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Critical Role of the Nitric Oxide=Reactive Oxygen Species
Balance in Endothelial Progenitor Dysfunction

Felix Fleissner1,2 and Thomas Thum1,2

Abstract

Endothelial injury and dysfunction are critical events in the pathogenesis of cardiovascular disease. During
these processes, an impaired balance of nitric oxide bioavailability and oxidative stress is mechanistically
involved. Circulating angiogenic cells (including early and late outgrowth endothelial progenitor cells (EPC))
contribute to formation of new blood vessels, neovascularization, and homeostasis of the vasculature, and are
highly sensitive for misbalance between NO and oxidative stress. We here review the role of the endothelial
nitric oxide synthase and oxidative stress producing enzyme systems in EPC during cardiovascular disease.
We also focus on the underlying molecular mechanisms and potential emerging drug- and gene-based
therapeutic strategies to improve EPC function in cardiovascular diseased patients. Antioxid. Redox Signal. 15,
933–948.

Circulating Angiogenic Cell Characterization
and Clinical Relevance

Endothelial injury and dysfunction are critical events
in the pathogenesis of atherosclerosis. The endothelial

nitric oxide synthase (eNOS) generates the vasoprotective
molecule nitric oxide (NO), which plays a central role in the
control of vascular hemostasis. Vascular NO stimulates the
soluble guanylyl cyclase that leads to increased cyclic gua-
nosine monophosphate (cGMP) concentrations and relaxation
of smooth muscle cells. In addition, NO inhibits leukocyte
adhesion to the vessel wall, as well as platelet aggregation and
adhesion processes. Endothelial-mediated NO production
probably represents one of the most important anti-athero-
genic defense principles in the vasculature. Recently, evidence
was presented for NO to play a key role in cardiovascular
regenerative processes. As resident endothelial cells often
infrequently proliferate in the vascular wall (81), other sources
of cellular replenishment have been postulated as mecha-
nisms to repair endothelial lesions. Angiogenic cells are a
heterogeneous cell population that circulate in the blood. For
instance, bone marrow-derived endothelial progenitor cells
(EPC) contribute to formation of new blood vessels, subset
diseased endothelial cells, and improve homeostasis of the
vasculature (6). However, recent findings found no evidence
for bone marrow-derived EPC renewal of endothelium in an
eNOS-deficient mouse model of a chronic vascular disease
pointing to NO as a major key player for EPC function. The

exact (quantitative) contribution of bone marrow-derived
EPCs for neovascularization and endothelial regeneration
however remains uncertain (67). There are controversies
about the naming and characterization of EPC, which indeed
represent a rather heterogeneous cell population (90). There-
fore, we here describe several types of cells referred to as
EPCs, which were most studied in the recent years (see Fig. 1
for an overview).

Circulating Angiogenic Cells

First described by Asahara et al., there are blood-derived
cells that express markers of the endothelial lineage such as
CD31, VE-cadherin, KDR (VEGFR-2), and the von Willebrand
factor (vWF) (6). These cells also show putative endothelial
behaviour such as migration towards pro-angiogenic factors
such as stromal cell-derived factor-1 (SDF-1), vascular endo-
thelial growth factor (VEGF), and such cells take up acetylated
low density lipoproteins (LDL) as do mature endothelial cells
(5). These early EPC are also referred to as circulating angio-
genic cells (CAC) (40), monocytic EPC, early outgrowth EPC
or angiogenic progenitor cells (APC). Such cells are usually
obtained by an adhesion-related isolation method by plat-
ing peripheral blood (or bone marrow) mononuclear cells
to fibronectin-coated dishes for several days (see Fig. 1). It
should be noted that the endothelial characteristics of such
‘‘early EPC’’ may also be acquired due to uptake of platelet
microparticles (69).
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Endothelial Colony Forming Units

In contrast to the protocols gaining the above mentioned
circulating angiogenic cells, Hill et al. used a method where
after 48 h nonadherent cells are seeded onto fibronectin-
coated dishes in a special differentiation medium (39). These
cells form colony forming units (CFU) over time that stain
positive for several endothelial markers such as eNOS,
VEGFR and others, but also express markers of hematopoi-
etic lineage such as CD45 (Fig. 1). These cells are different
from circulating angiogenic cells. However, there are also
common features; there is experimental evidence that both
circulating angiogenic cells and CFU forming cells are im-
portant for vasculature homeostasis by either direct or in-
direct mechanisms. Hill et al. and Werner et al. could detect a
significant correlation between CFU numbers and risk for
cardiovascular events and coronary artery disease (39, 124).
However, the exact mechanism of the contribution of early
EPCs to upkeep vascular integrity remains uncertain. Early
EPCs secrete various pro-angiogenic factors, such as VEGF,
stromal SDF-1, and NO (105, 117), thus contributing to an-
giogenesis and vascular repair by paracrine mechanisms
(Fig. 2). There is also a continuous shift in expression of stem

and endothelial surface markers during differentiation and=
or transdifferentiation of EPC. Some characteristics used
for phenotyping EPC such as uptake of acetylated LDL
or binding to specific lectins are also observed in non-
endothelial cells such as monocytes or macrophages (71).
Whether such hematopoetic cells also contribute to the for-
mation of new vessels remains to be determined. There are
also circulating EPC subtypes that can be directly identified
in the blood by specific markers such as CD34, CD133, and
VEGFR-2 (107) (Fig. 1).

Late Outgrowth EPC

In contrast to circulating angiogenic cells or endothelial
CFU, late outgrowth EPC are highly proliferative, and feature
the ability to directly form tubes and intact vascular vessels
(Figs. 1 and 2). At later stages, these cells do not express
markers of the hematopoietic lineage such as CD45 or CD14.
They represent a fraction of cells expressing markers of en-
dothelial cells such as VEGF, VEGFR-1, VEGFR-2, and eNOS
(Table 1). Some of these markers are identically expressed in
early EPCs; however, early EPC tend to loose these charac-
teristics during culture (45). Late outgrowth EPC represent

FIG. 1. Overview of currently used bone marrow- and=or peripheral blood-derived ‘‘EPC’’ names and characterizations
as well as culture conditions. Circulating EPC can be identified markers such as CD133, VEGFR, and CD34. EPCs in culture
can be divided into early outgrowth EPC, colony forming units (Hill-colonies), circulating angiogenic cells (CAC), and late
outgrowth EPC (modified from Ref. 89).
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cells closer to mature endothelial cells; whether such cells
can be produced only under artificial in vitro conditions or
whether they also have importance for in vivo endothelial
homeostasis is unknown. Interestingly, transplantation of
more differentiated or mature endothelial cells into ischemic
regions result in lower proangiogenic effects than transplan-
tation of early EPC.

Importance of eNOS-Derived NO and Oxidative
Stress for EPC Function

eNOS-derived NO is a major regulator of both EPC mobi-
lization and function. Here we summarize preclinical as well
as clinical findings and discuss the importance of eNOS and
oxidative stress for EPC function in various cardiovascular
diseases.

Functional Significance of eNOS for EPC

A common feature of the characterization of various EPC
subtypes is eNOS expression. Indeed, most groups have
identified eNOS mRNA or protein expression as well as eNOS
activity in certain types of EPC (Table 1). CD133-CD14þ cells
isolated from human umbilical cord blood showed a strong
increase in expression of endothelial markers, including
eNOS, whereas CD14 expression decreased during culture
(52). Late outgrowth EPC that display a cobblestone-like
morphology comparable to that of mature endothelium seem
to express eNOS at even higher levels (33). The underlying
regulatory events remain unclear, but transcriptional regula-
tion of eNOS in various EPC types and stages of differentia-
tion might be different (see also Section Regulation of eNOS
in EPC). Vascular progenitor cells derived from mouse or

FIG. 2. Current concept of the different actions of early and late outgrowth EPC in vascular homeostasis and neo-
vascularization. Whereas early outgrowth EPC function mainly through paracrine mechanisms releasing pro-angiogenic
factors, late outgrowth EPC can directly integrate into the damaged endothelium. NO, nitric oxide; SDF-1, stromal derived
growth factor-1; VEGF, vascular endothelial growth factor. (To see this illustration in color the reader is referred to the web
version of this article at www.liebertonline.com=ars).

Table 1. eNOS Expression in Various EPC Subtypes

Type of EPC Species eNOS mRNA expression eNOS protein expression eNOS activity Reference

Early EPC Mouse þ þ Not tested 60
CFU-EPC Not tested þ
Early EPC Canine Not tested þ Not tested 130
Early EPC Human Not tested þ Not tested 76
Early EPC (AC133-=CD14þ) Human Not tested þ Not tested 52
Early EPC, Mouse Not tested þ Not tested 84
Embryonic EPC Primate Not tested þ Not tested
Early EPC Human Not tested � Not tested 33
Late EPC Not tested þ þ
Early EPC Human þ þ þ 107
Early EPC Rat Not tested þ Not tested 104
Early EPC Mouse þ Not tested Not tested 132
Early EPC Mouse Not tested þ Not tested 30
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primate embryonic stem cells also show an increase in eNOS
expression over time both at the gene and protein level (84,
132). Although eNOS expression seems to be a major feature
of differentiating EPC, most of the results were observed with
EPC cultured in vitro under conditions that favor endothelial
differentiation. The potential of progenitors in vivo to express
eNOS under certain conditions, for example, during homing
of EPC to sites of ischemia and subsequent initiation of neo-
vascularization, is less clear and so far little information is
available. EPC from eNOS-KO mice have a tremendous re-
duction in functional capacity in vivo (2), whereas treatment of
progenitors with the eNOS enhancer AVE9488 improves
neovascularization after transplantation to ischemic tissues
(28, 74). This indicates eNOS is also expressed in EPC in vivo
with important functional consequences. eNOS-mediated NO
improved migratory capacity of EPC by direct effects on
vasodilator-stimulated phosphoprotein (VASP) and cyto-
skeletal changes (82; Fig. 3).

Regulation of eNOS in EPC

There is strong evidence that EPC-expressed eNOS is reg-
ulated under various physiological and pathophysiological
conditions. Compounds or molecules that increase eNOS ex-

pression improve EPC function, whereas eNOS inhibitory
substances have deleterious effects (99, 111). It was shown
that growth hormone (GH) and insulin-like growth factor 1
(IGF-1) mediated increase of eNOS expression and activity in
endothelial cells and EPC led to an increase in migratory
potential in vitro (24, 108, 112). In contrast, functional knock-
down of eNOS in EPC blocked cellular migration (107).
Treatment of EPC with insulin-like growth factor binding
protein-3 (IGFBP3) was able to enhance NO bioavailability
and subsequent EPC function, leading to enhanced vascular
repair (51). These effects on eNOS were phosphatidylinositol
3-kinase=Akt pathway dependent (51). During insulin resis-
tance, the downregulation of the PI3 kinase=Akt pathway in
skeletal muscle and endothelium leads to impaired EPC mo-
bilization and differentiation. In Akt-1 knockout mice, EPC
mobilization in response to ischemia and VEGF is impaired
(1). The positive effects of statins, IGF-1, and erythropoietin on
eNOS expression can be abolished by inhibition of the Akt
pathway (21, 99, 107). In contrast, hyperoxia leads to de-
creased growth, reduced VEGFR-2 and eNOS expression, and
impaired NO production of CFU-EPCs of preterm infants.

Treatment of EPC with the endogenous NOS inhibitor
asymmetric dimethylarginine (ADMA) impaired CFU for-
mation, incorporation of EPC into functional networks, as

FIG. 3. EPC mobilization from bone marrow and importance of NO for EPC biology. Several substances can contribute
through an increase in NO bioavailability to improved number and function of circulating EPC. This increase in NO leads to
enhanced MMP-9 activity and subsequent c-kit ligand slicing in bone marrow that results in increased EPC release. The
increase of intracellular levels of NO in EPC, may change the cytoskeleton and gene transcription, leading to enhanced
migratory capacity and functional improvement. MMP-9, matrix metalloproteinase-9; VASP, vasodilator-stimulated phos-
phoprotein; VEGF, vascular endothelial growth factor.
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well as differentiation of EPC (109). Tube formation of cul-
tured late-outgrowth EPC is likewise partly dependent on
eNOS function (33). OxLDL treatment reduces eNOS ex-
pression both in mature endothelium (102) and EPC, which
resulted in decreased EPC survival and impaired adhesive
properties (61). Likewise, LDL lipid apheresis increased pe-
ripheral EPC function in patients with refractory hyperlipid-
emia (66). Physical activity upregulates eNOS expression in
EPC isolated from the spleen and bone marrow of mice (57).
Following experimental brain ischemia, number of EPC and
neovascularization of ischemic tissue was enhanced in ani-
mals subjected to physical activity (30). The protective effect
of running on neoangiogenesis and general outcome was
completely abolished when animals were treated with a NOS
inhibitor or in animals lacking eNOS expression (30). In con-
trast, overexpression of eNOS in EPC improves cellular
function. Transplantation of eNOS transduced early EPC re-
stored pulmonary hemodynamics and increased microvas-
cular perfusion in a rat monocrotaline model of pulmonary
arterial hypertension significantly more as when compared to
transplantation of non-eNOS transduced EPC (137). Trans-
plantation of eNOS engineered EPC in a rabbit balloon an-
gioplasty model resulted in significantly reduced neointima
formation when compared with transplanted control GFP-
transduced EPC (54). Thus, transplantation of autologous
EPC overexpressing eNOS to injured vessels enhances the
vasculoprotective properties of the reconstituted endothe-
lium. Direct infusion of wild-type progenitor cells, but not of

eNOS-KO cells, was able to reverse the defective neovascu-
larization in eNOS-KO mice, indicating that eNOS is required
at the site of vessel formation (2). Besides overexpression of
eNOS, carbon monoxide (CO) enhanced EPC proliferation.
This effect is mediated via phosphorylation of Akt, eNOS
phosphorylation, and an increase in NO generation by en-
dothelial cells, leading to an increase in Tie2-positive EPCs
(121). In addition, overexpression of SDF-1alpha led to up-
regulation of eNOS activity and in turn enhanced vasculo-
genesis, whereas NOS inhibition prevented SDF-1a-mediated
effects (38).

Importance of Oxidative Stress to EPC Function

Reactive oxygen species (ROS) play a pivotal role in the
homeostasis of the vasculature. In general, low levels of ROS
may activate preventive pathways in EPC and even can
function in a pro-angiogenic manner, whereas higher ROS
levels significantly impair EPC function. Accordingly, in
many diseases, which result in increased ROS levels such as
diabetes type I or type II, EPC numbers and function are
impaired (Fig. 4). Incubation of EPC with hydrogen peroxide
significantly reduces the number of EPC by induction of ap-
optosis (118). Gluthation deficiency in mice leads to dimin-
ished EPC mobilization in response to ischemia or VEGF and
impaired function of EPC (29). In patients with diabetes, an
induction in NADPH oxidase activity and subsequent in-
crease in ROS levels leads to impaired EPC number and

FIG. 4. Various cardiovascular diseases and risk factors contribute to generation of oxidative stress that impairs EPC
number and function leading to impaired vessel repair and neoangiogenesis. ADMA, asymmetric dimethylarginine; DM2,
diabetes mellitus type 2. (To see this illustration in color the reader is referred to the web version of this article at
www.liebertonline.com=ars).
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function (88, 104). This is also observed in insulin resistance
settings (22). Heme oxygenase-1 (HO-1), a heme degradation
enzyme with multiple vasoprotective functions, is induced by
oxidative stress (9). After vascular injury, HO-1 enhances
mobilization of circulating EPC via increased levels of VEGF
and SDF-1 (59). In line, Wu et al. identified HO-1 as a potent
stimulus for increasing circulating EPC numbers; however the
underlining mechanisms remain unclear (129). An increase in
advanced glycylation endproducts (AGEs) or oxidized LDLs
can impair endothelial and EPC function by increasing ROS
levels (15, 101, 102). However, this effect could be blocked by
siRNA against the receptor for advanced glycation end-
products (RAGE) or blockade of the oxLDL receptor LOX-1
(94, 101). RAGE is also regulated by C-reactive protein (CRP),
which is considered as a proatherosclerotic protein, resulting
in impaired EPC function (15). Accordingly, AGE treatment
leads to a downregulation of eNOS and Bcl-2 expression, as

well as an elevation in cyclooxygenase-2, Bax, NF-kappaB,
and caspase-3 in a MAPK (ERK=P38=JNK)-dependant man-
ner (83). Exposure to high glucose levels results in an upre-
gulation of p66ShcA, a gene that regulates the apoptotic
responses to oxidative stress (20). Accordingly, p66ShcA
knockout mice display decreased ROS production and in-
creased resistance to ROS-induced cell death. Whereas high
glucose leads to increased p66ShcA protein expression, a de-
crease leads to reduction of bone marrow-derived EPCs (20).
A reduction in ROS levels improves EPC function. For ex-
ample, Nox2-containing NADPH oxidase deficiency im-
proves neovascularization via enhanced activation of the
VEGF=NO angiogenic pathway with subsequent improved
function of EPC (34). ’’Uncoupling’’ of eNOS itself can also
increase ROS levels (Figs. 4 and 5). This occurs usually when
associated with decreased tetrahydrobiopterin (BH4) levels,
for example in diabetes (80, 105; Fig. 5). Targeting BH4

FIG. 5. Different factors such as age, increased ADMA levels, and diabetes lead to EPC dysfunction. ADMA reduces NO
bioavailability via direct inhibition of eNOS and by a miRNA-dependent pathway that results in reduced SOD2 and Sprouty-
2 expression, leading to increased oxidative stress. Aging results in decreased IGF-1 and GH levels. This leads to decreased
eNOS expression and subsequent impaired NO bioavailability. Diabetes leads to NADPH activation and subsequent in-
creased oxidative stress. Finally, oxidative stress results in eNOS uncoupling and therefore increased oxidative stress and
impaired NO bioavailability. Oxidative stress results in impaired EPC function, leading to impaired vascular repair and
subsequent progression of vascular injury. BH4, tetrahydrobiopterin; L-Arg, L-arginine; miR-21, microRNA-21; ONNO-,
peroxynitrite; PKC, protein kinase C; SOD2, superoxide dismutase 2; SPRY2, sprouty-2. (To see this illustration in color the
reader is referred to the web version of this article at www.liebertonline.com=ars).
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therefore might be a valuable therapeutic strategy for the
future to prevent eNOS uncoupling in the vasculature and
maybe also EPC dysfunction.

Importance of NO and ROS in EPC from Patients
with Cardiovascular Disease

There is ample evidence that both NO and oxidative stress,
and particularly the balance between both, regulate number
and function of EPC by direct and indirect mechanisms. We
here highlight the role of eNOS-mediated NO formation and
oxidative stress in some exemplifying diseases.

Diabetes

Diabetic patients often suffer from severe and progressive
cardiovascular complications where limited number and
function of circulating EPC play an underlying role (60, 95). In
the diabetic vascular system, eNOS uncoupling may occur
with the consequence that eNOS switches its NO production
to release of ROS which in turn can react with NO to the
vascular toxicant peroxynitrite (26, 27). It was recently shown
that EPC from diabetic patients or in vitro after glucose chal-
lenge also undergo eNOS uncoupling, leading to increased
intracellular reactive oxygen and nitrogen species, which in
turn hamper EPC function (105; Fig. 5). Potentially of thera-
peutic interest, an underlying molecular cause is a markedly
reduced concentration of tetrahydrobiopterin (BH4), a mole-
cule that stabilizes the eNOS dimer and prevents eNOS un-
coupling (27; Fig. 5). Treatment of diabetic EPC with BH4 led
to a coupling of former uncoupled eNOS, normalized intra-
cellular ROS levels, and improved EPC function (105). Ac-
cordingly, EPCs from diabetic patients generate more ROS, at
least in part due to eNOS uncoupling and increased NADPH
oxidase activity, leading to a reduction in NO bioavailability
(88, 105). Treatment of glucose-stressed EPCs with superoxide
dismutase in vitro attenuated superoxide anion (O2

-) genera-
tion, restored NO production, and partially normalized their
ability to form colonies (35). Treatment of diabetic mice with
the HO-1 inducer and thus reducer of oxidative stress cobalt
protoporphyrin could in part restore EPC function (72).

Patients with diabetes lack the usual increase of circulating
EPCs occurring after myocardial infarction in nondiabetic
patients (166). High-density lipoprotein (HDL) from patients
with metabolic syndrome does not have a similar protective
effect on EPCs as HDL from healthy volunteers (87). Indeed,
HDL from healthy subjects stimulated endothelial NO pro-
duction, reduced endothelial oxidant stress, and improved
endothelium-dependent vasodilatation and early EPC-
mediated endothelial repair. In contrast, these beneficial
endothelial effects of HDL were not observed in HDL from
diabetic patients, suggesting markedly impaired endothelial-
protective properties of HDL in diabetes, maybe due to oxi-
dative modifications of the HDL molecule. Interestingly,
niacin therapy improved the capacity of HDL to stimulate
endothelial NO, reduced superoxide production, and pro-
moted EPC-mediated endothelial repair (87). Transplantation
of bone marrow-derived progenitor cells from healthy
into diabetic mice enhanced insulin sensitivity, improved
acetylcholine-dependant endothelial relaxation, and partially
restored endothelial function (14). Oxidized LDL compounds
lead to eNOS downregulation in mature endothelium to in-
duce endothelial dysfunction. In a parallel manner it was

demonstrated that oxLDL treatment also decreases both
eNOS expression and function in EPC by induction of oxi-
dative stress (61).

Aging, senescence, and exercise

During aging, there is an increasing misbalance between
reduced NO production and increased oxidative stress. In-
deed, eNOS expression in the vascular system is reduced with
age that regularly results in the development of endothelial
dysfunction (93, 133). Therapeutically interesting, treatment
with eNOS inducers such as AVE9488 (eNOS transcription
enhancer; see above), statins, ACE inhibitors, or IGF-1 may
revert EPC dysfunction (28, 74, 106, 120; Figs. 5 and 6). During
aging, expression and activity of glutathione peroxidase-1
(GPX1), a main effector enzyme to protect the organism from
oxidative damage, decreases in EPCs, leading to impaired
oxidative stress resistance (36).

Detraining in healthy volunteers with a history of moderate-
to-high intensity exercise training lead to a markedly decrease
in EPC (CD34þ=VEGFR2þ) numbers which was correlated
with a decrease in hyperemic forearm blood flow (128). In
contrast, even a short training treadmill exercise lead to in-
creased eNOS mRNA expression in endothelial CFU and
cardiovascular tissues and reduced NADPH oxidase expres-
sion, resulting in increased NO bioavailability (48, 122).

Hypertension

Prehypertension and established hypertension have been
described to be associated with significantly reduced numbers
of circulating EPCs (31). In addition, hypertensive rats with
high levels of aldosterone showed impaired function and re-
duced numbers of EPC via downregulation of VEGF and the
VEGF receptor (55). Moreover, aldosterone impairs EPC
function in mice and patients with primary hyperaldoster-
onism by a protein kinase A- and mineralocorticoid receptor-
dependent mechanism (96). Patients with high blood pressure
show an increased number of circulating senescent EPCs
concomitantly with a decreased plasma level of the calcitonin
gene-related peptide (CGRP) and a decreased CGRP mRNA
expression in EPCs (138). Increasing the concentration of
CGRP by rutaecarpine (a CGRP stimulator) in plasma and its
expression in EPC reversed EPC senescence induced by oxi-
dative stress, inducing angiotensin II transfusion (138). The
importance of CGRP is further underlined by the fact that
transplantation with CGRP-overexpressing EPCs could at-
tenuate pulmonary vascular remodeling and lower blood
pressure in pulmonary hypertensive rats (135).

Inflammatory diseases

Inflammatory diseases are often paralleled by enhanced
oxidative stress, including heart failure, rheumatoid arthritis,
or preeclampsia. Cytokines such as Interleukin-1b, SDF-1, and
GCSF have been shown to be involved in EPC recruitment,
homing or mobilization from bone marrow (3,92). Micro-
vascular endothelial cells challenged with inflammatory
stimuli expressed the membrane-bound form of KitL and re-
cruited EPCs via a c-Kit-mediated activation of the Akt sig-
naling pathway to inflamed endothelium (18). However,
chronic inflammatory processes or excessive inflammatory
stimuli have deleterious effects, resulting in decreased EPCs
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in the circulation (4, 119, 126). Low levels of circulating
CD133=KDRþ EPC also predicted occurrence of coronary
atherosclerosis in rheumatoid arthritis (134).

Underlying Mechanisms of EPC dysfunction

The examples given above highlight the importance of a
crucial balance between NO and ROS levels in the regulation
of EPC function. NO influences, at least in part via Akt
phosphorylation, a cascade of genes resulting in improved
EPC function (2). NO-derived mobilization processes of EPC
from bone marrow via inducing MMP-9, include cleavage of
the sKit ligand to mobilize cKitþ EPCs into the circulation (10,
37; Figs. 3 and 5). In addition to NO, carbon monoxide (CO)
also has important effects on endothelial function and EPC.
Whereas it has stimulatory effects on endothelial cells, it has
diametrically opposite effects on vascular smooth muscle cell
proliferation (121). This results in possible beneficial effects of
CO during balloon angioplasty-induced restenosis that reg-
ularly is associated with endothelial dysfunction and in-
creased proliferation of smooth muscle cells. CO enhanced
endothelial cell proliferation via activation of RhoA and
subsequent phosphorylation of Akt, eNOS phosphorylation,
and an increase in NO production. Moreover, CO yielded a 4-
fold increase in the number of mobilized green fluorescent
protein-Tie2-positive EPC versus controls, with a corre-
sponding accelerated deposition of differentiated green fluo-
rescent protein-Tie2-positive endothelial cells at the site of
injury. In contrast, CO was ineffective in augmenting endo-
thelial cell repair and the ensuing development of intimal
hyperplasia in eNOS(-=-) mice (121).

Understanding mechanisms in diseases that drive EPC
senescence and apoptosis may result in new treatment
approaches of impaired angiogenesis. For instance, the ap-

optosis signal-regulating kinase-1 (ASK-1), which belongs to
the MAPKKK family, whose members respond to various
external stimuli and initiate the MAPK cascade, regulates
senescence in EPC. Interestingly, ASK-1 expression is ele-
vated by glucose treatment and in diabetic patients, leading
to EPC dysfunction (50). ASK-1 also influences plasminogen
activator-1 (PAI-1), leading to enhanced atherosclerosis and
vascular dysfunction in diabetes. Diabetic ASK-1 knockout
mice do not show increased levels of PAI-1 resulting in
attenuated vascular dysfunction (65). Treatment with anti-
oxidative N-acetylcysteine (NAC) suppressed TNF-a-induced
ASK1 activation and apoptosis, suggesting that the generation
of ROS is necessary for the TNF-a-induced ASK1 apoptosis
(115). This points to ASK-1 as an interesting target to improve
EPC function. As mentioned above, glutathione peroxidase
type 1 (GPX-1) is a pivotal protein in protection of endothelial
cells from oxidative stress. GPX-1 reduces both H2O2 and lipid
peroxides to their corresponding alcohols using glutathione
as cofactor (116). In response to ischemia, GPX-1 knock-
out mice do not show an increase in circulating EPC (26).
In concordance, impaired angiogenesis in glutathione
peroxidase-1-deficient mice is associated with EPC dysfunc-
tion (29).

The endogenous NOS inhibitor ADMA decreased both
eNOS activity and cellular function of EPC (98–100,109; Fig.
5). ADMA levels correlate with circulating EPC function and
number, explaining in part the increased risk for cardiovas-
cular events in patients with high ADMA levels. Goette et al.
showed that during G-CSF treatment the increase in circu-
lating EPC is accompanied by an increase in ADMA levels via
upregulation of myeloperoxidase in leucocytes. However, the
increase in ADMA and therefore decrease in NO bioavail-
ability seems to diminish the potential beneficial effects of
increased number of circulating EPC (32).

FIG. 6. Established and experimental drug- or molecule-mediated treatment options for EPC dysfunction. GH, growth
hormone; HGF. hepatocyte growth factor; IGF-1, insulin-like growth factor-1.
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Drug-Mediated Treatment of EPC Dysfunction
(Current and Future Aspects)

Impaired number and function of EPC occur in various
forms of cardiovascular diseases and its correction by drugs,
local or systemic EPC transplantation improves specific dis-
eases in animal models or patients (90, 107, 120, 123; Fig. 6). In
humans, low numbers of EPC are predictive for future car-
diovascular events (77, 124) and as discussed above, impaired
EPC function is tightly associated to cardiovascular disease. It
is likely that as in animal models improvement of EPC func-
tion may also have cardiovascular protective effects in car-
diovascular diseased patients.

Renin=angiotensin=aldosterone-mediating drugs

The renin–angiotensin pathway represents a major regu-
lator of not only blood pressure but has also a role in the
development of atherosclerosis, oxidative stress, inflamma-
tion, and endothelial dysfunction (78). It is therefore inter-
esting that treatment of patients with stable angina with the
angiotensin converting enzyme (ACE) inhibitor ramipril
leads to increased EPC numbers and might play a role in the
beneficial effects of ACE inhibitors on cardiovascular out-
come, besides lowering blood pressure (63). Likewise, ACE
inhibition increases EPC mobilization by increasing MMP-9
activity in bone marrow after myocardial infarction (104). In
patients with type II diabetes, the angiotensin II type I re-
ceptor blocker olmesartan lead to an increase in EPC numbers
independent of the blood pressure lowering action (7; Fig. 3).
Treatment of EPCs with angiotensin II induced senescence
and impaired differentiation via upregulation of gp91phox,
the heme binding subunit of the superoxide-generating
NADPH oxidase, whereas treatment with an AT-blocker
rescued the function and differentiation of EPCs (42). Whether
newly developed renin inhibitors such as aliskiren impact on
EPC biology is currently under investigation. Aldosterone
treatment decreased NADPH oxidase p22phox, p47phox, and
gp91phox in EPC, whereas the aldosterone antagonist epler-
enone attenuated aldosterone-mediated EPC dysfunction (53,
96; Fig. 6).

Statins

HMG-CoA reductase inhibitors (statins) were amongst the
first drugs for which effects on EPC numbers and function
were described (120, 125). Statin treatment significantly in-
creased circulating EPCs. This effect was independent of its
LDL reducing effects (56). Another study showed direct ef-
fects of statin treatment on NO formation directly by en-
hancing eNOS expression in the bone marrow, fostering EPC
mobilization (104). Statins modulate EPC function at least in
part via activation of the PI3-kinase=protein kinase Akt
pathway, which leads to multiple effects on cell signaling, cell
cycle, and VEGF and eNOS protein expression, resulting
generally in improved EPC function and numbers (2, 56). As
statins reduce LDL oxidation, it may also protect EPCs from
toxic oxidized LDL that leads to increased cell senescence and
EPC dysfunction (43). Recent findings also demonstrated that
LDL reduction by lipid apheresis in patients with refractory
hyperlipidaemia increases EPC function (66).

Acetylsalicylic acid (aspirin) impaired EPC function in vitro
via downregulation of iNOS or possibly decreased Akt

phosphorylation in EPCs (17). In contrast, clopidogrel en-
hances levels of endothelial NO and improved EPC function
by increased EPC Akt phosphorylation in peripheral blood of
patients with type 2 diabetes mellitus (62; Fig. 6).

Growth hormone, insulin-like growth factor-1,
and estrogens

Administration of growth hormone increases NO bio-
availability and enhanced circulating EPC numbers in healthy
volunteers (103, 107). This increase in NO availability is me-
diated partly by an increase in IGF-I and subsequent Akt
phosphorylation. Besides IGF-1, GH directly may also in-
crease eNOS expression in the vascular system (19, 108, 112).
The effect may be more pronounced in patients with growth
hormone deficiency or in the elderly where GH treatment can
successfully improve EPC number and function (107). Finally,
estrogen supplementation also increases bone marrow-
derived EPC production and diminishes neointima formation
(46, 91) which may at least in part explain the cardiovascular
protective properties of this hormone.

Resveratrol

Resveratrol is a polyphenol compound enriched in grapes
and grape products and mediates its protective effects
on vascular biology via enhancing NO bioavailability and
reduction of oxidative stress (70). Red wine enriched with
resveratrol leads to increased numbers of circulating EPC,
improved NO bioavailability, and reduced levels of the
eNOS inhibitor ADMA (41; Fig. 6). Resveratrol also attenu-
ates tumor necrosis factor-alpha-induced EPC senescence
and improves EPC function, including tube formation
in vitro (8, 41). The increase of telomerase activity in EPCs
might also contribute significantly to the reduced senescence
of EPC by resveratrol treatment (131). Resveratrol is a known
stimulator of sirtuin-1 (Sirt1), which in turn promotes
angiogenesis (68). Indeed, SIRT1 is a critical modulator of
EPCs dysfunction (8) and knockdown of Sirt1 by siRNA
results in diminished EPC angiogenesis and increased se-
nescence (136). Thus, activation of SIRT1 by resveratrol may
contribute to the vasoprotective and angiogenic effects of
this compound.

L-Arginine

L-Arginine consumption improved markers of NO bio-
availability, as well as EPC numbers and potentiated the
positive effect of moderate exercise training on EPC function
and numbers in animal models (23, 47). However, in patients
with peripheral arterial disease, long-term L-arginine sup-
plementation did not increase nitric oxide synthesis or im-
proved vascular reactivity (127). Thus, a contribution of
L-arginine supplementation for vascular protection needs
further investigations.

Antidiabetics and organic nitrates

Thiazolidinediones (TDZ) show pleiotropic effects that also
included effects on EPCs. For instance, the peroxisome
proliferator-activated receptors y (PPARgamma) agonist ro-
siglitazone increased EPC function via upregulating the Akt-
eNOS signal pathways (58). Pioglitazone increased EPC
adhesion to arteries from diabetic patients via an upregulation
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of CXCR4, the receptor for SDF-1. These effects are partly
explainable due to pioglitazone-mediated decrease in oxida-
tive stress (86). In addition, angiotensin II-induced oxidative
stress and subsequent EPC dysfunction could be attenuated
by treatment with TDZ, resulting in lowered peroxynitrite
levels and increased telomerase activity (44). Insulin treat-
ment increases reendothelialization and the number of cir-
culating progenitor cells and inhibits cell migration and
neointimal growth after arterial injury (12).

Since NO serves as an important factor for mobilization of
EPC, use of organic nitrates, which are powerful NO dona-
tors, should enhance the number and function of circulating
EPC. However, different organic nitrates have partly
opposing effects on the endothelium and EPCs. For instance,
many nitrates are known to induce endothelial dysfunction
due to induction of oxidative stress (64, 79). An interesting
exception seems to be the organic nitrate pentaerythritol
tetranitrate (PETN) that does not induce endothelial dys-
function nor increase oxidative stress in animals or humans
(97, 106).

Gene-Mediated Treatment of EPC Dysfunction

There have been attempts to increase eNOS expression in
EPC by transient or permanent gene therapeutic approaches.
Strategies to genetically overexpress eNOS in EPC have al-
ready been discussed in the section ‘‘Functional Significance
of eNOS for EPC’’. An eNOS enhancer compound AVE9488
was used to increase eNOS gene expression in EPC and in-
deed, transplantation of AVE9488-pretreated EPCs to ische-
mic tissues enhanced hindlimb reperfusion by improved
angiogenesis (74). This treatment also enhanced circulating

EPC levels in rats with heart failure after myocardial infarc-
tion (28). Transplantation of EPC where the glycogen synthase
kinase–beta was genetically inhibited significantly improved
efficacy of cell-based therapeutic vasculogenesis (16; Fig. 7).
Transfection of the hepatocyte growth factor (HGF) gene en-
hances EPC function and improves EPC transplant efficiency
for balloon-induced arterial injury in hypercholesterolemic
rats (85). Interestingly, HGF also attenuates angiotensin II-
induced EPC senescence (73).

Another strategy to improve EPC function is modulation
of the hypoxia-inducible-factor 1 (HIF-1) pathway. Trans-
plantation of HIF-1alpha-overexpressing EPC into ischemic
tissue of a hindlimb ischemia model resulted in significantly
enhanced VEGF expression and improved neovasculariza-
tion (49). In contrast, blockade of HIF-1alpha resulted in
reduced expression of endothelial cell markers CD31, VEGF
receptor 2 (Flk-1), and eNOS, as well as NO formation in EPC
followed by impaired vascularization. Recruitment of EPC
with subsequent induction of postnatal vasculogenesis was
enhanced by secretoneurin gene therapy, which induced
therapeutic angiogenesis, arteriogenesis, and vasculogenesis
in the hindlimb ischemia model by a NO-dependent mech-
anism (75; Fig. 7). Future therapeutic aspects may also in-
clude microRNAs (miRNA), which consist of 22 nucleotides
short, non-encoding regulatory RNA molecules. MiRNAs
regulate about 50% of the genome either by direct inhibition
and subsequent degradation of messenger RNAs or trans-
lational inhibition of protein expression. MiRNAs play a
crucial role in the onset and progression of cardiovascular
diseases (11, 13, 113, 114). Of importance, miRNAs emerged
as promising candidates for novel and powerful gene ther-
apeutic strategies (110). Recently, a first functional relevance

FIG. 7. Gene therapeutic approaches to improve EPC function. Increase of heme oxygenase expression leads to reduced
ROS levels, enhanced VEGF levels, and reduced apoptosis. HIF-1 and glycogen synthase kinase beta overexpression lead to
increased VEGF levels. Secretoneurin overexpression leads to eNOS induction and subsequent improved NO bioavailability,
resulting in better EPC recruitment, enhanced EPC function, proliferation, and differentiation. HIF-1; hypoxia-inducible-
factor-1; PDGF, platelet derived growth factor; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor.
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of miRNAs for EPC biology was described; EPC dysfunction
induced by the NO synthase inhibitor asymmetric di-
methylarginine (ADMA) resulted in upregulation of miR-21
and subsequent reduced NO bioavailability (Fig. 7). This
effect could be attenuated by miR-21 specific antagonism
and improved EPC dysfunction in EPC from patients with
coronary artery disease (25).

Conclusion and Outlook

A disturbed balance between NO formation and increased
oxidative stress is observed in cardiovascular disease and
aging processes. This also affects the number and function of
endothelial-regenerating cells such as EPCs. Indeed, many
common drugs in cardiovascular medicine improve the
number and function of EPCs such as statins, ACE inhibitors,
or certain organic nitrates, and thus may explain at least in
part some of their favorable effects in the disease process.
Understanding of the underlying mechanisms and normali-
zation of the NO=ROS misbalance by new strategies will
probably result in better therapeutic manipulation of im-
paired EPC function and thus improvement of cardiovascular
disease. Whether such strategies may also have preventive
cardiovascular effects remains to be determined.
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Abbreviations Used

ADMA¼ asymmetric dimethylarginine
AGE¼ advanced glycylation endproducts
APC¼ angiogenic progenitor cells

ASK-1¼ apoptosis signal-regulating kinase-1
CAC¼ circulating angiogenic cells
CFU¼ colony forming units

cGMP¼ cyclic guanosine monophosphate
eNOS¼ endothelial nitric oxide synthase

EPC¼ endothelial progenitor cells
GH¼ growth hormone

GPX¼ glutathione peroxidase
HDL¼high density lipoproteins
HGF¼hepatocyte growth factor

HIF-1¼hypoxia-inducible-factor 1
HO-1¼heme oxygenase-1
IGF-1¼ insulin-like growth factor 1

IGFBP3¼ insulin-like growth factor binding protein-3
KO¼ knockout

LDL¼ low density lipoproteins
NO¼nitric oxide

oxLDL¼ oxidized low density lipoproteins
PI3¼phosphatidylinositol 3

ROS¼ reactive oxygen species
SDF-1¼ stromal cell-derived factor-1
VASP¼vasodilator-stimulated phosphoprotein
VEGF¼vascular endothelial growth factor

VEGFR¼vascular endothelial growth factor receptor
vWF¼von Willebrand Factor
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