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For many years, CD4+ T helper (Th) cells have 
been classified into two major types, Th1 and 
Th2 cells (Romagnani, 1997). Th1 cells express 
IFN- and control cellular immunity, whereas 
Th2 cells produce IL-4, IL-5, and IL-13 and reg-
ulate humoral immunity. Recently, a new helper 
T cell subset, Th17 (also known as Thi), which 
produces IL-17A, IL-17F, IL-21, and IL-22, but 
not IFN- or IL-4, has been defined (Cua  
et al., 2003; Langrish et al., 2005; Veldhoen and 
Stockinger, 2006; Ivanov et al., 2006; Weaver  
et al., 2006; Bettelli et al., 2006; Sutton et al., 
2006). Unlike Th1 and Th2 cells, Th17 cells are 
considered to be “proinflammatory” because 
they are involved primarily in mediating inflam
matory diseases and immune defense against 
extracellular bacteria (Langrish et al., 2005; 
Bettelli et al., 2006; Ivanov et al., 2006; Veldhoen 
and Stockinger, 2006; Weaver et al., 2006;  
Sutton et al., 2006). Th17 cells can be generated 
in vitro by activating naive T cells in the pres-
ence of IL-6/IL-21 and TGF- (Weaver et al., 
2006; Bettelli et al., 2007). IL-6 acts in a sig-
nal transducer and activator of transcription 3 
(Stat3)-dependant manner to induce IL-21, IL-23 
receptor, retinoid-related orphan receptor (ROR) 
T, and ROR expression (Yang et al., 2007; 
Dong, 2008; Yang et al., 2008). Upon binding to 
IL-23, which is normally produced by macro
phages and dendritic cells, IL-23 receptor pro-
motes the survival of Th17 cells and maintains its 
differentiated phenotype (Cua et al., 2003;  

Langrish et al., 2005). Transcriptionally, RORT 
and ROR are considered to be master regula-
tors of Th17 differentiation, as T-bet and GATA3 
are to Th1 and Th2 cells, respectively (Ivanov  
et al., 2006; Dong, 2008; Yang et al., 2008). 
Moreover, similar to Th1 and Th2 cells in which 
the Ifng and Il4 loci are selectively activated, re-
spectively, differentiated Th17 cells exhibit unique 
epigenetic modifications of the Il17a locus 
(Akimzhanov et al., 2007). However, the nuclear 
factors that are responsible for Il17a locus activa-
tion are not well understood.

The inhibitor of nuclear factor-B kinase- 
(IKK) is a member of the IKK family, which 
regulates multiple biological processes through 
either NF-B–dependent or –independent 
mechanisms (Häcker and Karin, 2006). IKK 
can phosphorylate NF-B2 (p100), leading to 
the generation of p52, which dimerizes with 
RelB, to activate target genes involved in lym-
phoid organ development (Senftleben et al., 
2001). However, it has recently been recognized 
that IKK can also regulate gene expression in 
an NF-B–independent manner. Unlike IKK, 
IKK contains a nuclear localization sequence. 
It was suggested that in the nucleus, IKK 
phosphorylates histone H3 at serine (Ser) 10 
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RESULTS
Autoimmune encephalomyelitis is markedly reduced  
in IkkAA knock-in mice
To determine the roles of IKK in T cell–mediated inflam-
mation, we immunized WT and IkkAA C57BL/6 mice with 
MOG peptide, and monitored daily for clinical signs of EAE 
(Fig. 1 a). Although all WT mice developed EAE, only 77.8% 
of IkkAA mice developed the disease. The disease severity 
was also significantly reduced in the IkkAA group (maximal 
clinical score, 1.2 ± 0.8) as compared with the WT group 
(maximal clinical score, 3.3 ± 0.4; P < 0.05). The day of dis-
ease onset was increased from 11.9 ± 0.9 d in the WT group 
to 15 ± 1.8 d in the IkkAA group (P < 0.01; Fig. 1 a). Con-
sistent with these clinical findings, histological examination of 
spinal cord sections revealed significant differences in the de-
gree of inflammation between the two groups. In the WT 
group, multiple inflammatory foci were observed, with ex-
tensive leukocyte infiltration in the white matter (Fig. 1 d, 
top). In contrast, leukocyte infiltration in IkkAA spinal cords 
was much less pronounced (Fig. 1 d, bottom). Thus, IKK  
kinase activity contributes to the development of EAE.

Loss of IKK kinase activity in CD4+ T cells is responsible 
for the abrogated EAE development in IkkAA mice
IkkAA mice have severe defects in secondary lymphoid or-
ganogenesis and develop only rudiments of certain lymph 

nodes (Senftleben et al., 2001). This 
defect is caused by the loss of IKK 
activity in nonhematopoietic stromal 
cells, other than hematopoietic cells 
(Senftleben et al., 2001; Bonizzi et al., 
2004). To separate the effect of IKK 
on lymphoid organogenesis from its 
effect on EAE, we studied the disease 
in irradiated WT C57BL/6 mice that 

position, a prerequisite event for subsequent histone acetyla-
tion and gene transcription (Anest et al., 2003; Yamamoto  
et al., 2003). However, H3 Ser10 phosphorylation may simply 
serve as an indicator of an active “open” chromatin structure, 
and its dependence on IKK may indicate that IKK is re-
quired for establishment of the active chromatin state. More 
recently, IKK kinase activity was shown to be required in 
the nucleus for repression of certain genes (Sil et al., 2004; 
Luo et al., 2007). Additionally, IKK can also regulate epider-
mal keratinocyte differentiation through a kinase-independent 
mechanism (Hu et al., 2001). The NF-B-independent func-
tions of IKK remain to be fully established.

To determine whether IKK is required for T cell differ-
entiation and T cell–mediated autoimmunity, we studied 
myelin oligodendrocyte glycoprotein (MOG)-induced ex-
perimental autoimmune encephalomyelitis (EAE) in IkkAA 
knock-in mice (Senftleben et al., 2001). The knock-in allele 
specifies expression of a variant IKK protein, in which the 
activating phosphorylation sites, Ser176 and Ser180, are re-
placed by two alanines (AA), thereby abolishing the activation 
of its kinase activity (Bonizzi et al., 2004; Lawrence et al., 
2005). We found that IkkAA mutant mice were refractory to 
EAE, and IkkAA CD4+ T cells were defective in their Th17 
cell differentiation. We then discovered that IKK controls 
Th17 lineage commitment by maintaining the activation state 
of the Il17a locus, in an NF-B–independent manner.

Figure 1.  IKK expressed by T cells is 
required for the development of auto
immune encephalomyelitis. WT (n = 9) and 
IkkAA (n = 6) C57BL/6 mice (a), WT C57BL/6 
mice that received WT (n = 8) or IkkAA (n = 8) 
bone marrow (b), and Rag1/ C57BL/6 mice 
that received WT (n = 3) or IkkAA (n = 3) 
CD4+ T cells (c) were immunized with MOG to 
induce EAE as described in the Materials and 
methods. Data presented are means ± SD of 
EAE scores. The differences between two 
groups are statistically significant (P < 0.01) 
for all panels. (d) Mice were sacrificed at the 
end of the experiments, and their spinal cords 
and brains were sectioned and stained with 
luxol fast blue and cresyl violet. (d, top) The 
spinal cord of a WT mouse from panel a with 
a clinical score of 4; (bottom) the spinal cord 
of an IkkAA mouse with no signs of EAE. Data 
presented are representative of three inde-
pendent experiments.
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disease score: 0.7 ± 0.3; P < 0.01). All mice in this experiment 
developed EAE, but no mice died of the disease. Splenic  
T cell numbers of RAG1 knockout recipient mice were deter-
mined 22 d after the disease onset. No significant differences 
were observed between mice that received WT or IKKAA 
cells. Collectively, these results establish that IKK kinase ac-
tivity in CD4+ T cells is essential for the development of EAE. 
It is to be noted that in addition to IKK expressed by T cells, 
IKK expressed by non–T cells (hematopoietic and non
hematopoietic cells) may also play a role in EAE. However, 
this issue is difficult to address because of the following:  
(a) IKK expressed by nonhematopoietic cells may indirectly 
affect EAE by controlling lymphoid organogenesis, in addi-
tion to its potential direct effects in the CNS; (b) the differ-
ence in EAE between bone marrow chimeras (Fig. 1 b) and 
their parental mice (Fig. 1 a) is small. Thus, in this study we 
focused on the roles of IKK in T cells.

To measure the anti-MOG response of transferred T cells, 
Rag1/ mice were sacrificed 22 d after disease onset, and 
their splenocytes were cultured in the presence of MOG 
peptide (Fig. 2). Total splenic T cell and splenocyte numbers 
were not significant different between mice received WT and 
IkkAA cells. Splenocytes isolated from mice receiving WT T 

cells proliferated vigorously in re-
sponse to MOG peptide and produced 
high levels of IL-2, IL-4, IL-17A, and 
IFN-. Strikingly, splenocytes from 
mice reconstituted with IkkAA T cells 
exhibited significantly reduced pro-
liferation (P < 0.05) and cytokine pro-
duction (P < 0.01; Fig. 2). Similar 
reduction in MOG-induced responses 
was observed in IkkAA splenocytes iso-
lated from the mice tested in Fig. 1 (a 
and b; and not depicted). To determine 

had received bone marrow from either WT or IkkAA mice 
(Fig. 1 b). In the chimeric mice, 80–90% of leukocytes were 
derived from donor bone marrow as determined by flow cy-
tometry (unpublished data). Importantly, mice that received 
IkkAA bone marrow developed significantly less severe EAE 
than those reconstituted with WT cells (maximal disease 
score, 3.0 ± 0.5 vs. 4.3 ± 0.5; P < 0.01). Disease onset was also 
delayed from 11.0 ± 0 in the WT to 14.3 ± 0.9 d  
(P < 0.01) in the IkkAA group (Fig. 1 b). Therefore, loss of 
IKK kinase activity in hematopoietic cells alone is sufficient 
to compromise the development of EAE.

Although MOG-induced EAE is a T cell–dependent dis-
ease, other hematopoietic cell types also contribute to the de-
velopment of the disease. To directly test the T cell–specific 
function of IKK in EAE, we studied disease development in 
Rag1/ mice that had received WT or IkkAA CD4+ T cells 
(Fig. 1 c). Rag1/ mice receiving WT CD4+ T cells started 
to develop clinical signs of EAE at 25.3 ± 0.6 d after MOG 
immunization, and reached a maximal disease score of 3.7 ± 0.3. 
Remarkably, although Rag1/ mice received IkkAA 
CD4+ T cells developed EAE with only a slight delay relative 
to mice reconstituted with WT cells (28.3 ± 0.5 d; P < 0.01), 
the severity of the disease was significantly reduced (maximal 

Figure 2.  Reduced cytokine production 
by IkkAA CD4+ T cells primed in vivo. WT 
or IkkAA CD4+ T cells, 107 cells/mouse, were 
transferred into Rag1/ recipients through 
tail vein (n = 3). EAE was induced by immu-
nizing mice with MOG peptide 24 h later. Mice 
were sacrificed on day 22 after disease onset, 
and their splenocytes, 0.5 × 106/well, were 
cultured in complete DME with or without  
5–50 µg of MOG peptide. [3H]thymidine was 
added 48 h after the initiation of the cell cul-
ture. Cells were harvested 18 h later, and 
[3H]thymidine incorporation was measured (a). 
(b–e) Cytokine concentrations were measured 
by ELISA 40 h after the initiation of the cul-
ture. Results shown are means ± SD of tripli-
cate cultures. The differences between the 
two groups are statistically significant for all 
cultures with MOG peptide (P < 0.01). CPM, 
count per minute. Data are representative of 
two independent experiments.
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T cells produced significantly less IL-17A than WT cells upon 
stimulation with anti-CD3 or anti-CD3 plus anti-CD28 
(Fig. 3 e). IL-17A, but not IL-2, mRNA expression in IkkAA 
CD4+ T cells was also significantly reduced (Fig. S1). The via-
bility of T cells in the two groups was not significantly differ-
ent, as determined by trypan blue and/or Annexin V staining. 
Similar results were obtained when unfractionated WT and 
IkkAA splenocytes were stimulated with anti-CD3 and anti-
CD28 (unpublished data). These results are in contrast to the 
global defect of the IkkAA CD4+ T cells to MOG restimula-
tion as shown in Fig. 2. Because T cells tested in those experi-
ments were isolated from mice with different degrees of EAE, 
the effect of the disease on T cell responsiveness could not  
be excluded. IkkAA mice did not show general defects in  
T cell activation, and similar percentages of CD4+CD44+ T cells 
(15.5 ± 1.3% vs. 16.3 ± 1.7%) and CD4+CD62Llow T cells 
(22.6 ± 2.1% vs. 24.6 ± 1.6%) were detected in spleens of  
naive WT and IkkAA mice, respectively.

These results indicate that IKK may selectively regulate 
Th17 cell differentiation. To test this possibility, we compared 
the ability of WT and IkkAA CD4+ T cells to differentiate 
into Th17 cells in vitro. Differentiated Th17 cells were identi-
fied by flow cytometry after intracellular staining of IL-17A. 
When cultured under Th0 conditions, very few Th17 cells 
were spontaneously generated, but 14% of WT or IkkAA 
CD4+ T cells produced IFN- (Fig. 4 a). In contrast, when 
cultured under Th17-inducing conditions, 9.9 ± 0.6% of 

WT CD4+ T cells produced IL-17; but only 
5.6 ± 0.8% of IkkAA T cells were IL-17+ 
(P < 0.01; Fig. 4 b). Therefore, IKK kinase 
activity is required for the development of 
the Th17 response.

IKK specifically regulates Il17a  
gene expression
To determine whether IKK regulates Th17 
response at the transcriptional level, we ex-
amined the expression of a panel of Th17-
related genes by quantitative real-time PCR. 
Il17a expression in IkkAA CD4+ T cells was 
significantly reduced as compared with WT 
cells when cultured under either Th0 or 

whether IKK mutation affects the survival of CD4+ T cells, 
we performed flow cytometry analysis of blood samples col-
lected from mice reconstituted with T cells before they were 
immunized for EAE. We observed no significant differences 
in the number and frequency of T cells between WT and 
IkkAA groups. Additionally, WT and IkkAA T cells, when 
cultured in the presence of plate-bound anti-CD3 and sol-
uble anti-CD28, did not have significant differences in sur-
vival as determined by flow cytometry after staining the 
cells with Annexin V. In contrast, IKK-deficient T cells had 
a significantly increased rate of death under the same culture 
condition (unpublished data).

IKK kinase activity is required for Th17 responses
The markedly reduced anti-MOG response of IkkAA CD4+ 
T cells indicates that the IKK kinase activity may be re-
quired for T cell activation and/or differentiation. To test this 
theory, we isolated CD4+ T cells from naive WT and IkkAA 
mice and measured their responses to anti-CD3 and anti-
CD28 stimulation (Fig. 3). We found that IkkAA mutant 
CD4+ T cells proliferated to the same extent as WT CD4+  
T cells after anti-CD3 or anti-CD3 plus anti-CD28 stimulation 
(Fig. 3 a). Furthermore, upon stimulation with anti-CD3 and 
anti-CD28, IkkAA CD4+ T cells produced normal levels of 
IL-2, IL-4, and IFN- as compared with WT cells; however, 
when stimulated with anti-CD3 alone, they produced mod-
erately less IL-4 and IFN- (Fig. 3). In contrast, IkkAA CD4+ 

Figure 3.  Selective defect in cytokine produc-
tion of IkkAA CD4+ T cells activated in vitro. 
CD4+ T cells isolated from naive WT (n = 5) and IkkAA 
(n = 5) mice were cultured in 96-well plates coated 
with 1 µg/ml anti-CD3 in the presence or absence of 
2 µg/ml soluble anti-CD28. Proliferation was determined 
by [3H]thymidine incorporation at 48 h (a), and cyto-
kine production was measured by ELISA at 40 h (b–e). 
Data are presented as means ± SD of triplicate cul-
tures and are representative of two independent  
experiments. *, P < 0.05; **, P < 0.001. CD3, cultured 
with anti-CD3; CD28, cultured with anti-CD28.

http://www.jem.org/cgi/content/full/jem.20091346/DC1
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IKK selectively binds  
to the Il17a promoter
IKK has been previously reported to 
be present in the nuclei of several 
nonhematopoietic cell types, such as 
keratinocytes, squamous epithelial cells, 
and fibroblasts (Anest et al., 2003; 
Yamamoto et al., 2003; Fernández-
Majada et al., 2007). In the nucleus, 
IKK can regulate target gene expres-
sion through a variety of mechanisms, 
some of which correlate with promoter-
associated histone H3 phosphorylation 
(Anest et al., 2003; Yamamoto et al., 
2003). Interestingly, we found that 
IKK was not only present in the cy-
toplasm, but also constitutively ex-
pressed at high levels in the nuclei of 
resting CD4+ T cells (Fig. 5 a). The 
level of nuclear IKK was 30% of 
the cytoplasmic IKK, and was not 
regulated by anti-CD3 or anti-CD28 
stimulation. To test whether IKK 

regulates Il17a expression by a direct association with its pro-
moter, we performed chromatin immunoprecipitation (ChIP) 
with anti-IKK (Fig. 5). IKK did not bind to the Il17a pro-
moter in resting WT CD4+ T cells, but in cells that had been 
cultured in the Th17 differentiation medium for 1–2 d, IKK 
was readily detected on the Il17a promoter, coinciding with 
the appearance of the IL-17A mRNA (Fig. 5, b and c). The 
Il17a promoter was selectively targeted by IKK, as IKK 
was not detected on promoters of Il21, Il17f, and Il2 (Fig. 5 c). 
In WT T cells, IKK binding to the Il17a promoter corre-
lated with its histone H3 phosphorylation (Fig. 5 d). In con-
trast, in IkkAA T cells, mutant IKK also bound to the Il17a 
promoter under Th17 differentiation conditions, but histone 
H3 phosphorylation did not occur (Fig. 5 d). On the other 
hand, histone H3 on Il17f promoter also underwent phos-
phorylation at serine10 position, 1 and 2 d after cells were 
cultured in Th17 differentiation medium, but this event was 

Th17 condition (Fig. 4 c and Fig. S2). In contrast, Il17f 
(Fig. 4 d) and Il23R (not depicted) expressions were not 
affected by the loss of IKK kinase activity. Il21 expression 
was only marginally reduced in IkkAA CD4+ T cells (Fig. 
4 e). Additionally, IL-17A heterogenous nuclear RNA 
(hnRNA) could be readily detected in activated WT CD4+ 
T cells; in contrast, a much reduced signal was detected in 
IKKAA T cells under the same condition (Fig. S3). The 
Th17 differentiation signals elicited by TGF- and IL-6 
eventually converge onto the induction of two Th17 lin-
eage-specific transcription factors, ROR and RORT 
(Ivanov et al., 2006, Dong, 2008). However, the expression 
of Rora and Rorgt mRNAs and ROR and RORT pro-
teins was not affected by the IKK mutation (Fig. 4, f and 
g, and Fig. S4). These data indicate that the effect of IKK 
on Th17 lineage is Il17a specific and independent of 
ROR and RORT.

Figure 4.  Defective IL-17 production 
and Th17 differentiation of IkkAA CD4+  
T cells. CD4+ T cells from WT (n = 4) and 
IkkAA (n = 4) mice were cultured under either 
neutral (Th0) or Th17-inducing condition  
as indicated. (a) 72 h later, IL-17– and/or  
IFN-–producing cells were measured by flow  
cytometry after intracellular staining of cyto-
kines. (b) Quantification of data shown in a. 
(c–g) 24 h after the initiation of the culture, 
total RNA was isolated and mRNA levels of 
the Th17 lineage genes were assessed by real-
time RT-PCR. The lowest expression level of 
each gene was set to 1. The experiments were 
repeated at least three times with similar 
results. *, P < 0.05; **, P < 0.001.

http://www.jem.org/cgi/content/full/jem.20091346/DC1
http://www.jem.org/cgi/content/full/jem.20091346/DC1
http://www.jem.org/cgi/content/full/jem.20091346/DC1
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nuclear transloca-
tion of RelA, c-Rel, 
or p50, but com-
pletely blocked nu-
clear localization of 
RelB (Fig. 6 a), in-
dicating that IKK 
selectively controls RelB activation. The lack of an effect of 
IKK mutation on nuclear RelA activity was also confirmed 
by RelA ELISA (Fig. S6). As the key kinase of the noncanon-
ical (alternative) NF-B pathway, IKK mediates the pro-
cessing of p100 and, consequently, the generation of the 
RelB-p52 heterodimer (Bonizzi et al., 2004). Defective 
RelB nuclear translocation in IkkAA CD4+ T cells may be 
caused by impaired IKK-regulated p100 processing. We 
therefore examined p100 processing and p52 nuclear translo-
cation in anti-CD3– and anti-CD28–activated T cells (Fig. 6 b). 
In WT T cells, p100 and p52 were up-regulated in both the 
cytosolic and nuclear fractions upon stimulation. In IkkAA T 
cells, however, p100 was also up-regulated in the cytosol  
and nucleus, but p52 expression was reduced in the cytosol 
and was undetectable in the nucleus after anti-CD3 and  
anti-CD28 stimulation. These data confirm that IKK kinase 
activity is important for activation-induced p100 process-
ing and is required for p52 and RelB nuclear translocation  
in T cells. Similar results were obtained when WT and IkkAA 
T cells were stimulated with PMA and ionomycin (unpub-
lished data).

These results raise the question of whether IKK regu-
lates Th17 cell differentiation through p52-RelB hetero
dimers. To test this, we examined whether RelB was required 
for Th cell differentiation by culturing WT and Relb/ CD4+ 
T cells under Th1- or Th17-inducing conditions (Fig. 6 d). 

IKK-independent (Fig. 5 d). As expected, IKK mutation 
selectively affected PollII binding to Il17, but not to Il21 and 
Il22 (Fig. S5). These results indicate that IKK kinase activity 
is selectively required for driving the Il17a locus into an active 
state marked by H3 serine 10 phosphorylation.

IKK regulates Th17 response independent from NF-B
In addition to directly acting on the Il17a promoter, IKK 
may also regulate Th17 response through NF-B–dependent 
mechanisms. To test this possibility, we first examined IB 
degradation in WT and IkkAA T cells. In WT CD4+ T cells, 
upon anti-CD3 and anti-CD28 stimulation, IB was quickly 
degraded followed by a recovery caused by resynthesis of 
IB (Fig. 6 a, left). The early degradation of IB in IkkAA 
CD4+ T cells was not affected, but IB did not return to the 
prestimulation level at later time points. Similar results were 
obtained when cells were stimulated with PMA plus iono
mycin (unpublished data). To test whether IKK regulates the 
IkBa promoter as previously reported (Anest et al., 2003; 
Yamamoto et al., 2003), we performed ChIP-PCR analyses 
using CD4+ T cells stimulated with anti-CD3 and anti-CD28. 
We found that IKK was recruited to IkBa promoter in both 
WT and IkkAA CD4+ T cells after stimulation (Fig. 6 c). 
However, H3 Ser10 phosphorylation on the Ikba promoter 
was detected only in WT, but not in mutant, T cells. These re-
sults indicate that IKK kinase activity is required for IB 
resynthesis, but not for its stimulation-induced degradation  
in T cells.

Next, we measured nuclear translocation of NF-B sub-
units in T cells stimulated with anti-CD3 and anti-CD28. 
RelA, RelB, c-Rel, and p50 all migrated into the nucleus of 
WT CD4+ T cells upon activation (Fig. 6 a). As expected 
(Bonizzi et al., 2004), the IKK mutation did not affect the 

Figure 5.  Epigenetic regulation of the 
Il17a locus by IKK. (a) Purified CD4+ T cells 
from WT (n = 4) and IkkAA (n = 4) mice were 
stimulated with 10 µg/ml plate-bound anti-
CD3 and 10 µg/ml plate-bound anti-CD28 for 
the indicated times. Nuclear extract was blot-
ted with anti-IKK (mol wt 85 kD), anti-
HDAC1 (anti-histone deacetylase-1, mol wt 
60 kD), and anti–-actin (mol wt 42kD).  
(b) Purified CD4+ T cells from WT mice (n = 4) 
were cultured under Th17-inducing condition. 
Total RNA was prepared at the indicated 
times. IL-17A mRNA levels were assessed by 
real-time RT-PCR. The expression level at day 
0 was set to 1. (c) Purified WT CD4+ T cells 
were cultured as in b. ChIP was performed 
using anti-IKK or control Ig at days (D) 0, 1, 
and 2, as indicated. Precipitated DNA was 
analyzed by PCR using Il17a, Il2, and Il21 pro-
moter-specific primers that gave rise to prod-
ucts of 167bp, 256bp, and 150bp, respectively. 
(d) Purified CD4+ T cells from WT (n = 4) and 
IkkAA (n = 4) mice were cultured under the 
Th17-inducing condition. ChIP was performed 
using anti-IKK, anti-pH3Ser10 (serine 10 
phosphorylated histone H3), or control Ig, at 
the indicated times. Precipitated DNA was 
analyzed by PCR using Il17a, Il2, and Il17f 
promoter-specific primers, as in c. Data are 
representative of three independent 
experiments.
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factors, ROR and RORT was not changed in IkkAA 
CD4+ T cells, indicating that the defect may be attributed to 
another mechanism. This theory is supported by the observa-
tion that IKK is recruited to the Il17a promoter during 
Th17 differentiation and a specific defect in IL-17A expres-
sion in IkkAA CD4+ T cells. Furthermore, phosphorylation 
of histone H3 on the Il17a promoter, an activation marker 
that correlates with Th17 differentiation, was absent in IkkAA 
T cells. Therefore, our study suggests a novel nuclear function 
for IKK in Th17 differentiation.

In this study, we showed that RelB activation after anti-
CD3 plus anti-CD28 stimulation was blocked in IkkAA 
CD4+ T cells. Although it has been reported that RelB is re-
quired for maximal T cell activation (Corn et al., 2005), we 
did not observe any defect in IkkAA CD4+ T cell prolifera-
tion and Th1 and Th2 cytokine production after anti-CD3 
and anti-CD28 stimulation; this may be caused by additional 
effects of the IKK mutation, such as reduced IB resyn-
thesis, which may compensate for the loss of RelB function. 
However, when stimulated in vitro with MOG peptide, sple-
nocytes isolated from IkkAA mice that had developed EAE 
showed significantly reduced responses (Fig. 2). There are two 
possible reasons for this discrepancy. First, IKK may be re-
quired for T cell activation induced by weak, but not strong, 

Consistent with previously published data (Corn et al., 2005), 
Relb/ cells showed a moderately reduced capacity to differ-
entiate into IFN-–producing Th1 cells (53.8 vs. 41.2%).  
Interestingly, similar percentages of IL-17–producing Th17 
cells were generated in Relb/ and WT cultures (Fig. 6 d). 
Collectively, these results suggest that IKK regulates the 
Th17 response through NF-B–independent mechanisms.

DISCUSSION
A novel finding from the current study is that IKK selec-
tively regulates the Th17 cell response. As a result, IkkAA 
mutant mice are more resistant to MOG-induced EAE. 
Although IKK is important for the activation of the nonca-
nonical NF-B pathway in CD4+ T cells, it does not seem to 
regulate Th17 response through NF-B-dependent mecha-
nisms because RelB/ CD4+ T cells did not show any defect 
in Th17 differentiation. Using the TESS program, we were 
not able to identify any putative NF-B–binding site in ei-
ther the murine or human Il17a promoter. In a promoter-
transactivating assay, we didn’t detect any effect of p50, p52, 
p65, p100, RelB, or c-Rel expression construct on the Il17a 
promoter reporter, whereas the RORT construct activated 
the reporter significantly in the same assay (unpublished 
data). Expression of two Th17 lineage-specific transcription 

Figure 6.  IKK may not regulate Th17 
gene expression through NF-B. (a) Puri-
fied CD4+ T cells from WT (n = 4) and IkkAA 
(n = 4) mice were stimulated with 10 µg/ml 
plate-bound anti-CD3 and 10 µg/ml plate-
bound anti-CD28 for the indicated times. 
Nuclear and cytosolic protein lysates were 
blotted with anti-RelA (mol wt 65 kD), anti-
RelB (mol wt 68 kD), anti–c-Rel (mol wt  
75 kD), anti-p50 (mol wt 50 kD), anti-IB 
(mol wt 36 kD), anti--actin (mol wt 42 kD), 
or anti-HDAC1 (mol wt 60 kD). (b) Purified 
CD4+ T cells from WT (n = 4) and IkkAA  
(n = 4) mice were stimulated for the indi-
cated times, as in a. Nuclear and cytosolic 
protein lysates were blotted with anti-p100/
p52 (mol wt of p100 and p52 are 100 and 
52 kD, respectively), anti–-actin (mol wt 
42 kD), and anti-HDAC1 (mol wt 60 kD).  
(c) Purified CD4+ T cells from WT (n = 4) and 
IkkAA (n = 4) mice were stimulated for the 
indicated times, as in a. ChIP was performed 
using anti-IKK, anti-pH3Ser10, or control 
Ig. Precipitated DNA was analyzed by PCR 
using Ib promoter-specific primers that 
gave rise to a 230-bp product. (d) Purified 
CD4+ T cells from WT (n = 4) and Relb/  
(n = 4) mice were cultured under the Th1- or 
Th17-inducing condition. 72 h later, IL-17A– 
and IFN-–producing cells were measured 
by flow cytometry. Results are representative 
of two independent experiments.
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(e.g., Il8, Il6, and IkBa) and NF-B–independent (e.g., c-fos) 
gene promoters, where its presence correlated with H3 phos-
phorylation, and thus chromatin activation. However, nuclear 
IKK was also found to be recruited to genes (e.g., Maspin) 
that undergo active repression (Luo et al., 2007). Although 
IKK was proposed to directly phosphorylate histone H3 at 
Ser10 (Anest et al., 2003; Yamamoto et al., 2003), its associa-
tion with gene repression and silencing suggest that IKK-
induced enhancement of H3 phosphorylation can also be 
mediated by indirect mechanisms. For example, IKK may  
be responsible for the recruitment of identified H3 kinases to 
the promoters it activates. In addition, nuclear IKK has also 
been shown to mediate RelA/p65 turnover in macrophages 
through its phosphorylation of Ser536 (Lawrence et al., 2005). 
This effect seems to be cell-type specific because we found 
that IKK was not required for RelA/p65 phosphorylation 
on Ser536 in CD4+ T cells (unpublished data). This may par-
tially explain the different roles of IKK in T cells as com-
pared with macrophages. Thus, the highly specific effect of 
IKK on Th17 lineage and the resistance of IkkAA mice to 
MOG-induced EAE implicate IKK as a potential therapeu-
tic target for Th17-mediated autoimmune disorders.

MATERIALS AND METHODS
Mice and cell transfer. IkkAA mutant C57BL/6 mice were previously 
described (Senftleben et al., 2001). To generate bone marrow chimeric mice, 
C57BL/6 recipient mice were irradiated with 2 doses of 500 rads each. They 
were then intravenously injected with 107 bone marrow cells collected from 
either WT or IkkAA mice. 8 wk after bone marrow reconstitution, mice 
were immunized for the induction of EAE as described below. For T cell 
transfer, 107 CD4+ T cells isolated from WT or IkkAA mice were injected 
into Rag1/ C57BL/6 mice through the tail vein. 24 h after the transfer, 
mice were immunized with MOG for EAE induction. All procedures were 
preapproved by the Institutional Animal Care and Use Committee (IACUC) 
of the University of Pennsylvania.

Cell isolation, cell culture, and reagents. Naive CD4+CD25CD44low 
CD62L+ T cells were isolated by FACS, whereas total CD4+ T cells were iso-
lated by MACS. The purity of the naive T cells isolated by FACS was >99%, 
whereas that of T cells isolated by MACS was >95%. Cells were cultured in 
complete DME containing 10% FBS, 100 U/ml penicillin, 100 µg/ml strep-
tomycin, 30 µM -mercaptoethanol, 1 mM sodium pyruvate, 10 mM Hepes, 
and 1× nonessential amino acids. Anti-IKK, anti-RelA, anti-RelB, and 
anti–c-Rel were purchased from Santa Cruz Biotechnology, Inc. Anti–- 
actin was purchased from Sigma-Aldrich. Anti-CD3 and anti-CD28 were 
purchased from eBioscience. Anti-IB, anti-pRelA536, anti-p100/p52,  
and anti-pSer10H3 were purchased from Cell Signaling Technology. 
MOG 38–50 peptide was synthesized by Invitrogen. Pertussis toxin was pur-
chased from List Biological Laboratories, Inc. CFA was purchased from 
DIFCO laboratories.

EAE induction and evaluation. EAE was induced as previously described 
(Hilliard et al., 2002). In brief, mice first received a subcutaneous immuniza-
tion with 300 µg MOG38-50 peptide emulsified in CFA and an intravenous 
injection of 200 ng pertussis toxin. A second injection of 200 ng pertussis 
toxin was given 48 h later. Mice were examined daily for clinical signs of EAE 
and scored as follows: 0, no disease; 1, tail paralysis; 2, hind limb weakness; 3, 
hind limb paralysis; 4, hind limb plus forelimb paralysis; 5, moribund or dead.

Th cell differentiation. CD4+ T cells were isolated using autoMACS  
automatic cell sorter (Miltenyi Biotec). Cells were cultured with 50 U/ml IL-2, 

ligands. Second, and more likely, the decreased anti-MOG  
T cell response may be secondary to the effect of IKK on 
EAE. The increased severity of EAE in WT mice may help to 
activate and expand more MOG-specific CD4+ T cells than 
in IkkAA mice. As a consequence, there are likely more 
MOG-responsive T cells in the WT splenocyte culture than 
in the IkkAA culture (Fig. 2).

It should be emphasized that IKK-mediated IL-17 regu-
lation may be only one of the mechanisms whereby IKK 
controls EAE, as other cytokines including Th1 cytokines 
may also be affected by IKK (Figs. 2 and 3). With regard to 
IL-17, the most significant IKK effect appears to be on its 
mRNA transcription (Figs. 3 and 4). However, because IKK 
does not appear to affect the IL-17 protein levels of individual 
Th17 cells, but increases the frequency of IL-17–producing 
cells, we propose that IKK may selectively affect IL-17 
mRNA expression in a subpopulation of Th17 cells, but not 
all Th17 cells. This could be related to the stage of Th17 cell 
differentiation, the phase of cell cycle, and the microenviron-
ment surrounding the Th17 cells. This may explain why many 
IkkAA cells do not produce any IL-17 protein, although  
others make normal amounts (Fig. 4).

Two subunits of the IKK complex, IKK and IKK, pos-
sess kinase activities (Häcker and Karin, 2006). Despite high 
sequence similarities, it is now evident that the two molecules 
possess distinct functions (Häcker and Karin, 2006). In T cells, 
IKK mediates NF-B activation through the canonical 
pathway (Schmidt-Supprian et al., 2003). Ikk/ CD4+  
T cells show significantly less IB degradation with severely 
delayed kinetics (unpublished data). In contrast, IKK was 
not required for the activation of the canonical NF-B path-
way in CD4+ T cells. Instead, IKK is required for the activa-
tion of the noncanonical NF-B pathway through p100 
processing (Fig. 6 b). In the cytosol, p100 can still be pro-
cessed, albeit at a markedly reduced rate in IkkAA cells. How-
ever, p52 nuclear translocation was completely abolished in 
these cells.

Gene expression is regulated by epigenetic mechanisms 
involving histone modifications. Dong et al. showed that sim-
ilar to loci specific to Th1 and Th2 cells, Th17 loci encoding 
IL-17A and IL-17F were regulated by chromatin remodeling 
events (Akimzhanov et al., 2007). Transcriptionally permissive 
histone modifications, such as histone H3 acetylation and 
Lys-4 tri-methylation, were observed at the Il17a promoter in 
Th17 cells (Akimzhanov et al., 2007). We showed that during 
Th17 differentiation, histone H3 on both Il17a and Il17f pro-
moters was phosphorylated at Ser10, a known prerequisite for 
histone H3 acetylation. However, IKK was found to be se-
lectively required for histone H3 phosphorylation at the Il17a 
promoter, but not Il17f promoter.

Recently, several groups have reported nuclear expression 
of IKK subunits (Anest et al., 2003; Yamamoto et al., 2003; 
Fernández-Majada et al., 2007; Lubin and Sweatt, 2007). Unlike 
IKK and IKK (NEMO), which are exclusively cytoplasmic, 
IKK contains a nuclear localization sequence. Further-
more, IKK was found to be recruited to NF-B–dependent  
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