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Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell 
pluripotency and differentiation. Many stem cell-specifi c transcription factors, including the pluripotency tran-
scription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of 
loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will 
address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell 
self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic 
repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce 
transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief 
overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lin-
eages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network 
may contribute to malignant transformation of adult stem cells and the establishment of a “cancer stem cell” 
phenotype and thereby underlie multiple types of human malignancies.

Introduction

This review discusses the emerging evidence that 
complex reciprocal regulatory circuits involving the 

NANOG, OCT4, and SOX2 pluripotency transcription fac-
tors, polycomb repressive complexes (PRC), and microRNAs 
regulate stem cell pluripotency and differentiation. These 
factors cooperate in the transcriptional and epigenetic reg-
ulation of key stem cell genes. We will examine the roles 
of each component of this circuit in pluripotent embryonic 
stem (ES) cells derived from the embryonic inner cell mass 
and in experimentally induced pluripotent stem (iPS) cells 
derived from adult fi broblasts. We will evaluate the poten-
tial roles of these factors in guiding stem cell differentiation 
and discuss how deregulation of these networks may con-
tribute to carcinogenesis and the adoption of a “cancer stem 
cell” phenotype.

Pluripotent stem cells possess the unique ability to self-
renew and differentiate into all of the cell lineages present in 
the embryo and adult. ES cells are pluripotent cells derived 
from the inner cell mass of the early stage blastocyst (please 
refer to reference [1] for a thorough review of the history 
of stem cell research and the molecular characteristics of 
undifferentiated stem cells) (Fig. 1A). The vitamin A metab-
olite, all-trans-retinoic acid can induce the differentiation 
of both mouse and human ES cells [2,3]. Mouse [4,5] and 
human [6] ES cells share this extraordinary differentiation 
capacity and possess similar, though not identical, molec-
ular characteristics [7]. In the absence of serum, mouse ES 
cells require both the leukemic inhibitory factor (LIF) and 
bone morphogenetic proteins (BMPs) for the maintenance 
of the undifferentiated state [8]. These features of mouse ES 
cell culture requirements were central to elucidating the role 
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These results indicate that parallel molecular pathways 
exist in mouse and human ES cells through which cells can 
achieve similar transcriptional and epigenetic states consis-
tent with pluripotency. Indeed, it now appears that in the 
absence of any extrinsic signal, self-renewal is the default 
program of ES cells [19].

Further insight into the critical signaling determinants of 
pluripotency were revealed by the experimental induction of 
pluripotency by somatic cell nuclear transfer [20,21], nuclear 
reprogramming/cell fusion experiments [22–24], and most 
recently by retroviral introduction of 4 critical genes, now 
sometimes referred to as the Yamanaka factors: Oct4, Sox2, 
Klf4, and c-Myc (Fig. 1B), or a combination of OCT4, SOX2, 
NANOG, and LIN28 [25]. This technique has permitted the 
reprogramming of multiple distinct mouse and human dif-
ferentiated cell types to yield iPS cells [26–34]. The highest 
effi ciencies of induced pluripotency are achieved when all 4 
factors were utilized; however, c-Myc [35] and Klf4 [36] have 
been shown to be dispensable for somatic cell reprogram-
ming to pluripotency under specifi c culture conditions. 
Specifi cally, the histone deacetylase inhibitor valproic acid 
(VPA) both enhances the effi ciency of iPS derivation by the 
combined 4 factors and permits the derivation of iPS cells 
using just Oct4 and Sox2 [37]. These studies indicate that 
Oct4 and Sox2 are critical factors required for maintaining 
self-renewal and pluripotency of mouse and human stem 
cells. Indeed Oct4 was suffi cient to induce pluripotency in 
adult neural stem cells, which express endogenous Sox2, 
c-Myc, and Klf4 [38], whereas Klf4 could induce pluripo-
tency from Epi-SC [39]. In the context of this review, these 
experiments have been pivotal in revealing the importance 

of STAT3 [9], BMP-SMAD [8,10], and the inhibitor of differ-
entiation (ID) [11] pathways in the maintenance of mouse 
ES cells. In the presence of serum, activation of STAT3 by 
LIF-cytokine is suffi cient to maintain mouse ES cells in an 
undifferentiated state [9,12]. However, this is not the case 
for human ES cells [13]. These differences in tissue culture 
requirements likely contributed to the challenges in deriva-
tion of pluripotent human ES cells, which were overcome 
in 1998 by Thomson and colleagues, who reported the suc-
cessful isolation and characterization of human ES cells [6]. 
In contrast to mouse ES cells, BMPs induce differentiation 
[14] and STAT3 activation by LIF is not suffi cient to main-
tain self-renewal of human ES cells [13]. Suppression of BMP 
signaling by basic fi broblast growth factor (bFGF) contrib-
utes, but is not suffi cient, to maintain human ES cell self-
renewal [14,15]. Interestingly, mouse pluripotent stem cells 
derived from the E5.5-E6.5 postimplantation embryos (epi-
blast stem cells, Epi-SCs) fail to self-renew in the presence of 
LIF or BMP4; however, they share the requirement of FGF4 
and activin/nodal signaling for self-renewal [16,17], as is the 
case for human ES cells. This suggests that self-renewal and 
pluripotency in human ES cells may be a more complicated 
process that requires more cooperative factors compared 
with that in mouse ES cells. Stem cell lines derived from the 
mouse blastocyst, in the presence of FGF, activin, and the 
Wnt pathway activator, BIO [7], termed FAB-SCs, share char-
acteristics of both Epi-SCs and human ES cells and express 
the pluripotency factors Nanog, Oct4, and Sox2, but are not 
pluripotent [18]. Yet, treatment of FAB-SCs with LIF/BMP4 
induces latent pluripotent capacity in these cells, which is 
attributable to the induction of E-cadherin expression [18]. 
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FIG. 1. Pluripotent stem cells can be derived from cells isolated from the inner cell mass of early stage blastocysts (A) 
or experimentally derived by epigenetic reprogramming of differentiated adult cell types (B). Greatest reprogramming 
effi ciency is achieved when combinations of 4 factors, OCT4, SOX2, c-MYC, and KLF4, or OCT4, SOX2, NANOG, and 
LIN28 genes are introduced into the differentiated cell. However, OCT4 and SOX2 appear critically required to induce 
pluripotency.
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the heterochromatin pattern was more dispersed in ES cells, 
it formed compact and discrete foci in NPCs [62]. There 
have also been reports of global increases in acetylation of 
histone 3 (H3) and histone 4 (H4) in ES cells indicative of 
an open chromatin structure [63]. However, histone acety-
lation is dynamic during stem cell differentiation and this 
refl ects the important roles of histone deacetylases (HDACs) 
in guiding stem cell differentiation and embryonic develop-
ment [64,65]. Histone deacetylase I (HDAC1), the mamma-
lian homolog of yeast RPD3, functions to deacetylate core 
histones and thereby contributes to chromatin condensation 
and transcriptional repression. HDAC1 is also implicated 
as a key regulator of genome activation in 1-cell embryos 
[65]. HDAC1 also participates in the nucleosome remodel-
ing–histone deacetylase (NuRD) complex that plays essen-
tial roles in stem cell biology [66]. HDAC1, and the closely 
related HDAC2, are also the enzymatic components of the 
distinct Nanog–Oct4–deacetylase (NODE) complex, which 
functions to control developmentally regulated and pro-dif-
ferentiation genes [64]. Consistent with this critical function, 
an HDAC1−/− null mutation in mice results in embryonic 
lethality because of severely retarded proliferation and 
development [67,68]. HDAC1 is also found in complexes with 
the YinYang1 (YY1) polycomb transcription factor and other 
polycomb complex members, including the EED/EZH2 com-
ponents of the polycomb repressive complex-2 [69]. HDAC1 
can also interact with the de novo DNA methyltransferase 3a 
(Dnmt3a) [70,71] and with Ddx5/p68 [67], establishing a link 
between epigenetic transcriptional regulation and the RNA 
helicases, which play diverse roles in miRNA biogenesis and 
transcriptional regulation [72] (see section on microRNAs). 
Thus, HDAC1 contributes to distinct and dynamic transcrip-
tional repressive complexes with essential roles in stem cell 
differentiation and development.

Recent advances in the use of combined genome microar-
ray and chromatin immunoprecipitation (ChIP-chip) 
technology have enabled researchers to study patterns of 
genome-wide histone modifi cations. This technology has 
proven essential for the identifi cation of the characteristic 
“epigenetic signature” of pluripotent stem cells. Bernstein 
and colleagues used a combination of ChIP and oligonu-
cleotide tiling arrays spanning ~2.5% of the mouse genome 
comprising of a subset of highly conserved noncoding ele-
ments to identify the histone modifi cation patterns in mouse 
ES cells [59]. This study reported a novel chromatin pattern, 
“bivalent domain” that harbors both the “repressive” trim-
ethylated histone H3 lysine 27 (H3K27me3) and “activating” 
trimethylated histone H3 lysine4 (H3K4me3) modifi cations 
[59] (Fig. 2). The majority of these bivalent domains were 
enriched at the promoters of genes encoding transcription 
factors that regulate developmentally important genes in 
pluripotent stem cells. A subsequent study utilized ChIP and 
high throughput DNA sequencing techniques (ChIP-Seq) 
to compare the chromatin states (including methylation of 
H3K4, H3K27, H3K36) of mouse ES cells, neural progenitors, 
and embryonic fi broblasts [73]. Comparison of the genomic 
distribution of these histone modifi cations and their corre-
lation with the CpG content of 17,762 mouse promoters in 
undifferentiated and differentiated cell types studied per-
mitted the identifi cation and segregation of promoters as 
active, repressed, or poised for distinct developmental fates. 
Bivalent chromatin domains are also present in human ES 
cells [54,55]. The large scale of these studies enabled the 

of OCT4 in pluripotency and that each pluripotency tran-
scription factor possesses a unique epigenetic function to 
infl uence pluripotency and differentiation of stem cells. 
Recent advances in nonviral methodologies to introduce 
reprogramming factors into differentiated cells represent 
major advances toward the ultimate clinical application 
of these iPS cells [40–42]. A related but distinct combina-
tion of 4 critical genes, OCT4, SOX2, NANOG, and LIN28, 
can also induce pluripotency of human somatic cell types 
[25]. OCT4 and SOX2 are central to the iPS methodologies 
described by the Yamanaka-laboratory [26,27,29–31,35]. 
Later in this review we will address the pivotal functions of 
the NANOG homeodomain protein in pluripotency [43,44] 
and the recently described roles of LIN28 in regulation of 
microRNA processing in stem cells [45]. Further recent stud-
ies have determined that the timing of expression of pluri-
potency-associated factors appears to directly infl uence the 
generation of iPS cells. A combination of OCT4, NANOG, 
SOX2, LIN28, c-MYC, and KLF4 enhances iPS derivation by 
a factor of ~10, and reduces the time of reprogramming from 
26 to 17 days [46]. Recently, Zhao and colleagues reported 
that a timely knockdown of p53 (p53-siRNA) combined with 
forced expression of UTF1 was able to increase the effi cacy 
of iPS formation by ~100-fold, in a background consisting 
of fi broblasts pretransduced with the classic Yamanaka fac-
tors [47]. These remarkable studies reinforce the concept of 
pluripotency as a reprogrammable state established as the 
outcome of a transcriptional circuit involving key stem cell 
transcription factors and microRNAs.

Epigenetic events involving reversible histone 
modifi cations and DNA methylation govern stem cell 
self-renewal and differentiation

The crucial role of epigenetics in modulating the tran-
scriptional outcome and thereby regulating cell fate deci-
sions has emerged over the last decade. Epigenetics can be 
defi ned as “heritable” or transmitted changes in the chroma-
tin structure independent of the underlying DNA sequence. 
These changes include a functionally diverse array of dis-
tinct covalent histone modifi cations [48] and methylation 
of the DNA CpG islands [49] (Fig. 2). Although DNA meth-
ylation primarily mediates transcriptional repression [49], 
different histone modifi cations such as acetylation, meth-
ylation, phosphorylation, and ubiquitination play a more 
complex role in regulating gene transcription [50]. The tran-
scriptional status of a locus/gene, whether it is expressed or 
repressed, is modulated by local histone covalent modifi ca-
tions. Indeed the specifi c histone residues modifi ed and the 
nature of the covalent modifi cation constitute a histone code, 
which segregates the genome into regions which are active, 
repressed, or are poised for activation [48]. Several studies 
have provided compelling evidence that distinct chroma-
tin organization and epigenetic signatures exist within ES 
cells and govern their intrinsic ability to self-renew and dif-
ferentiate into multiple lineages [51–61]. An elegant study 
reported by Meshorer and colleagues [62] revealed hyper-
dynamic association of architectural chromatin proteins 
(including heterochromatin protein-1 and histones) within 
ES cell chromatin, as compared to lineage committed neural 
progenitor cells (NPCs) [62]. Additionally, overall chroma-
tin architecture, as assessed by heterochromatin organiza-
tion, differed in ES cells as compared to the NPCs. While 
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Hox family of transcription factors has an essential role in 
axial patterning during embryogenesis, and Hox genes are 
well-established targets of polycomb group (PcG) proteins 
[58,74,75]. Similarly, promoter regions of developmentally 
important genes occupied by LIF-activated STAT3 in mouse 
ES cells exhibit these bivalent chromatin states [76]. This 
suggests that integration of additional signaling pathways 
is necessary to convert extrinsic LIF signaling into mean-
ingful epigenetic and developmental decisions in mouse 
ES cells. Therefore, there is convincing evidence that biva-
lent modifi cation in ES cells is associated with repression 
of genes involved in development, possibly due to the PcG-
mediated repressive H3K27me3 mark. In addition, it is likely 
that these genes are “poised” for activation, most likely due 

identifi cation of distinct categories of genes that exclusively 
possess the H3K4me3 or H3K27me3 marks, genes contain-
ing a combination of H3K4me3 and H3K27me3, and genes 
that lack both modifi cations (see Table 1 for examples). The 
activating H3K4me3 modifi cation is associated with genes 
implicated in essential biological functions such as cell 
proliferation and metabolism. Consistent with the reports 
on the mouse epigenome, combinations of H3K27me3 and 
H3K4me3 were found to be associated with genes involved 
in important developmental functions such as neurogen-
esis, ectoderm formation, and transcriptional regulation 
[54,55]. Notably, the Hox cluster family was present in the 
class of genes with colocalized H3K4me3 and H3K27me3 
epigenetic marks in both mouse and human studies. The 
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FIG. 2. Bivalent chromatin domains, composed of activating (histone H3K4 trimethylation) and repressive (H3K27 trim-
ethylation) histone tail modifi cations (indicated in gray) are a hallmark of developmentally regulated genes. Transcriptional 
repression of pro-differentiation genes is maintained in pluripotent stem cells by polycomb repressive complexes (PRC) 1 
and 2. The core PCR2 includes the EZH2 H3K27 methyltransferase, SUZ12, and EED. However, HDAC1 and YY1 have been 
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UTX H3K27 demethylases. DNA CpG methylation also contributes to the developmental regulation of gene expression. 
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were possibly a feature unique to stem cells, several differ-
entiated cell lineages have been shown to possess bivalent 
sites. These include mouse neuronal precursor cells, mouse 
embryonic fi broblasts, human T cells, and human lung 
fi broblasts [77–79]. Together, these studies have identifi ed 
the existence of a dynamic chromatin architecture in undif-
ferentiated ES cells, which undergoes global reorganization 
during differentiation.

to the presence of the H3K4me3 mark. However, how these 
opposing modifi cations are incorporated at these bivalent 
sites in ES cells remains to be determined. Another key 
question pertains to the precise function of these bivalent 
domains. It is still unclear if the existence of such domains 
is solely important for proper differentiation or if they play 
a role in establishment and/or maintenance of pluripotency. 
Although initial studies suggested that bivalent domains 

Table 1. Epigenetic Features and Transcription Factor Occupancy of Stem Cell Loci

Gene ID Function

Kim: 2008 
(mES) 

Boyer: 2005 
(hES)

Loh: 
2006 
(mES)

Marson: 
2008 
(mES)

Marson: 
2008 

SUZ12

Ku: 
EZH2 
(PRC2)

Ku: 
Suz12 

(PRC2)

Ku: 
Ring1B 
(PRC1)

Ku: ESC 
Promoter 

State

Ku: NPC 
Promoter 

State

Ku: 
CpG 

(mES)

Pou5f1 TF activity NOS NO NOST – – – – K4 None ICP

Nanog TF activity NOS NO N – – – – K4 None ICP

Sox2 TF activity NOS NO NOST – – – – K4 K4 HCP

Osr2 TF activity NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K4 + K27 K4 HCP

Olfml2a ECM Binding NOS – NO – – – – K4 None HCP

Hist1h3i DNA binding NOS – NOST – – – – K4 K4 HCP

Rest Repressor NOS NO NOS – – – – K4 None HCP

Sfrp1 Binding (Wnt) NOS – NOST Suz12 (CpG) EZH2 – Ring1B K4 + K27 K27 HCP

Zfp36l1 TF activity NOS NO NOST – – – – K4 K4 HCP

Thbs2 Structural NOS N NOST – – – – None None ICP

Ror1 RTK activity NOS N NOST Suz12 (CpG) EZH2 – – K4 + K27 K4 HCP

Jarid2 Repressor NOS NO NOST – – – – K4 K4 HCP

Zic5 DNA binding NOS N NOST – EZH2 – Ring1B K4 K4 HCP

Rfx4 DNA binding NOS NO NOST – EZH2 Suz12 Ring1B K4 + K27 K4 HCP

Lrrc2 Protein Binding NOS NO NOST – – – – K4 None ICP

Spred1 SCF-receptor NOS N NOST – – – – K4 K4 HCP

Fgfr2 FGFR activity NOS N NOST – EZH2 Suz12 Ring1B K4 + K27 K4 HCP

Gad2 E-decarboxylase NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K4 + K27 None HCP

Hoxb1 TF activity NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K27 K27 HCP

Pipox Oxidase NOS O NOST – – – – K4 K4 LC P

Grap2 SH3/SH2 

adaptor

NOS O NOST – – – – None None LC P

Spic TF activity NOS – NOST – – – – None None ICP

Hist1h1b DNA binding NOS – NOST – – – – K4 K4 HCP

Rif1 Binding NOS O NOST – – – – K4 K4 HCP

Lefty2 TGFbetaR NOS – NOST – – – – K4 + K27 None HCP

Lrrtm3 Protein Binding NOS – NOST Suz12 – Suz12 – K27 K4 ICP

Cripto1 Growth Factor NOS NO NOST – – – – K4 None ICP

Neurog1 TF activity NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K4 + K27 K27 HCP

Nkx2-2 TF activity NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K27 K4 HCP

Pax6 TF activity NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K4 + K27 K4 HCP

Zic2 DNA binding NOS – NOST Suz12 (CpG) EZH2 Suz12 Ring1B K4 + K27 K4 HCP

Dkk1 Transducer 

(Wnt)

NOS O NOST Suz12 (CpG) EZH2 Suz12 Uncl. K4 + K27 None ICP

*ZFP42 TF activity NO – NOS – EZH2 – – K4 None ICP

To illustrate the convergence of pluripotency transcription factor networks with epigenetic processes, we selected a subset of ES cell 

genes identifi ed as Oct4, Nanog, and Sox2 target genes in both human (Boyer et al., 2005) and mouse ES cells (Kim et al., 2008)

This dataset was then examined in independent datasets for promoter occupancy by Oct4, Nanog [99] and for Nanog, Oct4, SOX2, TCF4 

and polycomb complexes [144], bivalent histone methylation marks (K4 and/or K27), and DNA promoter methylation classifi cation [87]. 

*Zfp42/Rex1 is included for comparison (see Fig. 3).

Abbreviations: TF, transcription factor; N, Nanog; O, OCT4/Pou5f1; S, SOX2; T, TCF; –, not detected; Suz12/EZH2, PRC2; Ring1b, 

PRC1; K4, histone H3 lysine 4 trimethylation; K27, histone H3 lysine 27 trimethylation; HCP, high CpG promoter containing a 500 bp 

region with GC content ≥0.55, observed to expected CpG ratio ≥0.6; LCP, low CpG promoter containing no 500 bp region and with 

observed to expected CpG ratio ≥0.4 and ICP, intermediate CpG promoter, CpG distribution between HCP and LCP; ESC, embryonic 

stem cell; NPC, neural precursor cell.

Sources: [53,58,74].
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Oct4 must be sustained for the maintenance of pluripotency, 
further implying that Oct4 levels are tightly regulated by 
the cell. Nanog is a homeodomain protein that is predom-
inantly expressed in pluripotent cells and is essential for 
early embryo development [43]. Evidence from the deriva-
tion of iPS cells (described earlier) and other studies [43,89] 
indicates that while Nanog is not required for the establish-
ment of pluripotency in ES cells, it does function to maintain 
the self-renewal capacity of these cells and its expression has 
been shown to suppress differentiation [31,44,91]. Consistent 
with this role, Nanog overexpression enables the propaga-
tion of mouse ES cells in a leukemia inhibitory factor (LIF)-
free environment [43] and human ES cells in the absence of 
feeder cells [92]. Conversely, the loss or defi ciency of Nanog 
results in ES cell differentiation [93,94]. Nanog [64], like Oct4 
[95], forms distinct transcriptional repressive complexes, but 
more recent work has shown that Nanog possess 2 potent 
transcriptional activating domains [96,97]. This suggests 
that like Oct4 [98], Nanog can function as a transcriptional 
activator. The Sox2 transcription factor is a member of the 
SRY-related HMG box (Sox) transcription factor family 
[90,97]. Sox2 is expressed in pluripotent cells and multipo-
tent embryonic and extraembryonic cells. Although Sox2 
remains less well characterized than either Oct4 or Nanog 
[43,88,89], Sox2 is known to play a major role in the regula-
tion of cell fate and with Oct4 appears essential for the deri-
vation of iPS cells [36].

Oct4 and Nanog have long been recognized to be mas-
ter transcriptional organizers of ES cell self-renewal [53,74, 
96,99–101]. It is clear that Oct4 and Nanog form a mutual, 
interdependent transcriptional network with Sox2. Oct4 and 
Sox2 have been known to act synergistically to regulate their 
own transcription [102] and as well as the expression of other 
key stem cell genes including FGF4 [103], Nanog [104], and 
Zfp42/Rex1 (Fig. 3) [98,105,106]. The pluripotency transcrip-
tion factors can form combinatorial complexes that include 
Nanog homodimers [107] and heteromeric complexes includ-
ing OCT4–SOX2 [104], Oct4–Nanog [108], and Nanog–Sall4 
[109] proteins. As described earlier, the levels of Oct4 must be 
precisely maintained [88]. The exact mechanisms regulating 
OCT4 levels in ES cells remain to be determined, but appear 
to involve direct regulation by Sox2 [90]. Furthermore, Oct4 
has been shown to suppress its own expression [100]. This 

DNA methylation and stem cell differentiation

DNA methylation (Fig. 2) is an epigenetic modifi cation 
typically associated with gene silencing (reviewed in detail 
in [49]). Methylation of DNA CpG islands plays a critical 
role in physiological processes of transcriptional repression, 
X-inactivation, and genomic imprinting [80]. Three different 
DNA methyltransferase (Dnmt1, Dnmt3a, Dnmt3b) isoforms 
have been characterized. Dnmt1 exhibits a substrate pref-
erence for hemi-methylated CpG and functions primarily 
to maintain DNA CpG methylation, whereas Dnmt3a and 
Dnmt3b are critical for de novo DNA methylation [80,81] 
(Fig. 2). Dnmts play essential functions in embryonic dif-
ferentiation and development [52,82,83]. However, the exact 
roles of DNA CpG methylation in stem cell differentiation 
and how this may relate to other epigenetic regulatory 
mechanisms remain poorly understood. The genome-wide 
DNA methylation profi les analyses have revealed that DNA 
CpG methylation is a dynamic epigenetic trait resulting 
in distinct patterns of methylated CpG regions in undif-
ferentiated stem cells and cells undergoing differentiation 
[52]. Interestingly, DNA methylation is associated with the 
majority (87%) of ES cell-repressed genes, which lack the 
bivalent histone domain [84]. This fi nding suggests that 
DNA methylation is a potential repressive mechanism for 
this class of genes, which is in a silenced state in ES cells (see 
Table 1). DNA methylation can also contribute to the silenc-
ing of the key pluripotency transcription factors as ES cells 
move toward a differentiated state. Dnmt3a and Dnmt3b 
were shown to methylate Oct3/4 and Nanog promoters in 
embryonal carcinoma and ES cells upon differentiation [81]. 
Consistent with this, the expression of several genes associ-
ated with pluripotency, including Nanog 1 and Zfp42/Rex1, is 
characterized by demethylated promoters in ES cells and the 
genes are silenced and methylated in differentiated mouse 
fi broblasts [84]. This refl ects the distinct global DNA meth-
ylation patterns that contribute to stem cell differentiation. 
Nonetheless, the functional interplay between DNA methyl-
ation and histone modifi cations remains poorly understood. 
Indeed, the correlation between DNA methylation and 
PcG-mediated repression has been debated. Comparison of 
the genes targeted by PcG complex and those enriched by 
methyl-DNA immunoprecipitation revealed that polycomb-
mediated repressive marks and DNA methylation are not 
associated with a common pool of target genes in ES cells 
[84]. Although there have been reports of functional interde-
pendence of these epigenetic mechanisms [84,85], these and 
other results [86,87] suggest that DNA methylation and PcG-
mediated transcriptional repression represent 2 distinct but 
convergent epigenetic silencing mechanisms.

The NANOG/OCT4/SOX2 pluripotency transcription 
factor network control embryonic stem cell 
differentiation by epigenetically modulating the 
expression of pro-differentiation loci

The transcription factors Oct4, Nanog, and Sox2 play 
essential roles in the regulation of pluripotency in both 
human and mouse ES cells [43,88–90]. Down-regulation of 
the Oct4 protein leads to a loss of maintenance of ES cell 
pluripotency as the cells differentiate [43,89]. Surprisingly, 
however, the overexpression of Oct4 also induces differen-
tiation in ES cells [88]. This suggests that precise levels of 

Wnt Regulated
LEF1/TCF

REX1 Protein
Synthesis

Nanog SOX2
Oct4

100 bp–300 bp

Rex1/zfp42 Promoter Rex1-Gene

FIG. 3. Convergent stem cell regulatory networks control 
expression of key stem cell genes. One classical representa-
tive of this transcriptional network is the Zfp42/Rex1 gene. 
Expression of the Zfp42/Rex1 gene has long been used as a 
marker of undifferentiated stem cells and is regulated by 
Nanog, Sox2, and Oct4, and by the Wnt pathway. Expression 
of Zfp42/Rex1 is also subject to epigenetic regulation by poly-
comb complexes and DNA methylation (see Table 1).
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Polycomb group proteins

Polycomb group (PcG) proteins play essential roles in 
epigenetic regulation of ES cell differentiation and develop-
ment [56,57,75,112]. PcG proteins can cooperate with OCT4 
and NANOG in the regulation of differentiation [58,75]. 
Important members of the polycomb family of proteins 
include the enhancer of zeste-1 and 2 (EZH1 and 2) histone 
H3K27 methyltransferases [113], embryonic ectoderm devel-
opment (EED), suppressor of Zeste (SUZ12), B lymphoma 
Mo-MLV insertion region 1 (BMI1), and Ring1A/B. The zinc 
fi nger protein YinYang1 (YY1) can recruit polycomb com-
plexes to chromatin [69] and on this basis is considered a 
polycomb protein. PcG proteins form multimeric PRC [75,114] 
(Fig. 2). The exact subunit and isoform composition of each 
PRC can vary dependent upon cellular conditions and dif-
ferentiation [115–118]. In general, the EZH2 containing PRC2, 
which also requires SUZ12 and EED, is the complex that ini-
tiates polycomb repression. Distinct PRC2-related complexes 
with variant EED isoforms and/or SirT1 deacetylases have 
also been reported and exhibit distinct histone substrate 
specifi cities [115]. Polycomb epigenetic repression is main-
tained by PRC1, a large multi-subunit complex containing 
chromodomain proteins (CBC2/4/8), BMI1, and Ring1A/B 
ubiquitin-ligase activity (reviewed in [119]). YY1 can interact 
with the EED [120] and EZH2 [69] components of PRC2. YY1 
can also interact with PRC1 under certain conditions [121].

The PRC2 proteins, EZH2, EED, and SUZ12, occupy and 
repress the promoter/regulatory domains of genes that 
participate in differentiation and cell fate decisions [57]. As 
described earlier, PcG proteins are also implicated in the 
establishment of “bivalent chromatin domains” that pos-
sess both repressive (histone H3 lysine 27 trimethylation; 
H3K27me3) and active (histone H3 lysine 4 trimethylation; 
H3K4me3) histone marks. Genes located within these biva-
lent chromatin domains, though epigenetically repressed, 
still possess the capacity for transcriptional activation in 
response to a differentiation stimulus [54,59,73]. During ret-
inoic acid-induced differentiation of mouse teratocarcinoma 
cells, retinoic acid acting via its receptors causes PRC2 com-
plexes to exit gene promoters transcriptionally activated by 
RA [122,123]. Thus PcG proteins have the epigenetic authority 
to maintain repression of developmentally regulated genes 
and thereby contribute to cell fate decisions [124].

The gene clusters repressed by the PcG complex change 
during differentiation. As repression of pro-differentiation 
loci is relieved, PcG-mediated epigenetic constraints are 
imposed on pluripotency genes such as OCT4 [54–56,112,125]. 
The mechanisms controlling this reciprocal regulatory net-
work and the sequence of events that balance pluripotency 
versus differentiation remain unknown. Expression of the 
Suz12 [56,112], Yy1 [126], and Ezh2 [127,128] polycomb genes 
is necessary for embryonic development. However, a recent 
study shows that Eed, and by extension its PRC2 partners, 
Ezh2 and Suz12, are not required to maintain ES cell pluri-
potency, but are necessary to repress expression of lineage-
specifi c genes [129]. Thus PRCs can be considered to regulate 
patterns of differentiation (see Table 1).

Histone lysine methylation can be reversed by an enzy-
matically diverse group of transcriptional coregulators. 
JMJD3 and UTX are H3K27me3-demethylases that reverse 
PcG-mediated repression of Hox genes in mammalian 
ES cells upon differentiation [130,131] (Fig. 2). Given the 

Oct4 self-suppression creates a negative feedback loop to 
counter the actions of Sox2 and Nanog, thereby fi ne-tuning 
the levels of Oct4 present in the undifferentiated stem cells 
[100]. One functional consequence of fl uctuating Oct4 levels 
is seen on the expression of Nanog. Oct4 actively regulates 
Nanog in a biphasic manner such that lower Oct4 levels up-
regulate Nanog, whereas higher Oct4 levels result in down-
regulation of Nanog expression [99].

The pluripotency transcription factors function collab-
oratively to regulate the state of differentiation of ES cells. 
Two major studies have demonstrated that Oct4, Nanog, 
and Sox2 share a substantial fraction of target genes and, 
in fact, co-occupy genes in both mouse and human ES cells 
[74,99]. As reported by Boyer and colleagues, these genes 
occupy collectively about 10% of the promoters in the human 
genome. About half of the promoter regions bound by OCT4 
were also bound by SOX2 and 90% of these doubly bound 
genes were in turn bound by NANOG [74]. Moreover, the 
OCT4, SOX2, and NANOG-binding sites were in close prox-
imity, further confi rming that the proteins work in concert. 
Data from mouse ES cells also indicate that Nanog and Oct4 
colocalize in many gene regions [99] (see Table 1). Also, stem 
cell-associated genes were activated by Oct4 and Nanog, 
while inactive genes typically were implicated in cell line-
age determination and development. Both studies also 
found that Oct4 and Nanog bound to gene regions associ-
ated with loci encoding microRNAs. However, in no case 
was a common microRNA identifi ed as a potential Nanog 
or Oct4 target [74,99]. This may refl ect intrinsic differences 
in the gene expression profi les of mouse and human ES cells 
or may be attributable in part to the different experimen-
tal techniques, ChIP-chip and ChIP-PET (paired-end ditag 
sequences), employed in the 2 studies.

The use of biotinylated-tag approaches has permitted 
biochemical characterization of the Nanog complex [101] 
and analysis of stem cell promoter occupancy of 9 stem cell 
transcription factors (including Oct4, Nanog, Sox2, c-Myc, 
Klf4, Zfp42/Rex1) [53]. These studies demonstrated that 
Nanog, its target genes, and protein partners interacted 
with a large number of proteins involved in early develop-
ment in vivo. This method demonstrated that Oct4, Nanog, 
Sox2, and other associated proteins simultaneously occupy 
the promoters of a substantial number of genes. This sup-
ports the hypothesis that ES cell-associated transcription 
factors function as protein complexes. Genes whose promot-
ers were bound by several transcription factors tended to be 
activated in ES cells, including the stem cell markers, Nanog, 
and Rex1. In contrast, genes involved in differentiation and 
therefore repressed in ES cells have promoters that tended 
to be bound by just one factor. Moreover, the authors indi-
cated that this pluripotency protein network is also associ-
ated with other complexes such as PRC1, which functions in 
the repression of transcription [109–111]. In conclusion, Oct4, 
Nanog, Sox2, and a number of associated transcription fac-
tor proteins such as Sall4 [109,110] activate and maintain the 
expression of genes involved in self-renewal, while simulta-
neously repressing genes that mediate differentiation. Thus 
Oct4, Nanog, and Sox2 form a self-reinforcing and intricately 
connected network that preserves ES cell character. Hence, 
elucidating the various interactions between these proteins 
and their targets and protein partners remains a critical step 
in enhancing our understanding of the molecular basis of 
pluripotency.

14-SCD-2009_0113.indd   1099 8/27/2009   2:48:43 PM



KASHYAP ET AL.1100

Convergence of distinct epigenetic repressive 
pathways and stem cell differentiation

There is evidence of functional convergence between the 
epigenetic repressive mechanisms, mediated by the PRC, 
DNA methyltransferase-3 (Dnmt3)-mediated promoter 
methylation, miRNAs and Oct4/Nanog, which participate 
in regulating ES cell differentiation [52,150,151]. ES cell chro-
matin is poised to initiate broad ranging and extensive tran-
scriptional responses to pro-differentiation cues [59,125]. 
Therefore, one common effect of each of these parallel tran-
scriptional repressive mechanisms is to reduce transcrip-
tional “noise” [152]. This dampening down of “background” 
transcriptional events that could adversely bias patterns and 
timing of differentiation is achieved by a complex inter-reg-
ulation of the pluripotency network [153,154]. For example, 
expression of the EZH2 component of the polycomb repres-
sive complex-2 is directly regulated by the miRNA-101 [155]. 
Conversely, the SUZ12 component of the polycomb complex 
and associated histone H3K27 methylation epigenetic mark 
were found to be associated with a subset of miRNAs inac-
tive in undifferentiated ES cells [144]. The expression of these 
miRNA loci increases as the polycomb-mediated repression 
is relieved enabling these miRNAs to guide ES cell differen-
tiation [144]. The YY1-PcG transcription factor also directly 
regulates transcription of the miR-29 miRNA by recruiting 
HDAC1 and EZH2 to regulatory regions in the miR-29 pro-
moter region [156]. Similarly, miRNAs appear to regulate 
the stable silencing of pluripotency-associated genes, such 
as Oct4, by de novo DNA methylation [149]. Oct4 in turn 
regulates expression of the Eed component of the PRC2 [157] 
and recruits PRC1 to target loci silenced in undifferentiated 
stem cells [151,158]. Thus the NANOG, OCT4, SOX2 stem 
cell transcription factors, miRNAs, polycomb, and DNA 
methyltransferase complexes cooperate in a complex mutual 
regulatory circuit during ES cell differentiation (Figs. 2 and 
4). The recently identifi ed convergence of Oct4–Sox2 and 
miRNA pathways in the regulation of the ES cell cycle [159] 
suggests that the complexity of these networks is only now 
being deciphered.

As noted earlier, the Zfp42/Rex1 gene is a convergence point 
of critical stem cell differentiation pathways. Zfp42/Rex1 is 
regulated by Nanog [105], Sox2 [105], and Oct4 [98,99,106,160] 
(Fig. 3). Expression of Rex1 is also infl uenced by the Wnt 
pathway [7]. REX1 is conserved in human and mouse stem 
cells [161]. We [161] and others [162] have shown that the 
ZFP42/REX1 stem cell protein is a member of the YinYang1 
(YY1) subfamily of zinc fi nger transcription factors, which 
includes the Drosophila polycomb protein, pleiohomeotic 
(PHO). The exact mechanism of how PRCs are targeted 
to the correct DNA regions remains poorly understood. 
Polycomb response elements (PREs) have been identifi ed in 
the Drosophila genome [163]. However, no such features have 
been defi nitely identifi ed in the mouse or human genomes. 
Pho is involved in the recruitment of polycomb complexes 
to response elements in Drosophila [163–165]. YY1 has been 
shown to compensate partially for loss of Pho function in 
Drosophila [166]. This indicates that YY1, and by extension 
REX1, could play an analogous role targeting PcG complexes 
to specifi c loci in higher organisms. Studies have revealed 
that expression of Rex1 is limited to human [101,167–171] and 
mouse [171] ES cells, a variety of adult stem cells [172,173] and 
iPS cells derived from distinct mouse and human somatic 

ability of JMJD3 to reverse the repressive epigenetic mark 
(H3K27me3), which is associated with repression of several 
differentiation genes in ES cells, it would be reasonable to 
speculate about a role for Jmjd3 in activation of pro-differ-
entiation genes. Indeed Jmjd3 is essential for commitment 
of ES cells to the neural fate [132]. Jmjd3 mediates the transi-
tion to the neural fate by activating key neurogenesis genes 
namely, Nestin, Pax6, and Sox1. The increased expression 
of neural programming genes correlates with the loss of 
the H3K27me3 repressive mark via the catalytic activity 
of Jmjd3 [132]. JMJD3 has also been shown to regulate the 
activation of epidermal differentiation genes in primary 
human keratinocytes, thus expanding their role in regulat-
ing differentiation in epidermis, yet another self-renewing 
tissue [133].

The Jmjd1a and Jmjd2c histone lysine H3K9me3-
demethylases also play important roles in mediating the 
epigenetic regulation of pluripotency in mouse ES cells 
and are directly regulated by Oct4 [134]. Depletion of 
Jmjd1a and Jmjd2c by siRNA in mouse ES cells led to mor-
phological changes, induced cellular differentiation, and 
increased expression of different lineage-specifi c markers 
[134]. Subsequent microarray analysis in combination with 
functional assays revealed downstream targets of these 
demethylases. Jmjd1a was found to be associated with the 
promoter of the Tcl1 gene, which encodes the Tcl1 cofactor 
of the Akt1 kinase. Tcl1 regulates ES cell self-renewal [135]. 
Furthermore, Jmjd2c associates with the Nanog promoter 
and thereby regulates the expression of Nanog [134].

MicroRNAs and stem cells

Recent studies have revealed that microRNAs (miR-
NAs), a family of nonprotein encoding transcripts of ~20–25 
nucleotides, play essential roles in regulating gene expres-
sion (see [136,137] for recent expansive reviews of miRNA 
biogenesis and function). A subset of miRNAs is prefer-
entially expressed in undifferentiated stem cells [138] and 
plays essential roles in proliferation, pluripotency, and 
differentiation [139,140]. The pattern of miRNA expression 
changes during ES cell differentiation [141]. Mouse ES cells 
defi cient in the Dicer [142] and Microprocessor (Drosha-
DGCR8-Ddx5) [72,143] components of the miRNA process-
ing apparatus exhibit defects in ES cell differentiation and 
development. The promoter regions of miRNAs that func-
tion in stem cells are typically occupied by key members of 
the stem cell transcription factor network, including Nanog, 
Oct4, and Sox2 [144,145]. Interestingly, Nanog, Oct4, and Sox2 
are themselves subject to miRNA [146] and PcG [112] modu-
lation during ES cell differentiation. A recent study showed 
that RA-induced differentiation of mES was associated with 
an up-regulation of miRNAs (miR-134, miR-296, miR-470), 
which target the coding sequences of the Nanog, Oct4, and 
Sox2 pluripotency transcription factors [147]. The miR-124 
contributes to neuronal differentiation [148]. Collectively, 
these reports highlight the emerging view that miRNAs 
regulate, and are themselves regulated by, distinct tran-
scriptional repressive mechanisms [45,144]. The best char-
acterized miRNA network involves the ES-specifi c miR-290 
cluster, which regulates Oct4-methylation in differentiating 
ES cells [149]. This illustrates that miRNAs play an indirect 
role in the control of de novo DNA CpG methylation in dif-
ferentiating ES cells [149].
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the identifi cation of miR-155 as key regulators in the ery-
throid and myeloid lineage differentiation responses [179]. 
Similarly, in vitro neuronal differentiation protocols have 
been reported (refer to [77] for an example of human neu-
ral progenitor derivation from ES cells in a defi ned system). 
Mohn and colleagues have characterized the epigenetic 
changes that occur upon differentiation of pluripotent ES 
cells toward neuronal lineages [77]. This study revealed that 
the genome-wide distributions of H3K27me3 (a surrogate 
mark of polycomb repression) and DNA CpG methylation 
exhibited stage-specifi c distributions during differentiation 
from ES cells to neural progenitors to terminally differenti-
ated pyramidal neurons [77]. Another key epigenetic regula-
tor of neuronal differentiation of stem cells is RE1-silencing 
transcription factor (REST) [180,181]. Although a potential 
central role for REST in the maintenance of stem cell self-
renewal and pluripotency remains controversial [182–184], 
experimental depletion of REST by siRNA in ES cells impairs 
neuronal differentiation and development [185]. REST coor-
dinates the epigenetic changes necessary for neural differ-
entiation by interacting with and targeting HDAC1/2 and 
histone lysine demethylase 1 (LSD1/AOF2) to appropriate 
loci [186], during lineage commitment and neuronal dif-
ferentiation [180,181]. Expression of REST is itself subject to 
miRNA regulation by miR-9/miR-9*, which are regulated by 
REST [187]. Thus, REST regulates neuronal differentiation 
by forming a reciprocal regulatory circuit composed of miR-
NAs and diverse epigenetic mechanisms.

Stem cell transcriptional networks and human cancer

Small numbers of stem cells are believed to exist in most 
if not all adult tissues (reviewed in detail in [188]). Adult stem 
cells can evade the stringent genetic controls of their normal 
pathways of cellular differentiation and proliferation and can 
give rise to cancer. Cancer stem/initiating cells have been 
defi ned as a subset of cancer cells that have the exclusive 
ability of self-renewal and cause the heterogeneous lineages 
of cancer cells that comprise the tumor [189,190]. These “can-
cer stem cells” are implicated in cancer initiation, malignant 
potential, metastatic progression, and in the posttreatment 
recurrence of many human cancers types [191]. Stem cell-spe-
cifi c proteins, including OCT4, NANOG, and ZFP42/REX1 
are implicated in some cancers [161,192,193]. Histologically 
poorly differentiated tumors showed preferential overexpres-
sion of genes normally enriched in ES cells. Activation targets 

cell types [26,28,31,35]. Following stem cell differentiation, 
the Rex1/Zfp42 locus is subject to extensive histone H3 lysine 
9 dimethylation, a G9a-mediated epigenetic mark consistent 
with tissue-specifi c transcriptional repression [51] and DNA 
methylation [84]. Biotin-affi nity labeling of the REX1 protein 
has revealed that the REX1 interactome involves potential 
interactions with other key stem cell proteins, including 
OCT4 [101]. The functional signifi cance of these potential 
REX1 interactions remains unexplored. More recently, the 
genome-wide distribution of 9 stem cell transcription fac-
tors, including Rex1, was analyzed by bioChIP-on-Chip in 
mouse ES cells [53]. This study revealed that Rex1 promoter 
occupancy most frequently clustered with epigenetic marks 
consistent with transcriptional activation (histone H3 lysine 
4 trimethylation; H3K4me3). These studies have confi rmed 
the importance of Rex1 in epigenetic regulation in undif-
ferentiated stem cells. The effects of ectopic expression of 
REX1 in ES cells have also been studied [174,175]. Zhang and 
colleagues found that Rex1 reduced the self-renewal capac-
ity of mouse ES cells, suggesting that Rex1 plays a role in 
regulating the self-renewal potential of cells in which it is 
expressed, whereas Masui and colleagues saw little effect 
[174,175]. These reports may refl ect differences in the lev-
els of REX1 expressed in the distinct experimental systems 
used in the studies [174,175]. These results may indicate that 
the ability of stem cells to self-renew is sensitive to subtle 
differences in Rex1 protein levels, as is also the case for Oct4 
[88]. We have found that in the presence of retinoic acid, Rex1 
null ES cells display an increased tendency to differentiate 
along all 3 germ lines, suggesting a role for Rex1 in retinoic 
acid-induced differentiation [176].

Transcriptional networks and lineage determination 
during stem cell differentiation

The functional interplay of each component of the stem 
cell regulatory circuit (Fig. 4) is perhaps best understood in 
the establishment of neuronal and hematopoietic lineages. 
Mouse embryonic stem cells can be effectively guided into 
becoming hematopoietic progenitors in serum-free media 
when exposed to BMP4, activin A, bFGF, and VEGF con-
secutively [177]. When co-cultured with murine stromal 
cells human ES cells can undergo defi nitive hematopoie-
sis [178], generating an easily accessible population for the 
dissection of transcription factors involved in lineage com-
mitment. The accessibility of human blood has also enabled 

Pluripotency Genes
OCT4-SOX2-Nanog

Self Renewal Differentiation

Polycomb
Repressive
Complexes

microRNAs

FIG. 4. The reciprocal regulatory circuit 
composed of Oct4–Sox2–Nanog; polycomb 
repressive complexes and microRNAs regu-
late the transcriptional responses necessary 
to balance self-renewal and differentiation.
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of NANOG, OCT4, SOX2, and c-MYC are more frequently 
overexpressed in poorly differentiated tumors than in well-
differentiated tumors [194]. It appears that the genes active in 
both ES cells and cancer stem cells are controlled by a few 
master regulatory genes, one of which is c-MYC. As noted 
earlier, c-MYC can contribute to epigenetic reprogramming 
and induction of pluripotency from differentiated fi broblasts 
(see section on iPS cells). However, c-MYC is also suffi cient to 
reactivate the ES cell-like program in cancer cells [195]. These 
results suggest that aberrant activation of an ES cell-like tran-
scriptional program in adult differentiated cells may induce 
pathological self-renewal characteristic of cancer stem cells.

There is also conclusive evidence implicating aber-
rant polycomb function in malignancy [196]. As described 
earlier, polycomb complexes contribute to the epigenetic 
regulation of key gene networks involved in stem cell self-
renewal [197], differentiation, and proliferation and achieve 
this via dynamic regulation of chromatin/histone modi-
fi cations (eg, via lysine methylation) associated with the 
promoter and regulatory regions of polycomb target genes 
[56,57,112,114,198,199]. This polycomb epigenetic stem cell 
gene signature has also been observed in cancer cells [200] 
and PRCs play important roles in cancer stem cells [201]. 
There is a wealth of evidence that overexpression of the 
EZH2 polycomb gene occurs in multiple human malignan-
cies (eg, see [196,202]). Indeed genomic loss of miR-101 leads 
to increased EZH2 levels [155,203]. Although the exact mech-
anisms by which EZH2 contributes to carcinogenesis remain 
poorly defi ned, recent evidence indicates EZH2 overexpres-
sion can contribute to the inappropriate silencing of tumor 
suppressor genes [114]. For example, the pro-differentiation 
tumor suppressor gene, retinoic acid receptor β2 (RARβ2) 
was shown to be a PcG target [57], providing a plausible link 
between polycomb and epigenetic regulation of this impor-
tant tumor suppressor gene whose expression has been 
found to be reduced or lost in many in human malignan-
cies. For these reasons understanding the mechanisms by 
which the complex interplay of the pluripotency transcrip-
tion factors, PRC, and miRNAs balance self-renewal and cel-
lular proliferation (Fig. 4) is essential for our understanding 
of both the earliest events of embryonic differentiation and 
human carcinogenesis.
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