMP8 mice, Zhao et al. investigated the effect of
ginsenoside, a component of ginseng, on memory [67]. They
reported that chronic treatment with ginsenoside prevented
loss of memory in aged SAMP8 mice. Such a treatment
with ginsenoside decreased the Aβ and, in turn, increased
antioxidation and synaptic plasticity-related proteins such as
BDNF [67].

Oxidative stress may damage nigral DA neurons, result-
ing in the onset of PD. Under oxidative stress, heme
oxygenase-1 (HO-1) increases and exerts a positive effect
on nigral DA neurons. Overexpression of HO-1 in rat
substantia nigra rescued DA neurons from cell death caused
by 1-methyl-4-phenylpyridinium (MPP(+)), which is an
inhibitor for mitochondrial complex I and is well known to
produce PD symptoms. After HO-1 overexpression, GDNF,
in addition to BDNF, was upregulated [68]. Additionally, it
was reported that bilirubin, a downstream product of HO-
1, increased GDNF and BDNF expression through ERK and
PI3K/Akt pathways [69]. These results suggest that HO-
1 protects neurons through increasing these neurotrophic
factors. A role of the novel DA D3 receptor agonist D-
264 in neuroprotection was reported [70]. In the 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, an inhibitor
of mitochondrial complex I)-induced neurodegeneration
mouse model for PD, D-264 treatment improved behavioral
performance and reduced neuronal loss. Remarkably, the D-
264 treatment induced an upregulation of BDNF and GDNF
in MPTP-treated animals [70]. Finally, using an in vitro
system, L-theanine (a glutamate analog) was shown to pro-
mote SH-SY5Y cell survival and inhibited downregulation
of both BDNF and GDNF under neurotoxicant (rotenone
and dieldrin) application [71]. Generally, GDNF and BDNF
are important for survival/morphological change of DA
neurons, and both have a recovery effect on PD-like behavior
[12, 72, 73]. Taken together, it is possible that upregulation of
growth factors including BDNF and GDNF is necessary for
the prevention of DA neuronal damage.

5. BDNF and Oxidative Stress-Induced
Cell Death

BDNF exerts protective effects against neuronal cell death
by activating intracellular signaling cascades via TrkB [10,
11, 74]. Interestingly, trypanosome trans-sialidase (TS,
sialic acid-transferring enzyme) mimics neurotrophins.
Woronowicz et al. showed that TS induced phosphorylation
of TrkB in rat pheochromocytoma (PC12) cells express-
ing TrkB and promoted cell survival under H2O2 stress
[75]. The PI3K pathway was important for TS-mediated
survival promotion. On the other hand, BDNF protects
cultured cortical neurons from NMDA- or H2O2-induced
cell death via suppressing the MAPK pathway [76]. Once
exposed to NMDA or H2O2, retinoblastoma protein and
E2F1 transcription factor, which are cell cycle regulators,
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were stimulated. BDNF inhibited such activation of cell
cycle regulators, suggesting that the prevention of cell cycle
reentry is involved in BDNF function during oxidative
stress [76]. Moreover, the activation of cyclic adenosine
3′,5′-monophosphate (cAMP)-responsive element-binding
protein (CREB) is involved in BDNF neuroprotection.
Transgenic mice expressing A-CREB, a dominant negative
form of CREB, showed a significant increase in vulnerability
to seizure activity. The A-CREB mice demonstrated increased
ROS levels and decreased neuroprotection by BDNF applica-
tion, suggesting that CREB is an essential upstream effector
of neuroprotection against oxidative toxicity [77]. Impor-
tantly, CREB also regulates the transcriptional production
of BDNF [78]. The BDNF gene consists of nine exons, and
exon IX corresponds to the common open reading frame of
the protein. The remaining exons have distinct promoters,
respectively. Thus, the transcript of BDNF consists of one of
eight 5′ untranslated exons (exon I∼VIII) and 3′ exon IX
[79]. Interestingly, the action of CREB via promoter IV is
critical for experience-dependent production of BDNF [80].
Therefore, positive-feedback mechanisms may be involved in
BDNF-mediated neuroprotection.

As mentioned, BDNF seems to be beneficial in the
therapeutic approach to neurodegenerative diseases. How-
ever, previous clinical trials have revealed numerous side
effects of neurotrophins as well as their poor penetration
through the blood brain barrier, making it very difficult to
use these proteins as a drug [81]. Therefore, many studies
have been performed in an effort to find a drug that
upregulates BDNF. In SH-SY5Y cells after H2O2 application,
tripterygium regelii extract (TRE), a traditional herbal
medicine, increased tyrosine hydroxylase, a dopaminergic
marker, and BDNF [82]. TRE was shown to repress the
upregulation of proapoptotic proteins Bax and caspase-
3, while inhibiting downregulation of antiapoptotic Bcl-
2 under H2O2 application [82]. Sonic hedgehog (SHH)
protein, a member of the Hedgehog family of signaling
molecules [83], is putatively involved as a neuroprotective
agent in oxidative stress-related neurodegenerative disease
and ischemia. After H2O2 exposure, the SHH pathway was
stimulated in cultured cortical neurons, and the increase in
SHH pathway activation was noticeably protective against
cell death caused by H2O2 [84]. In that in vitro system,
exogenous SHH increased levels of vascular endothelial
growth factor (VEGF) and BDNF, as well as activity of
superoxide dismutase (SOD) and Bcl-2 expression [84].

Positive effects of the antioxidant vitamin E on oxidative
stress-mediated toxicity in vitro [85–87] and in vivo [88,
89] have been reported. Vitamin E has also been shown
to exert beneficial effects against neurodegenerative diseases
[90, 91]. Our research demonstrates that pretreatment with
vitamin E analogs including α- and γ-tocopherol (αT and
γT, respectively) and α- and γ-tocotrienol (αT3 and γT3)
protected cultured cortical neurons against H2O2-mediated
neuronal cell death [92]. In our cultures, αT stimulated
the activation of both the ERK and PI3K pathways and
caused the upregulation of Bcl-2. Importantly, αT-mediated
survival and Bcl-2 upregulation disappeared in the presence
of inhibitors for ERK and PI3K signaling, suggesting the

involvement of both pathways in neuroprotection by vitamin
E analogs. However, the neuroprotection was not via BDNF
signaling, as αT unchanged TrkB activation and BDNF
expression [92]. It would be interesting to examine possible
contributions from other neurotrophic factors.

It is now critical to further investigate the mechanisms
underlying the upregulation of BDNF and/or other effective
growth factors in order to discover more efficacious medi-
cations. In general, BDNF levels are regulated by neuronal
activity. In addition to the influx of Ca2+, neuronal activ-
ity, including glutamatergic regulation, contributes to the
production and secretion of BDNF [93–98]. Change in the
production and secretion of BDNF is thought to be involved
in the activity-dependent synaptic plasticity in the CNS [99,
100]. Interestingly, two recent studies have demonstrated
the role of synaptic activity in neuroprotection. In cultured
hippocampal neurons, action potential bursting reduced the
levels of p53, PUMA and Apaf1 [101]. Furthermore, NMDA
receptor stimulation inhibited PUMA-mediated apoptosis
via reducing levels of Apaf1 and procaspase-9 [102]. In
support of these current studies, a previous study demon-
strated that transcranial magnetic stimulation, which is well
known to potentiate neuronal activity, inhibited toxic effects
of 3-nitropropionic acid (3-NPA) (protein/lipid oxidations,
reduction in activities of catalase, GSH peroxidase and
succinate dehydrogenase, and GSH deficiency) and rescued
the striatal neuronal loss in rats [103]. It is necessary to
investigate whether or not such neuronal activity-mediated
protection occurs via the upregulation of BDNF. Addition-
ally, future studies investigating the role of neuronal activity
in the expression of neurotrophic factors that are influenced
by molecules that cross the blood brain barrier are needed.

Transplantation of growth factor-secreting cells may
serve as an alternative method to treat neurodegenerative
diseases. Indeed, the grafting of neurotrophin-secreting cell
lines has been shown to protect neurons against quinolinate-
induced cell death in an animal model of HD [64]. In addi-
tion, it was shown that erythropoietin-transduced human
mesenchymal stromal cells (EPO-MSCs) played a neuropro-
tective role in the rat model for ischemic stroke [104]. In
the EPO-MSCs, neurotrophic factors including BDNF and
HGF were upregulated. The implantation of EPO-MSCs into
ischemic rats reversed impairment in neurological function
and infarct volumes [104]. Finally, a gene transfer approach
may be a potentially effective strategy as well. In an in vivo
cognitive dysfunction model induced by Aβ injection, HGF
gene transfer improved impairment of cognitive behavior.
It was suggested that BDNF upregulation was involved in
the positive action of HGF gene transfer [105]. Further
investigation on the possible mechanisms underlying the
BDNF upregulation is interesting.

6. Estrogen Signaling and Oxidative Stress

Estrogen, one of the sex steroids, has various roles in sex
differentiation, neuroprotection, and synaptic plasticity [14–
16, 106]. Furthermore, estrogenic protection from toxicity
including excitotoxicity and oxidative stress is well studied
[107–109]. Importantly, the maintenance of mitochondrial
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function is linked to estrogenic protection under toxic stress.
Protein phosphatases influence activation levels of kinase
signaling and of mitochondrial apoptosis-related proteins,
and such intracellular mechanisms are closely associated with
estrogenic protection [110].

Generally, estrogens are believed to regulate transcription
of target genes via estrogen receptor α (ERα) and ERβ.
Estrogens bind to ERα and ERβ, exerting various effects via
initiating diverse intracellular signaling cascades. Specifically,
the discovery of ERβ prompted major developments leading
towards the understanding of estrogenic function [111, 112].
In addition, it has been recently suggested that estrogens also
exert their effects via ER-mediated nongenomic or non-ER-
mediated functions.

Estrogens protect neurons from severe conditions includ-
ing oxidative stress. 17β-estradiol (E2), one of the estro-
gens, reduces CA1 hippocampal cell death following global
cerebral ischemia [113]. In that in vivo system, Nox activity
and superoxide production in the hippocampal region were
repressed by E2 application. Interestingly, extranuclear ERα-
dependent nongenomic function, including the activation of
Akt, is involved in the E2 effect [113]. Xia et al. examined
the effect of selective ER ligands on glutamate toxicity.
In cultured cortical neurons, R,R-tetrahydrochrysene (R,R-
THC, ERβ antagonist and ERα agonist) displays a neuro-
protective effect against glutamate-induced cell death [114],
suggesting an important role of ERα in estrogen-mediated
neuroprotection. On the other hand, a knockdown of ERβ
induced a lower resting mitochondrial membrane poten-
tial in immortal hippocampal and primary hippocampal
neurons [115]. The ERβ knockdown resulted in mainte-
nance of adenosine 5′-triphosphate (ATP) concentration,
and decreased mitochondrial superoxide levels under H2O2

stress. As expected, the neuronal loss of ERβ knockdown
cells diminished in the presence of oxidative stress caused
by glutamate or H2O2 [115]. Recently, the novel function
of GPR30, a G protein-coupled ER, has been reported.
Gingerich et al. found that pretreatment with E2 decreased
cell death caused by glutamate, which may be partially
mediated by GPR30 [116].

It is possible that ERβ regulates neuronal activity. As a
result of neurotransmission, spontaneous Ca2+ oscillations
occured and our group previously showed potentiation in
glutamate-mediated Ca2+ oscillation after BDNF addition
[117]. In our cortical cultures, voltage-dependent Ca2+

channels and ionotropic glutamate receptors contributed
to the spontaneous Ca2+ oscillations, and BDNF-induced
glutamate release was critical for the potentiation in the
oscillations. Recently, Zhang et al. found that selective
ERβ agonists (not ERα agonists) rapidly potentiated Ca2+

oscillations in neurons derived from embryonic stem cells
and activated protein kinase C (PKC), Akt, and ERK path-
ways. Interestingly, nifedipine, a blocker of L-type voltage-
dependent Ca2+ channels, abolished these ERβ actions [118],
suggesting that estrogen regulates neuronal function via ERβ.
Remarkably, membrane-localized ERα activates mGluR5
signaling (one of the metabotropic glutamate receptors)
to stimulate CREB in striatal neurons. Furthermore, both
ERα and ERβ activate mGluR3 to attenuate L-type voltage-
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Figure 2: 17β-estradiol prevents cortical neurons from cell death
caused by H2O2 exposure. Dissociated cortical neurons were
prepared from cerebral cortex of postnatal 2-day-old rats. At 6
days in vitro, 17β-estradiol was applied at indicated concentrations.
Twenty-four hours later, H2O2 (final 50 μM) was added to induce
cell death. Following an additional twelve-hour culture, cell survival
was determined using an MTT (tetrazolium salt) assay. Data
represent mean ± S.D. (n = 6). ∗∗∗P < .001 versus control (no
H2O2). ###P < .001 versus no estradiol + H2O2.

dependent Ca2+ channel-mediated CREB activation [119].
Considering that CREB is involved in the transcriptional
production of BDNF [78], the action of these ERs may affect
BDNF levels in neuronal cells.

7. Estrogen and Ca2+ Homeostasis under
Oxidative Stress

Using cultured cortical neurons, we demonstrated the
protective effect of E2 against cell death under oxidative
stress caused by H2O2 [120] (Figure 2). Members of the
MAPK family including c-jun N-terminal kinase (JNK)
[121], p38 [122], and ERK [123, 124] play pivotal roles
in neuronal apoptosis [125] (Figure 1). In our system, the
exposure to H2O2 triggered the overactivation of the ERK
pathway, leading to an abnormal increase in intracellular
Ca2+ concentration (Figure 3). In general, perturbations of
Ca2+ homeostasis are related to apoptosis in various cell
populations [126–131]. In our neurons, the abnormal Ca2+

accumulation caused by H2O2 was significantly decreased by
E2 pretreatment, or in the presence of U0126, an inhibitor
for ERK signaling [120]. Recently, we reported that ERK
signaling plays a role in maintaining adequate expression
levels of glutamate receptors [132–134]. Importantly, chronic
E2 treatment induced the downregulation of ionotropic
glutamate receptor subunits including NR2A and GluR2/3.
Such a decrease in glutamate receptor expression levels
was also confirmed after U0126 addition. Indeed, such E2
treatment suppressed the overactivation of ERK pathway
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Oxidative stress

ERK

pERK

Ca2+

Ca2+

+17β-Estradiol

Death signaling
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Oxidative stress

Figure 3: 17β-estradiol inhibits neuronal cell death under oxidative
stress via reducing the series of events evoked by exposure to
H2O2, including overactivation of the ERK signaling and overload
of Ca2+. Upper: After H2O2 addition, marked phosphorylated
(activated) ERK (pERK) and resultant increase in intracellular Ca2+

concentration were observed, resulting in cell death. Lower: Pre-
treatment with 17β-estradiol induced downregulation of ionotropic
glutamate receptors via decreasing ERK activation, while also
serving to decrease levels of Ca2+ influx triggered by H2O2. Such
a decrease in glutamate receptor expression and intracellular Ca2+

was also confirmed in the presence of U0126, an inhibitor of
ERK signaling. As expected, chronic 17β-estradiol reduced levels
of pERK stimulated by H2O2. A blockade of glutamate receptors
rescued cortical cells from H2O2-dependent death. Therefore, it
is possible that 17β-estradiol promotes survival via suppressing
glutamate receptor-mediated Ca2+ influx, due to downregulation of
ionotropic glutamate receptors [120].

stimulated by H2O2. Furthermore, inhibitors of ionotropic
glutamate receptors blocked cell death caused by H2O2.
Taken together, it is possible that E2 exerts survival-
promoting effects through repressing glutamate receptor-
mediated Ca2+ influx [120] (Figure 3). As described, ERK
signaling is essential for maintenance of glutamate receptor
levels, making it interesting to investigate how estrogens
influence ERK signaling.

p66Shc also generates mitochondrial ROS (H2O2), causes
impairment in Ca2+ homeostasis, and is associated with
apoptosis [135, 136]. Almeida et al. found that H2O2

stimulates PKCβ/p66Shc/NF-κB signaling to apoptosis in
osteoblastic cells, and that E2 prevents H2O2-dependent acti-
vation of p66Shc and NF-κB via repressing phosphorylation
of PKCβ, resulting in protection from cell death [137].

8. Estrogen In Vivo Approach

In 6-hydroxydopamine (6-OHDA, a PD mimetic)-lesioned
rats, a neuroprotective effect of silymarin (SM, one of
flavonolignans) was shown [138]. SM administration pro-
tected neurons of the substantia nigra pars compacta from 6-
OHDA toxicity, while fulvestrant, an ER antagonist, partially
blocked the effects of SM. Additionally, the effect of oral
estrogen on ROS generation was reported. Wing et al.
demonstrated a beneficial effect of chronic oral estrogen
treatment on oxidative stress and atherosclerosis in apoE-
deficient mice [139]. Using ovariectomized apoE-deficient
mice, it was revealed that atherosclerosis was reduced when
treated with E2 (6 μg/day) for 12 weeks. Importantly, after
E2 treatment, superoxide anion and expression of Nox
decreased, while Cu/ZnSOD and MnSOD increased [139].
Last, Schwann cells (SC) play a critical role in spinal cord
injury repair, though SC survival after transplantation is
very difficult. Current research is focused on discovering if
E2 pretreatment protects SC, in an effort to generate more
successful spinal cord transplantation procedures [140]. In
primary SC cultures, strong expression of ERα and ERβ,
and overall E2-dependent survival mechanisms against H2O2

exposure were confirmed, though ICI182780 (an ER antag-
onist) had no influence on E2 effects. These findings suggest
that genomic signaling via ERs is not involved. Importantly,
in spinal cord injury, sustained E2 administration was found
to be an effective treatment improving SC transplantation
[140].

9. Conclusion

An increase in neuronal damage at the cellular and molecular
level may be involved in the pathogenesis of brain illness,
including neurodegenerative disease. It is possible that
oxidative stress leads to neuronal cell death via increasing
glutamate-mediated excitotoxicity, intracellular Ca2+ con-
centration, mitochondrial dysfunction, activation of death-
signaling cascades, and decreasing overall survival signaling.
Several drug candidates, which were found to attenuate
deleterious symptoms in various models of neurodegener-
ative disease, are reported to upregulate the expression of
neurotrophic factors including BDNF. Considering this, it
seems pertinent to further investigate the possible mech-
anisms underlying such neurotrophic factor upregulation.
On the other hand, estrogenic survival promotion is also
well studied, though further investigation addressing how
each ER contributes to neuronal protection against oxidative
toxicity is needed. Finally, as a close relationship between
steroid hormones and BDNF in various neuronal functions
including cell survival is known [141], detailed studies
concerning how estrogen and BDNF interact with each other
in CNS neurons under oxidative stress are important.
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