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Abstract

Despite the existence of speech errors, verbal communication is successful because speakers can
detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop
account, posits that the comprehension system monitors production output for errors. Such a
comprehension-based monitor, however, cannot explain the double dissociation between
comprehension and error-detection ability observed in the aphasic patients. We propose a new
theory of speech-error detection which is instead based on the production process itself. The
theory borrows from studies of forced-choice-response tasks the notion that error detection is
accomplished by monitoring response conflict via a frontal brain structure, such as the anterior
cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-
derived predictions on a sample of aphasic patients. Our results show a strong correlation between
patients’ error-detection ability and the model’s characterization of their production skills, and no
significant correlation between error detection and comprehension measures, thus supporting a
production-based monitor, generally, and the implemented conflict-based monitor in particular.
The successful application of the conflict-based theory to error-detection in linguistic, as well as
non-linguistic domains points to a domain-general monitoring system.
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Introduction

The fact that we survive and even thrive in spite of the error-prone nature of our cognitive
systems makes the study of error processing crucial to the understanding of human
cognition. Most probably, the reason that we function well despite erring often is that we
have the ability to detect our own errors and counteract their effects, either by correcting
them or by catching them before they cause trouble. It is the error-detection process that we
target in this paper.
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There are two types of errors (Reason, 1990) with distinct properties. The first type,
classically labeled as “mistakes”, comprises errors that result from the lack of information
necessary to arrive at the correct response (e.g. you might call a yellow-jacket a bee if you
do not know the difference between the two). In contrast, some errors result from a hasty
response or a momentary lapse of attention, rather than lack of knowledge (e.g. when you
confuse left and right when giving someone directions to your home). This second type of
errors, referred to as “slips”, is particularly important, because slips are common,
correctable, and in principle preventable.

In the current paper, we address the question of error detection in speech, by adults who are
using their native language. These errors are thus most likely to be “slips” in Reason’s
terminology, although we often use the term “error” to label them. Our goal is two-fold: for
one, we review the problems with the existing account of error detection in speech
production and propose an alternative account, which does not suffer similar criticisms. To
develop our model we use the similarity between speech errors and slips in other tasks,
which brings us to the second goal of the paper: to provide support for a central, generic
error detection system (e.g. Miltner, Braun, & Coles, 1997) by showing that a central
mechanism that had previously been shown to explain error detection in forced-choice
response tasks is equally plausible and effective when applied to a natural task such as
speech production.

We start by discussing the “perceptual loop” theory (Levelt, 1983, 1989), the most widely-
accepted account of speech monitoring. We review the evidence against this theory and
introduce a new account, in which conflict (Botvinick, Braver, Carter, Barch, & Cohen,
2001; Yeung, Botvinick, & Cohen, 2004) is used as a signal for error detection. We then
implement our theory in the interactive two-step model of word production (Dell &
O’Seaghdha, 1991) and establish its predictions with two computational simulations. Next,
we assess the explanatory power of our account against the perceptual loop theory by
analyzing the error-detection performance of a group of aphasic patients. We conclude by
proposing the conflict-based model as the default mechanism of error-detection in language
production and discuss the similarities between this account and the monitoring of motor
movements, thus pointing to the possibility of a domain-general monitoring mechanism.

The perceptual loop account of monitoring

The perceptual loop theory (Levelt, 1983, 1989) is an elegant account of speech monitoring
because it assumes no specialized device or mechanism for error detection. According to
this theory, speakers detect errors in their speech by listening to themselves. Error detection
then boils down to comprehending that the produced utterance is different from the intended
one. Since humans need the comprehension system to process the speech of others anyway,
using this system for self-monitoring sounds plausible and is parsimonious. Similar to
detecting errors in other people’s speech by listening to them, speakers can detect errors in
their own speech through an “external channel” (implying that the spoken utterance is
processed by the auditory system).

There is some support for the perceptual loop theory’s claim that error detection in self and
others’ speech is similar. Although normal speakers (as well as Broca’s aphasia patients)
detect more errors in others speech than in their own (Oomen, Postma & Kolk, 2001), the
relative detectability of different error types is similar in monitoring self and others’ speech.
An equal proportion of semantically-related errors (e.g. “dog” for “cat™), as well as form-
related errors (e.g. “mat” for “cat”), is detected by people when they monitor their own
speech (when auditory feedback is not blocked by noise; Postma & Noordanus, 1996) and
when they monitor the speech of others, at least under conditions where the intended
meaning is known to both the speaker and the listener (Oomen & Postma, 2002; but see Tent
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& Clark, 1980). Such similarity in the pattern of error detection can be taken as evidence
that a similar mechanism underlies the detection of both self and others’ speech errors.

However, the external channel is not sufficient to explain all the empirical findings
concerning error detection. An important finding in this regard is the timeline of detection.
We show this using the classic example of the corrected error “v-horizontal” (Levelt, 1989),
where the production of the word “vertical” is halted as soon as the first phoneme is
produced. The latency between the initiation of the erroneous utterance (the onset of “v” in
“vertical”) and stopping articulation (halting the production of “v-") is reported to be shorter
than 150 ms in about 15%, and shorter than 100 ms in about 5% of overt errors (Blackmer &
Mitton, 1991). Given that at least 200 ms is needed for word recognition (Marslen-Wilson &
Tyler, 1980) and on average 150- 200 ms is required to halt ongoing behavior (Hartsuiker &
Kolk, 2001; Logan & Cowan, 1984), such short latencies between the error onset and cut-off
(error-to-cutoff time) are incompatible with error detection through the external channel.
Therefore a second channel of processing has been proposed within the perceptual loop
theory, in which inner speech undergoes monitoring. Like the external channel, this
“internal channel” is monitored by the comprehension system, with the only difference
being the level at which the speech representation is monitored. The representation is
thought to be more abstract in the case of inner speech (phonological representations;
Wheeldon & Levelt, 1995; Oppenheim & Dell, 2008).

The combination of the internal and external channels provided a simple and plausible
account of monitoring, which succeeded in explaining the nature and time course of error
detection behavior in normal speakers (but see Oomen & Postma, 2001). Thus, since its
introduction, the perceptual loop theory has maintained its status as the leading theory of
speech monitoring in spite of a number of alternative accounts (e.g., Laver, 1973; MacKay,
1987, 1992; Schlenck, Huber, & Willmes, 1987). The theory, however, has not gone without
criticism. Two of its major assumptions have been called into questions: (1) Do speakers
routinely monitor their inner speech even while producing overt speech? (2) Is
comprehension really the basis of error detection? In addition, even if the two assumptions
hold, there is doubt that the perceptual loop account can explain the pattern of detection and
repair in speech rates faster than normal (Oomen & Postma, 2001). We will review these
criticisms below and reevaluate the viability of the perceptual loop account of error
detection in speech production.

Problems with the perceptual loop account

Do speakers routinely monitor their inner speech while producing overt
speech?—There is little doubt that humans are capable of monitoring their inner speech
when they are not speaking aloud. The empirical evidence for this claim comes from a
variety of tasks, ranging from phoneme monitoring (e.g. judging whether there is /l/ in the
name of the pictured object, when subjects see a picture of a nose; Ganushchak & Schiller,
2006, 2008a, 2009; Wheeldon & Levelt, 1995; Wheeldon & Morgan, 2002) to reporting
errors when silently reciting tongue-twisters (Oppenheim & Dell, 2008). This however, does
not necessarily imply that people often monitor inner speech (or even that they can do so)
while overtly articulating. Vigliocco and Hartsuiker (2002) bring up a theoretical problem
with simultaneous monitoring of inner and overt speech. Since the inner speech precedes
articulation of overt speech by one or a few words (buffering of inner speech), listening to
both would be similar to constantly listening to an echo of your voice, which would make
comprehension difficult. Moreover, note that monitoring these echoed signals must be
performed while attending to the main task, which is the production of speech.

Recently, Huettig and Hartsuiker (2010) directly tested the hypothesis that inner speech is
monitored when there is overt production. They registered the eye movements of their
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participants while they named a picture (e.g. a heart) in the presence of a phonological
competitor (e.g. the word “harp”) and two unrelated words. Regardless of whether the
subjects monitor their inner speech or their overt utterance during picture naming, the
phonological similarity of the competitor to the target is expected to cause temporary
fixation on the competitor. The critical point is the timing of this fixation. If inner speech is
perceived during overt production, one would expect the competitor picture (harp) to attract
more looks than unrelated pictures at an early time window (—50 ms to +55 ms, based on
different estimations of the head-start of inner-speech perception on overt word onset;
Indefrey & Levelt, 2004; Hartsuiker & Kolk, 2001; Levelt, 1989). But if only overt speech is
monitored, the earliest time point at which the participants fixate the phonological
competitor would be around 300 ms post-onset of speech (the same as if they heard the word
“heart” spoken to them). The data were compatible with the second possibility. Subjects
began fixating the phonological competitor 350-500 ms after they started naming the target.
There was thus no indication that they monitored their inner speech during overt production.

Is comprehension really the basis of error detection?—~For now, let us assume that
monitoring inner speech during the course of overt production is in fact possible and
speakers routinely do it. The perceptual loop theory’s second main assumption is that
monitoring is carried out by the comprehension system. A corollary to this assumption is
that there should be a correlation between the ability to comprehend and the ability to detect
errors. Doubts about the existence of such correlation were first raised by Schlenck et al.
(1987), and these doubts were supported later by Nickels and Howard (1995; but see
Ozdemir & Roelofs, 2007), who failed to find a correlation between error-detection
performance by aphasic patients and three measures of their input processing abilities:
lexical decision tasks, nonword-minimal-pair judgment, and synonym judgment. The lack of
correlation held up even when the authors included only those patients who showed intact
inner speech processing ability, as defined by good performance on rhyme and homophone
judgment tasks.

More support for the dissociation between comprehension and error detection came from
studies of individual aphasic patients, some of whom showed poor error detection in spite of
good comprehension (Butterworth & Howard, 1987; J. Marshall, Robson, Pring, & Chiat,
1998; Liss, 1998). McNamara, Obler, Au, Durso and Albert (1992) reported a similar
finding in Parkinson patients, who missed 75% of their errors (a rate comparable to that of
Alzheimer’s patients with poor comprehension), in spite of having good comprehension.
However, whether a monitoring deficit in spite of good comprehension is problematic for
the perceptual loop or not, is not entirely clear. Hartsuiker and Kolk (2001) argue that
comprehension might be necessary but not sufficient for error detection. So, patients who
have detection problems in spite of good comprehension might have problems with the
comparison process required for detection, either in storing the intended and comprehended
representations, or in determining if and how they differ.

Interestingly, many patients with good comprehension and poor self-correction detect errors
in other people’s speech perfectly (e.g. Kinsbourne & Warrington, 1963; Maher, Rothi, &
Heilman, 1994; J. Marshall et al., 1998). One account of the dissociation between detecting
errors in self and others’ speech is that these patients are in denial; they avoid
acknowledging their disorder by not reacting to their errors. This view does not seem very
convincing for two reasons: first, some patients show cross-modal differences in error
detection, meaning that they can detect errors in their writing (e.g., patient RMM; J.
Marshall et al., 1998) while they fail to detect errors in their oral speech. There is no
compelling reason why patients should be in denial about the problem in only one mode of
production. Second, even within the same modality, error detection differs across tasks.
Patient CM (J. Marshall et al., 1998) fails to detect most of his errors in picture naming, but
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does so perfectly in auditory word repetition. Again, a denial account is inconsistent with
this finding.

An alternative explanation for poor self-monitoring in spite of good comprehension is an
extension of the capacity limitation account for why normal speakers detect errors more
frequently in others’ speech compared to their own. It has been proposed that aphasic
patients might suffer from greater capacity limitations, so the advantage of monitoring
others’ speech is even greater for this population. There is evidence to doubt this assumption
as well. J. Marshall et al. (1998) asked patient CM (the one who could detect his auditory-
repetition, but not his picture-naming errors) to listen to a spoken word, choose the correct
picture from a semantic competitor, repeat the name and then judge the accuracy of his
response. Contrary to the prediction of the limited-capacity account, he did quite well on this
task. It therefore seems that, at least in some patients, the denial and capacity limitation
accounts of poor detection can be refuted and, hence, we are left with the conclusion that,
although good comprehension is associated with good detection of errors in others’ speech
(e.g. Kinsbourne & Warrington, 1963), it is less associated with detection of one’s own
errors.

An even stronger case against the assumption that comprehension is the basis for error
detection could be made if good error detection was to be shown in spite of poor
comprehension. R. Marshall, Rappaport and Garcia-Bunuel, (1985) report a patient with
auditory agnosia, who fails to understand spoken speech, but has better-than-expected ability
to detect her speech errors. Hartsuiker and Kolk (2001) rightly point out that the patient had
good reading comprehension, so although the external loop was absent, comprehension
through the internal loop could have been responsible for her successful monitoring
performance. But recall that monitoring inner speech during overt production is suspect
(Vigliocco & Hartsuiker, 2002; Huettig & Hartsuiker, 2010).

Moreover, R. Marshall et al.’s (1985) patient shows differential monitoring ability for
different error types. She makes a lot of semantic errors and fails to detect them, while her
fewer phonological errors are almost always repaired. This pattern of error detection is the
opposite of what would be expected by an internal-channel-only monitor, because studies of
error detection under noise-masked condition have shown that the contribution of the
external channel to the detection of semantic errors is minimal (Postma & Noordanus, 1996;
also see Hartsuiker, Kolk, & Martensen, 2005, for a model of the division of labor between
the internal and external monitoring channels). A similar pattern of differential error
detection based on the error type was reported in a transcortical sensory aphasic (with poor
comprehension and fluent grammatical speech) who corrected all her phonological errors,
but failed to acknowledge her semantic errors, even her semantic jargons, which were her
dominant type of error (Stark, 1988). Stark proposed that the patient’s trouble with detection
may in fact arise from trouble with production, rather than trouble with comprehension.

But before these cases can be taken as evidence against a comprehension-based monitor, an
alternative explanation must be refuted. It is possible that semantic errors are in fact
detected, but the patients’ awareness of the difficulty of the process of repair prevents them
from bothering with error acknowledgment (Oomen, Postma, & Kolk, 2005). Countering
this argument, Stark (1988) could not find any behavior in the patient who did not correct
her semantic errors indicating that she had noticed them, and later a more objective approach
confirmed that other patients who do not acknowledge their errors truly do not notice them.
J. Marshall et al. (1998) compared the percentage of pauses in two jargon aphasics to that of
normal speakers. If, in fact, the lack of overt indication of error detection was due to a
conscious decision to ignore the error because of the estimated difficulty of the subsequent
repair, one would expect to see more hesitations in the speech of patients. The results were
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the opposite. The two patients were marginally more fluent than normal speakers and
showed no sign of covert monitoring behavior. Considering all of the data from aphasic
speakers together, it appears that there is evidence for a dissociation of comprehension from
monitoring of self-speech, thus opposing a major assumption of the perceptual loop theory.

To summarize, we reviewed the evidence that questions the two core assumptions of the
perceptual loop account, that inner speech can be monitored during overt production, and
that error detection abilities are predicted by comprehension abilities. Nevertheless, there is
no doubt that monitoring overt speech through comprehension occurs and is useful for a
variety of purposes. For one thing, monitoring errors in other people’s speech is certainly
carried out, at least in part, by means of comprehension. Furthermore, the increased rate of
detection of phonological errors in one’s own speech when auditory feedback is present
(Lackner & Tuller, 1979), also points to a contribution to error detection from
comprehension. In the same vein, the role of other monitoring processes, such as that of
proprioceptive receptors in calibrating articulation (Postma, 2000), is undeniable. Given
these points, it is not the goal of this paper to refute the contribution of the perceptual loop to
speech monitoring altogether, but to question its role as the primary mechanism for error
detection in self-speech.

An alternative class of monitors: the production-based monitors

Note that the main source of failure of the perceptual loop account is its contingency on
comprehension. The argument against monitoring through inner speech does not question
the existence of inner speech but rather that it can be profitably processed through the
comprehension system during overt production. Thus, for a monitoring theory to avoid these
problems, it should not rely on the comprehension system for error detection. Examples of
such monitors have been proposed (De Smedt & Kempen, 1987; Laver, 1973, 1980; Schlenk
etal., 1987; Van Wijk & Kempen, 1987). The main feature of this class, which we refer to
as “production-based” monitors 1, is that they view error detection to be mostly independent
of comprehension, and instead to rely on the information generated by the production
system itself.

Of these, Laver’s (1980) model is the most detailed. It assumes multiple independent
monitors between the layers of the production system and a final sensory loop, which is the
equivalent of the external channel in the perceptual loop account. According to this account,
the production process is held up while monitoring is taking place (unlike the perceptual
loop account, in which the production process and monitoring are carried out in parallel).
This theory has been criticized, because the hold-up nature of multiple monitors is bound to
interfere with the fluency of speech (Postma, 2000). Moreover, since the production process
is put on hold at the time of monitoring, the only errors ever to become overt are the ones
missed by all the production-based monitors. Such errors can only be detected by the
sensory loop, which takes a few hundred milliseconds to detect them and plan a repair. So
the theory fails to explain very short error-to-cutoff intervals in overt errors such as “v-
horizontal”.

An important objection to multiple specialized monitors -and more generally to any
specialized monitor that compares the actual output against the “correct” output- is
reduplication of knowledge: “If an editor knows the correct output all along, one wonders
why the correct output wasn’t generated in the first place.” (MacKay, 1987, p. 167). This
problem motivated a new idea of monitoring, in which error detection does not consist of a

1| evelt has used the term “production-based” in a different sense. He refers to cases where the speaker has access to the intermediate
components of the production system. We use the term to refer to cases where the monitor uses the information internal to the
production system.
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comparison between the actual and the correct response, but is based on the patterns of
information flow in the production system. One such proposal is MacKay’s Node structure
Theory (NST; MacKay, 1987, 1992). A crucial mechanism of error detection in the NST is
the detection of new patterns, not previously experienced by the speaker. Given the evidence
supporting the speakers’ high sensitivity to the statistical patterns of the information
received (Saffran, Newport, Aslin, Tunick, & Barrueco, 1997; Warker & Dell, 2006), it is
quite conceivable that an unfamiliar pattern will raise a red flag in the system. This red flag,
in NST’s term, is triggering the speaker’s awareness, which is proposed as the mechanism
for error detection. Although the NST should be credited for pioneering the idea that
detection of a speech error is possible without the system already having the correct
response at its disposal, it assumes that nodes are shared between the production and the
comprehension systems, and thus suffers the criticism of the dissociability of comprehension
and error detection abilities, brought up earlier against the perceptual-loop account.

Another mechanism for a monitor that uses the patterns of information flow in production is
a comparison between the amount of activation a node sends to its connected nodes and the
amount of feedback it receives (Postma & Kolk, 1993). Obviously, this proposal hinges on
the interactive nature of the production system. In an interactive network, such as Dell’s
(1986) model, when the word node “cat” becomes activated, it sends activation to
phonemes /k/, /&/ and /t/. By virtue of feedback, these phonemes send activation back to the
word node “cat”. Now, if by some mistake, instead of the onset /k/ another onset (e.g. /b/)
becomes activated, the amount of feedback that the word node “cat” receives will be lower
than the amount it would have received if the correct phoneme had been activated. In
addition, a different node (e.g. “bat”) receives feedback without having had much activation
previously. It is possible that a monitor would use such discrepancies as a signal that an
error must have occurred. Finally, it has been proposed that error detection might be
achieved by a competition detector, which measures the total activation of the nodes in a
pool and generates a signal if the total activation exceeds a preset threshold (Mattson &
Baars, 1992; Schade & Laubenstein, 1993). Some have likened this theory to conflict
theories of error detection in action monitoring (Huettig & Hartsuiker, 2010).

Although production-based monitors have promise, they have not been able to supplant the
perceptual loop theory as the most widely-accepted account of monitoring, because they
either have not been laid out -and tested- in sufficient detail (e.g. Postma & Kolk’s proposed
model), or have empirical findings contradicting their assumptions (e.g. MacKay’s NST or
Laver’s monitor). Below, we propose a new monitoring mechanism, production-based in
nature, that avoids the problems with the comprehension-based monitors such as the
perceptual loop, but is detailed enough in its assumptions and predictions to be testable.

The conflict-based account of error detection

Conflict can, in principle, arise at any point during the performance and aftermath of an
information processing task. We target a specific type of conflict in this paper which
emerges from the competition of several alternatives at the time of response selection, and
propose that this conflict can be a basis for speech error detection. The notion of conflict
monitoring in service of error detection is not new. It was originally proposed that conflict
could be used as a signal to recruit and regulate cognitive control (Botvinick et al., 2001). If
control is defined as an interaction between an executive system and a subordinate system
(Logan & Cowan, 1984), conflict within the subordinate system (e.g. motor system) can be
used as a signal for the executive system to increase the amount of control and subsequently
resolve conflict. The evidence leading to this proposal was provided by neuroimaging data
on a medial frontal brain structure, the Anterior Cingulate Cortex (ACC). Although the ACC
shows activity during a wide range of tasks, varying from visual and motor processing to
language and memory, it has been argued that the majority of tasks in which the ACC’s
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activity has been documented can be categorized in three groups: overriding a prepotent
response (e.g. naming the ink color of the word RED printed in green), generating a
response from a host of equally possible responses (e.g. completing the stem ST- with any
word that comes to mind) or during commission of errors (See Botvinick et al., 2001, for a
review). The common element in these categories is argued to be high amount of conflict at
the response level. Why there is response conflict in the first two categories is obvious. In
Stroop-like tasks, the natural tendency is to generate the prepotent response, but the correct
response is in fact the subordinate one, leading to conflict. In stem-completion tasks, no one
response is salient enough, so in order to make a single-word response, the subject must
suppress a number of equally strong alternatives and resolve the conflict. But the most
interesting of all is the ACC’s activity during error commission. Does error commission also
indicate response conflict?

Botvinick, Nystrom, Fissell, Carter, and Cohen (1999) tested specifically for the correlation
between error commission and conflict by measuring the ACC’s activity using a variation of
the Eriksen flanker task. In this task, targets were arrows pointing left or right with the
direction defining the binary response to be made. Flankers consisted of surrounding arrows
that pointed in either the same or opposite direction of the central target. The functional
magnetic resonance imaging (fMRI) findings showed that this brain region was activated on
both error trials and correct trials with high conflict (e.g. K > < see also Carter, Braver,
Barch, Botvinick, Noll, & Cohen, 1998), thus hinting at a possible relationship between high
conflict and error commission.

Another source of valuable information about error processing has been electrophysiological
studies (ERP). Below, we will review the findings concerning the ERP component, called
the Error Related Negativity (ERN), with the aim of illuminating certain properties
necessary for a model of monitoring. ERN is a negative deflection in the ERP, the onset of
which coincides with (Holroyd & Coles, 2002) or precedes (Gehring, Goss, Coles, Meyer, &
Donchin, 1993) the onset of the EMG activity giving rise to the erroneous response in
speeded tasks, and the peak of which is observed about 80-100 ms after the response (e.g.
Dehaene, Posner, & Tucker, 1994; Falkenstein, Hohnsbein, Hoormann, & Blanke, 1990;
Gehring et al., 1993). The ERN’s origin has been traced to the frontocentral regions,
particularly the ACC and SMA (Gehring et al., 1993) or more precisely to the inferior ACC
(Dehaene et al., 1994), and has been corroborated by MEG findings (Miltner, Lemke, Weiss,
Holroyd, Schevers, & Coles, 2003).

There is strong evidence to suggest that the ERN reflects the operation of a generic error-
detection system. First, it has been shown to be independent of the modality of error
commission. Errors committed not only with hands, but also with feet (Holroyd, Dien, &
Coles, 1998), eyes (Nieuwenhuis, Ridderinkhof, Blow, Band, & Kok, 2001; Van’t Ent &
Apkarian, 1999), and voice (Masaki, Tanaka, Takasawa, & Yamazaki, 2001) all elicit ERNSs.
Moreover, this negativity has been traced back to the same brain region regardless of
whether the errors were committed by hand or by foot (Holroyd et al., 1998). In addition,
ERP studies have provided evidence for a central detection-correction loop, involving the
frontal structures. Some of these studies have shown the correlation between the ERN
amplitude and a variety of post-error adjusting behaviors (e.g., Debener, Ullsperger, Siegel,
Fiehler, von Cramon, & Engel, 2005; Dehaene et al., 1994; Gehring et al., 1993) implying
that the ERN-generating center is involved in a cycle of error detection and cognitive
regulation to avoid further errors (but see Gehring & Fenscik, 2001; NUfiez-Castellar, Kihn,
Fias, & Notebaert, 2010; van Meel, Heslenfeld, Oosterlaan, & Sergeant 2007). Other studies
have focused on the pathologies of frontal structures, showing that patients with damage to
the ACC have error rates comparable to normal subjects, but generate no ERNs (Stemmer et
al., 2004; Swick & Turken, 2002). Abnormal ERNSs are also well-documented in obsessive-

Cogn Psychol. Author manuscript; available in PMC 2012 August 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nozari et al.

Page 9

compulsive adults (Endrass, Schuermann, Kaufmann, Spielberg, Kniesche, & Kathmann,
2010; Gehring, Himle, & Nisenson, 2000; Hajcak & Simons, 2002; Ruchsow, Gron, Reuter,
Spitzer, Hermle, & Kiefer, 2005) and children (Santesso, Segalowitz, & Schmidt, 2006) as
well as adults with the Gilles de la Tourette syndrome (Johannes, Wieringa, Mdiller-Vahl,
Dengler, & Minte, 2002). These abnormalities have been ascribed to the malfunction of a
central error-processing system involving the ACC and the basal ganglia (Devinsky,
Morrell, & VVogt, 1995; Holroyd, Nieuwenhuis, Mars, & Coles, 2004). Together, these
pieces of evidence point to a central loop which is involved in the detection and correction
of errors, some part of which generates the ERN.

In addition to suggesting a central monitoring mechanism, research findings on the ERN
have defined specific properties for the monitor. Of particular importance among these
findings is the independence of the ERN from awareness. The very early onset of this
negativity with regard to the onset of the motor response suggests that it is unlikely to result
from conscious processing of the response. Also, direct empirical evidence shows that the
magnitude of the ERN is unaffected by whether participants are aware of the error (Endrass,
Franke, & Kathmann, 2005; O’Connell, Dockree, Bellgrove, Kelly, Hester, Garavan et al.,
2007; Nieuwenhuis et al., 2001; but see Steinhauser & Yeung, 2010). In fact, many errors
which were declared “unperceived” by the participants were followed by corrections
(Nieuwenhuis et al. 2001; Postma, 2000; Ullsperger & von Cramon, 2006), sometimes of
significantly shorter latencies compared to those corrections made to “perceived” errors
(Nieuwenhuis et al. 2001). The seemingly automatic nature of error detection (and at least
some corrections), together with the neuroimaging findings showing the ACC’s activity
during both error commission and high-conflict situations, naturally led to the proposal that
monitoring for conflict might be the basis of error detection (Yeung et al., 2004). The theory
was further corroborated by the presence of a pre-response ERN-analogue (N2) on correct
but high-conflict trials (Nieuwenhuis, Yeung, van den Wildenberg, & Ridderinkhof, 2003;
Pritchard, Shappell, & Brandt, 1991; Smith, Smith, Provost, & Heathcote, 2010; Van Veen
& Carter, 2002; Yeung et al., 2004; Yeung & Nieuwenhuis, 2009; but see Holroyd & Coles
for a different view on the ERN).

Although there are relatively few studies of the ERN in language, the findings clearly show
that the negativity is present during uncertain or errorful language processing. Sebastian-
Gallés, Rodriguez-Fornells, De Diego-Balaquer, and Diaz (2006) showed that Catalan-
dominant (but not Spanish-dominant) Spanish-Catalan bilinguals generated ERNs when they
made a mistake in a lexical decision task involving Catalan word/nonwords. On the
production side, Ganushchak and Schiller (2006, 2008a, 2009) used a button-push go-nogo
version of the phoneme monitoring task to investigate the ERN in verbal self-monitoring.
The task requires the participants to monitor for a certain phoneme (e.g. /l/) in the name of
an object the picture of which (e.g. a nose) is presented on the screen. Participants are to
push a button only if the picture name contains the specific phoneme. With this task,
Ganushchak and Schiller (2006) demonstrated ERNSs on error trials whose amplitude
decreased under severe time pressure. This result agrees with that of Gehring et al. (1993)
who found smaller ERNs when participants were asked to sacrifice accuracy for speed in the
Flanker task. Ganushchak and Schiller (2008a) tested phoneme monitoring in the presence
of semantic (e.g., “ear” for the picture of a nose) or neutral (semantically irrelevant)
distractors. They found the largest-amplitude ERNs following errors that occurred after
semantic distractors. The authors interpreted these result in terms of a monitor that is not
only sensitive to conflict at the lower-level motor representations of the response, but also to
the more abstract steps of lexical access, such as semantic processing. Finally, Ganushchak
and Schiller (2009) demonstrated that German-Dutch bilinguals performing the phoneme
monitoring task in Dutch showed an ERN on error trials, just like the Dutch speakers did.
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However, they showed higher-amplitude ERNs under time pressure compared to the control
condition, the opposite of the finding in the Dutch speakers.

The ERN has also been found following verbal responses. Masaki et al (2001) were the first
to show this negativity following spoken responses in a Stroop task. Later, Mdller, Jansma,
Rodriguez-Fornells, and Miinte (2007) showed negativities with a frontocentral distribution
on speech errors arising from the SLIP task (Baars, Motley, & MacKay, 1975). Ganushchak
and Schiller (2008b) collected ERN-like components in a semantic-blocking paradigm, in
which participants had to name pictures in semantically-related or unrelated blocks. In
addition, they replicated with spoken responses the button-push finding that the amplitude of
the ERN increases when monetary reward is offered for higher accuracy (Gehring et al.,
1993; Hajcak, Moser, Yeung, & Simons, 2005; Pailing & Segalowitz, 2004), thus adding to
the growing body of evidence that the ERN reflects a error monitoring system that applies
regardless of the specific domain that generated the error. Furthermore, they showed larger
ERNs in the semantically-related compared to the semantically-unrelated blocks, which they
attributed to the higher amount of response conflict in the semantically-related block.

Most recently, Riés, Janssen, Dufau, Alario, and Burle (2011) asked participants to
determine the grammatical gender of the name of a pictured object, and in a second
experiment, to name the object itself. Both experiments found a negativity, with the time-
course and scalp distribution previously described for the ERN, not only on the incorrect,
but also on the correct trials. However, the amplitude of the negativity was larger for the
incorrect trials. The authors argued that the presence of the negative potential on both
correct and incorrect trials in speech production, in agreement with the findings in the
visuomotor literature, points towards an online monitor that is shared, at least in part,
between the speech-production system and the other cognitive systems.

To summarize, converging evidence from linguistic and non-linguistic studies, using
neuroimaging and electrophysiological measures, supports the idea that a generic monitoring
system is in place, and that this system consists of a frontal brain region (most likely the
ACC) which might use response conflict as a signal for error detection. An example of such
a monitoring model has been detailed and shown to explain the data in speeded forced-
choice tasks (Yeung et al., 2004). We propose a speech monitoring model, in which, similar
to Yeung et al.’s model, measuring conflict between response options and relaying that
conflict to an executive center is the basis for error detection. Although the model builds on
this domain-general approach to monitoring, it is not simply an application of Yeung et al.’s
model to speech. Our model’s properties have been tailored to the task of unprompted error-
detection in natural speech production, which is quite different from the forced-choice
laboratory tasks. Moreover, the model is based on a previously existing model of lexical
access in production and this further constrains how conflict is defined and used. In the
simulation section below, we outline the principles of our proposed monitor and its
predictions. Using an implemented production model not only helps us explain the details of
the theory in a precise fashion, but also allows us to generate concrete and testable
predictions, which will guide our patient-data analysis.

Model simulations

We used the interactive two-step model of word production (Figure 1) in which semantic
features in a semantic layer are connected to lemmas (Kempen & Huijbers, 1983) in a word
layer and those lemmas, in turn, are connected to their relevant phonemes. The strength of
the connections between the semantic and the word layer is defined by the s (semantic)
weight and the strength of the connections between the word and the phoneme layer by the p
(phonological) weight. The values of these parameters determine how strongly the
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information is transferred from one layer to another, and therefore, determine how well the
system functions. In order to simulate a damaged system (such as an aphasic production
system), the value of s or p or both weights is decreased (see Foygel & Dell, 2000, for the
details of this lesioning).

This model names an object in two steps. Imagine the target word is “cat”. In the first step,
the semantic features pertaining to cat become activated. Activation spreads in the network,
activating the lemma “cat”, but also its competitors in the word layers, such as “dog”. Each
node’s activation is determined linearly from the sum of activations received from the nodes
connected to it and is subject to decay and random noise. Cascading in the model allows for
further spread of activation down to the phoneme layer, and the interactive nature of the
model causes nodes in the higher layers to receive feedback from the nodes in the lower
layers. After 8 time-steps the most active node in the word layer is selected. When
describing the simulations, we will call this selected node the “word-layer response” to
describe the outcome of the first step of the process of lexical retrieval, although no overt
response is made at this stage.

The second step starts by giving a jolt of activation (100 units) to the word-layer response
(e.g., “cat™), creating a non-linearity in the process of mapping semantics to phonology.
Activation spreads for another 8 time-steps, at the end of which the most active node in each
phoneme cluster (e.g., /k/ in onset, /&/ in vowel and /t/ in coda) is selected and the model’s
“final response” is generated by combining these phonemes.

The “word-layer response” can be correct (e.g. “cat” for “cat”), or a semantic (e.g. “dog” for
“cat”), formal (e.g. “cap” for “cat”) or unrelated-word (e.g. “fog” for “cat”) error. In a
normal speaker, nearly all responses at this layer are correct. If an error is made, it is almost
exclusively of semantic type, because the error receives activation from the semantic
features that it shares with the target. Most semantic errors in the model are in fact first-step
errors. The final response of the model can belong to all the above categories but also to a
unique category of nonword errors (e.g. “lat” for “cat”). The reason that nonwords are
limited to the second step of lexical retrieval is that whichever node is selected in the first
step will be, by definition, a word. Therefore, it is only through an error in retrieving the
phonemes (i.e. the second step) that a nonword can be created.

If detecting conflict is useful for error detection in a language production system, that
system should exhibit three principles:

1. Detection Sensitivity. The amount of conflict must be predictive of the probability
of error occurrence. In other words, the distribution of correct and incorrect
responses must be distinguishable by a quantified measure of conflict.

2. Layer Specificity. Conflict at each layer of the system should specifically predict
the error type arising from that step. Recall that semantic errors are common first-
step errors, while nonword errors are second-step errors. Therefore, high conflict at
the word layer should be predictive of the occurrence of a semantic (but not a
nonword) error. Likewise, high conflict at the phoneme layer must signal a
nonword (but not a semantic) error.

3. Integrity Contingency. Finally, the conflict-based monitor is a production-based
monitor, meaning that it relies on the information generated in the process of
production to detect errors. Thus, the reliability of conflict between the model’s
nodes as an error signal should be directly related to the strength of the production
weights. When these weights are strong, correct trials will generally be associated
with low conflict. So when conflict is high (due to noise factors), the system can
use this information as a signal that something must have gone wrong. On the other
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hand, when the weights are weak, transmission of information between layers
suffers, with noise playing a large role and thus creating conflict on all trials,
regardless of whether they end in the correct response or not. In this case, conflict
should no longer be a useful signal to discern error trials. Thus, the more degraded
the system, the less reliable the error signal.

In the simulations that follow, we show that the model exhibits detection sensitivity and
layer specificity in a simulation of a normal speaker. To investigate integrity contingency in
the model, we simulate 5 aphasic patients, and demonstrate how gradual decrease of the s
and p weights affects the reliability of the error signal derived from the amount of conflict
between the competing nodes.

In the two-step model of word production the s and p parameters were both set to 0.04 to
simulate picture naming performance of a normal individual. Using these parameters, when
the model is run through 10000 trials, the final response is correct in about 98% of the times.
The other 2% comprises mostly semantic errors, with few nonword and formal errors (These
results match data from control subjects doing a picture naming task with high name-
agreement pictures; Dell, Schwartz, Martin, Saffran, & Gagnon, 1997). For each of the
10000 trials, the following information was registered: word-layer response, conflict at the
word layer (see below for how conflict was measured), final response and conflict at the
phoneme layer. For the latter, we measured conflict among the model’s six possible onset
phonemes.

Conflict was quantified using two measures: The first measure was simply the difference
between the two nodes with the highest levels of activation in a layer, which we call the
difference between the maximums or diff(max). For example, if activations in the word layer
looked like cat = 0.099, dog = 0.018, hat = 0.008, mat = 0.006 and fog = 0.008, diff(max) =
0.099-0.018=0.081. The second measure was the standard deviation (sd) of the activation
of all nodes in the layer at which conflict was to be determined. In the above example,

n (.\',' - })2
sd= i n—1 »wherex;isthe activation of each node in the layer, X; is the mean and is
the total number of nodes in that layer, thus sd = 0.04. Note that both measures determine
the difficulty with which a “winner” is selected. The first measure deals with only the
strongest competitor, while the second measure takes into account competition from all the
competitors. In both cases, the measures were converted into —In(diff(max)) and —In(sd),
because the transformed measures are easier to interpret (higher values represent more
conflict) and they generate distributions with less skew. The pattern of the results obtained
by using the —In(diff(max)) vs. the —In(sd) measure was similar, but the —In(sd) was a
noisier measure of conflict. Ultimately, though, the choice of the conflict measure is an
empirical question (see Botvinick et al., 2001 for a full discussion of this issue).

10000 values (for the 10000 trials) were gathered for each measure of conflict at each layer.
These values were then categorized based on whether they belonged to a correct or an
incorrect trial (determined by the model’s final response) and for each measure, separate
distributions were built for correct and incorrect responses. If conflict is a useful measure for
error detection, the distributions of correct and incorrect responses that are built using the
measures of conflict should have little overlap. If not, these distributions should not be
easily distinguishable (Figure 2). To determine the overlap of the two distributions we

me — Mg
calculated the Cohen’s 4= s, »Wheremg is the mean of the distribution of the conflict
measure for error responses, m is the mean of the distribution of conflict measure for
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correct responses and Sy is the pooled standard deviation of the two distributions calculated

- |(me = Dst+(n, — Ds2
as> = e+, , Where the s¢ and s are standard deviations of the correct
and error distributions respectively, and n; and ne are the number of trials in those
distributions (Hartung, Knapp, & Sinha, 2008). A larger Cohen’s d means less overlap,
which means the distribution of the two response types are well-differentiated by the
conflict-measure (detection sensitivity; see Figure 2, left panels). If the distribution of
correct and error responses are very similar with regard to the amount of conflict, the
Cohen’s d will be close to zero (Figure 2, right panels). When discussing the Cohen’s d’s,
we report the values based on the —In(diff(max)) measure of conflict (which proved to be the
more sensitive measure) and put the —In(sd)-based values in parentheses. To check the
reliability of our estimates of Cohen’s d, we calculated the 95% Cls. The large number of
trials led to confidence intervals so narrow that in most cases the upper and lower bounds
were the same as the reported value when rounded up to two decimals. For this reason, we
do not report the confidence intervals for each Cohen’s d.

Of the 10000 trials, 209 resulted in incorrect responses and 9791 in correct responses at the
phoneme layer (final response). When conflict was measured at the word layer, Cohen’s d
was 3.11 (1.15 based on the —In(sd)), which indicates good discriminibility, particularly for
the —In(diff(max)) measure. However, when conflict was measured at the phoneme layer
Cohen’s d was only 0.24 (0.19 based on the —In(sd)), which indicates low discriminability.
Although at first glance this finding looks problematic for the theory, this is in fact exactly
what is predicted by the model’s second principle: Conflict at each layer must specifically
predict the type of error arising from that layer. In the normal speaker simulated here, the
majority of errors are semantic (199 semantic errors, 2 formal and 8 nonword errors as the
final response pattern). The error distribution therefore, contains mainly first-step errors,
which according to layer specificity must be detectable by conflict at the word, and not at
the phoneme layer; precisely what the Cohen’s d’s show.

To test whether this interpretation was correct, we built separate distributions for semantic
and nonword errors. Of the 10000 word-layer responses, 199 of them were semantic errors.
This number was unchanged in the model’s final response, confirming our assumption that
semantic errors are dominantly (and in this case, exclusively) first-step errors. Distributions
of the two measures of conflict were then generated for correct vs. semantic errors at the
word layer. Cohen’s d was 3.26 (1.18 based on the —In(sd)) for the detection of semantic
errors. The 8 nonword errors in the model, as discussed earlier must be second-step errors.
When distributions of the conflict measures were built for nonword errors vs. correct
responses at the phoneme layer, Cohen’s d was 2.83 (1.52 for —In(sd)), much higher than the
Cohen’s d measured at the phoneme layer, when all errors were lumped together.

As a control, we also did the reverse pairing. The distributions of correct and error responses
for the semantic errors were paired with conflict measured at the phoneme layer, and
distributions of correct and error responses for nonword errors were paired with conflict
measured at the word layer. Recall that this is incorrect pairing of error type and the level at
which conflict is measured, and detection sensitivity is expected to be low. Cohen’s d was
0.09 (0.11) for the semantic and 0.57 (0.50) for the nonword errors. The low values of the
Cohen’s d’s for the reverse pairing, together with large values when the correct pairing of
error type and conflict-layer was made, confirm the principle of layer specificity, which
entails a more specific definition of detection sensitivity.
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One of the objections raised against the comprehension-based monitor was that some
patients with poor comprehension did not have much trouble detecting their own errors. The
logic was that if the monitoring device receives its information from the comprehension
system, then it should not operate well if the source of information is malfunctioning. The
same rationale applies to a production-based monitor. We claim that error detection uses the
information (in the case of our model, the amount of conflict) generated by the production
system. If the production system does not function properly, the information being used for
error detection should be unreliable. Under such circumstances, the speaker either continues
to monitor using the unreliable information or stops monitoring altogether. In the former
case, the monitor will likely generate many false alarms, while, in the latter, there will
necessarily be many misses. In our modeling terms, both of these scenarios would manifest
as lower Cohen’s d’s.

In simulation Il we lesioned the model systematically to create patients with different
degrees of damage to their s and p weights. From previous data-fitting studies (Dell et al.,
1997; Dell, Martin & Schwartz, 2007; Schwartz, Dell, Martin, Gahl, & Sobel, 2006) we
know that a weight value of 0.04 indicates normal production, and values lower than 0.01
indicates severe damage. 0.02 is a middle value, for mild to moderate damage. Six speakers
(one normal speaker, as in simulation | and five simulated aphasic patients) were created
using permutations of these three values of s and p. Table 1 shows that of the simulated
aphasic patients (second to sixth entries), the first two have one normal weight and one
moderately-damaged (but still functioning) weight. The second two have one normal weight
and one weight which is severely damaged. The last patient’s production system is degraded
to the degree that its production is close to random (weights are too low for systematic
mapping from one layer to another).

Table 1 also shows the Cohen’s d’s for each simulated speaker, calculated at the word and
phoneme layers, using the amount of conflict measured for semantic and nonword error
trials respectively. The numbers show that when layer specificity is taken into account,
detection sensitivity is high when the relevant weights are strong. As the weights become
weaker, the sensitivity decreases (e.g. a decrease in the value of the s weight from 0.04 to
0.02 causes a drop in detection sensitivity from 3.26 to 1.41), until the weight value becomes
so low that there is little connectivity between the nodes in the production network. In this
case, detection sensitivity becomes so low that the error signal is almost meaningless (e.g.,
0.37 when the s weight drops to 0.008).

One might wonder why the Cohen’s d’s for the detection of semantic errors are so different
for the normal speaker, the third and the fifth virtual patients in Table 1, despite all their s
weights being 0.04. The reason is that the relationship between semantic errors generated at
the word-layer and semantic errors that emerge as the final response changes as a function of
p weights. When p weights are strong, the numbers of word-layer and final-response
semantic errors in the model are very similar because the incorrectly chosen word at the
word layer is correctly pronounced, creating a semantic error as the final responses.
Simulation of the normal speaker shows 199 semantic errors at the word layer, all of which
turned into semantic errors at the phoneme layer. Moreover, no new semantic errors were
created during phonological encoding, so there is a one to one relationship between semantic
errors at the word layer and in the final response profile of this speaker.

The third patient makes 292 semantic errors at the word level (on 292 trials “dog” is chosen
at that level). But the final response profile of the patient contains 275 semantic errors. Of
these, only 274 come from the “dog” node, and one is a new error, created by the
misselection of the phonemes for the chosen node “cat” at the word layer. So, in this patient,
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18 of the word-layer semantic errors are converted to other words during phonological
encoding, and one correct word-layer response is turned into a semantic error because of
lesioned p weights. Thus the relationship between the word-layer and final semantic
responses is not perfect like the normal speaker. For the fifth patients, the p weights are very
small, and the association between the word level and semantic errors is further undermined.
The simulations with this patient show 265 word-level, but only 164 final-response,
semantic errors, of which only 124 come from the word-layer “dog” node. Therefore, 141 of
the word-level semantic errors were converted to other response types, and 20 new semantic
errors were created from responses other than “dog” at the word layer.

In summary, our simulations exhibited the three principles deemed necessary for the
conflict-based monitor to be a plausible mechanism for error detection: Conflict is a good
predictor for the occurrence of an error (detection sensitivity), when measured at the layer
from which the error originates (layer specificity). Since this monitoring mechanism relies
on the information produced by the speech production system, it functions best when the
production system is healthy, and becomes increasingly less accurate as the production
system becomes more degraded (integrity contingency).

Throughout the modeling section we have reported Cohen’s d as a measure of the usefulness
of conflict in signaling that an error is probable. Certainly the high level of discriminability
shown by the normal model’s values of Cohen’s d supports an effective detection
mechanism, but ultimately the model must simulate natural error detection in human
speakers. Estimates from connected speech corpora place the natural detection rate by a
neurologically-healthy adult speaker at around 50% (Nooteboom, 2005; slightly higher in
Nooteboom, 1980; Note that there are no comparable data for single-word utterances). By
“natural” detection rate, we mean the rate with which errors are followed by corrections or
other acknowledgment of error, in the absence of any explicit instruction to detect or report
errors.

Why are the real-life hit rates only moderately good, and does the model simulate this? To
address these questions we augmented the model with a criterion that governs whether or
not a certain degree of conflict indicates an error. Specifically, we used a model of
incremental criterion placement in signal detection proposed by Kac (1962), which appears
to account for detection data about as well as other models (Thomas, 1973). People learn to
set their criteria by making detection responses and getting feedback on their accuracy. In
our case, speakers determine whether or not they made a speech error, and then determine
whether that assessment was correct or not (presumably by using the external channel for
feedback). In Kac’s model, the criterion is initially placed in some neutral location.
Whenever a signal is not detected, the criterion is lowered by a small amount, and whenever
a false alarm occurs, it is raised by a similar amount. No adjustments are made on hits or
correct rejections. After many trials, the criterion will hover around a location that reflects a
probability matching strategy. The reason that Kac’s model yields probability matching is
that, at equilibrium, the chance of a criterion increase due to a false alarm must equal the
chance of a decrease due to a miss. From this, it follows that the overall probability of a
“detect” response (in our case, detect that an error has occurred) will match the overall
probability of a signal (in our case, the occurrence of an actual error).

Figure 3 shows the distributions of the —In(diff(max)) measure of conflict for correct
responses and semantic errors of the simulated normal speaker (simulation I). We applied
Kac’s model to these distributions and found the criterion to fall at the conflict level equal to
5.20. When this criterion is applied to the error distribution, the hit rate is 47%. Thus, the
combination of the conflict model and the incremental criterion-setting model mimics the
fact that normal speakers detect only half of their errors. The reason for the medium hit rate,
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in spite of the strong difference in the distributions of error and correct conflict values, is the
probability matching feature of the criterion placement algorithm. When errors are
uncommon, criterion placement will be conservative, that is, the model will miss detecting
many errors, but rarely generate false alarms. It must be noted though, that Kac’s model
only estimates how a criterion is derived when there are no specific demands influencing
criterion placement. Speakers may — and most probably do- change their criteria for self-
monitoring under different circumstances. The criterion is most probably lowered (to
increase hit rates) under conditions when detection is important.

Just as hit rates were derived by applying the criterion to the error distributions, false alarms
can be calculated by applying the criterion to the distribution of correct responses. This
renders a 1% false alarm rate for a normal speaker. Although 1% seems like a reasonably
low value, given that the number of correct trials is much larger than the error trials,
suspicion may raise as to whether it is in fact realistic. Healthy adult speakers rarely have the
impression of having erred when they have not. False alarms, however, may manifest as
disfluencies. Hesitations or other breaks in the flow of speech are common, with an
estimated rate of 6 (Bortfeld, Leon, Bloom, Schober, & Brennan, 2001) to 26 (Fox Tree,
1995) per 100 spoken words. These include overt repairs, disfluencies which clearly reflect
error detection and correction, and covert repairs, disfluencies that may reflect monitoring
and repair, but without any audible reparandum (Postma & Kolk, 1992). Levelt (1983)
categorizes repeats (e.g. “I ... | went...”) and filled pauses (e.g. “I...uh...went”) as covert
repairs and brings up the possibility that some of these are in fact false alarms generated by
the monitoring system. Bortfeld et al. (2001) report an average rate of 1.47 for repeats and
2.56 for filled pauses per 100 words (with slightly higher overall rates in the older
population), which together comprise about 4% of the spoken words. If, a sizable fraction of
these are the result of the monitoring system falsely detecting an errors, our simulated 1%
false alarm rate is not far off the mark. In the General Discussion we will return to the
question of the effectiveness of error detection by arguing that although we propose the
conflict-based monitoring as the default natural monitoring mechanism, error detection is in
fact boosted by a number of ancillary mechanisms, each of which add to the probability of
the success of detection.

We also examined the effects of Kac’s (1962) criterion-setting algorithm on the
effectiveness of error monitoring through conflict when connection weights are weaker (as
in aphasia). These effects can be appreciated by looking at semantic error detection as a
function of s weights. With p weights kept constant at 0.04 (normal), we determined the
correct and error distributions of conflict scores and the resulting criteria as the s weights
dropped from 0.04 (normal) to 0.03, 0.02 and 0.015. The model predicts a decrease in the hit
rates from 0.47 (normal) to 0.39, 0.35 and 0.34, accompanied by an increased rate of false
alarms from 0.01 (normal) to 0.02, 0.07 and 0.11 for the respective weights. In the section
that follows, we investigate the predicted association between hit rates for error detection
and production-derived connection weights in a sample of aphasic patients. False alarms, as
mentioned above, have many different manifestations in natural speech, which makes
quantifying them very difficult, especially in aphasic speech. So, although we do not test
specific quantitative predictions about false alarms in error detection in aphasia, we discuss
relevant qualitative findings in our sample data.

Patient data

The plausibility of the conflict-based theory was established by simulations showing a
certain degree of detection sensitivity, as required under the first principle. The principles of
layer specificity and integrity contingency, however, are stronger and lead to predictions that
can be empirically tested. According to integrity contingency, the ability to detect errors
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must correlate with the indices of the functionality of the production system (parameters s
and p in our model), as opposed to indices of comprehension. Layer specificity makes an
even more specific prediction; that the ability to detect semantically-related errors must
correlate with the s parameter (which determines conflict at the word layer) and the ability to
detect phonologically-related (mostly nonword) errors must correlate with the p parameter
(which determines conflict at the phoneme layer). To this end, we determined the percentage
of detected errors in a group of aphasic patients who completed a picture naming task. We
then assessed the correlation between the detection of different error types and measures of
comprehension and production.

The first step in the patient study was to devise a reliable method for coding natural error
detection in patients. For this step, data were obtained from 63 aphasic patients, who
participated in the 175-item Philadelphia Naming Test (The PNT; Roach, Schwartz, Martin,
Grewal, & Brecher, 1996). In this test, a single picture (a black and white line drawing)
appears and remains on the screen until the patient responds or for 30 seconds in case of no
response. There are no specific instructions for self-correction in this task, but patients do
have time to detect and correct their errors. Therefore, detecting errors is self-initiated, and
somewhat reflexive of the natural process of error detection, rather than a task demand. In
addition, the single-word-response nature of this task, which eliminates contextual cues,
makes it suitable for comparison with our model, which is a model of single-word (and not
sentence) production.

Patients’ responses (word by word, including disfluencies, pauses, tangents and incomplete
responses) were transcribed, once on-line (by a trained expert at the Moss Research Institute
during the testing session), and once off-line using the session’s recordings. In the next step,
the responses were “coded” into correct and a number of error categories. For the purpose of
this study, all of the original transcriptions of trials were then recoded by the first author
with regard to the nature of the errors made and the patients’ detection of those errors. A
second coder, a graduate student trained on the coding scheme, also recoded the
transcription independently of the first author. The codings were then compared, resulting in
an initial agreement of 78%. The coding criteria were consulted in resolving the
disagreements until full agreement was achieved.

Coding error categories

For each picture, the response was coded as either correct, incorrect or omission. We
assigned the “omission” code to trials in which no response was produced, as well as trials
in which the patient gave a relevant description of the item or a multi-word response
irrelevant to the description of the picture (e.g., “I can’t remember.”). A trial was not coded
as an omission, though, when such responses were followed by a single-word response in
the noun category. For example, if in response to the picture of a cat, the patient said, “I
have one of those (pause) dog”, we accepted the response after the pause, coding it as a
semantic error.

If a response was coded as an error, a category had to be specified. A detailed description of
all error categories with examples is available upon request. The two important error
categories are semantic and phonological errors. Semantic errors were defined as any nouns
related in meaning to the target word (e.g. “dog” for the target “cat”). In agreement with
previous coding schemes using the PNT, verbs (e.g., “ride” for the target “bike”) did not
count as semantic errors, but were registered as omissions. Phonological errors were coded
as any responses, word or nonword, which showed a clear phonological similarity to the
target, as defined in Schwartz et al. (2006). It is noteworthy that most of the targets in the
PNT do not have a rich phonological neighborhood (e.g., tractor, helicopter, pumpkin, etc.),
so most of the phonological errors end up being nonwords. Dialectical variations in
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pronunciation and phonological distortions due to mild speech apraxia, as determined by the
Apraxia Battery for Adults (Dabul, 2000), were not coded as errors.

Fragments that showed a clear phonological similarity to the target were also coded as
phonological errors. For example, for the target “thermometer”, if the patient responded
“thero-"" we counted that as a phonological error. However, one phoneme fragments (e.g.
“th-"") were counted as fragments and not as errors. Also, if the fragment had the correct
sequence of phonemes but was simply incomplete (e.g. “thermo-") it did not count as an
error. As a policy, in keeping with previous applications of PNT data, we coded fragments
in a conservative manner, meaning that where the two coders did not agree that a fragment
showed clear similarity to the target, it was not coded as an error.

Coding error detection

An error was coded as “detected” if the patient gave any indication of response rejection.
This included a repair attempt, regardless of whether the repair was successful or not (e.g.
“dog... cat” or “dog...cow” in response to the target “cat™) or simply rejection of the
response (e.g., “dog... no...”). We did not code repetition of the same response as detection,
due to the uncertain nature of repetitions (Fraundorf, & Watson, 2008; Levelt, 1983;
MacKay, 1976; Postma & Kolk, 1993).

Other measures

In addition to error detection, a number of other measures were registered for each patient.
These consisted of two production and three comprehension measures. For production, the
strength of the s and p weights for each patient was determined by fitting the interactive
two-step model to the patient’s naming data. Briefly, this entails a search of the s and p
values so that the model maximizes its fit (minimizing Chi-square) to the patient naming
response proportions in the correct category, as well as five error categories: semantic,
phonologically-related word (formal), mixed semantic and formal, unrelated word, and
nonword errors (See Dell, Lawler, Harris, & Gordon, 2004 for the details of the relevant
coding and fitting process). After the model is fitted to the data, the deviation of its predicted
proportions from the actual response proportions for each patient is calculated as the
uncorrected root mean squared deviation (RMSD). For the current sample, the average
RMSD was 0.021, which is a good fit, slightly better than the .024 found in Schwartz et al.’s
(2006) study of picture naming by 94 patients.

Comprehension was assessed at three levels: (1) semantic comprehension was measured by
the 52-item Pyramids and Palm Trees test (Howard & Patterson, 1992), in which a pictured
item must be matched to the closest associate among a set of two pictured choices on each
trial (e.g. a picture of a pyramid must be matched to a picture of a palm tree or a picture of a
pine tree). Abstract semantic knowledge, without accessing the correct lexical item, is
enough to successfully complete this task. (2) Lexical comprehension was measured by the
30-item Synonym Judgment test (Saffran, Schwartz, Linebarger, Martin, & Bochetto, 1988).
On each trial, the subject views three written words that are spoken aloud by the examiner
and must decide which two are most similar in meaning (e.g., violin, fiddle, clarinet). This
test requires semantic comprehension not only at the abstract level, but also at the word
level, because meaning must be accessed through word-forms, without the aid of pictures.
This test has two variants, noun and verb. Because all the PNT targets are nouns, we only
used the noun variant of the test in this study. Since lexical comprehension is a key
component of the perceptual-loop monitor, we used a second test to ensure that the results
obtained by using the Synonym Judgment test are corroborated. We used the Peabody
Picture Vocabulary Test, Third Edition-form A (Dunn & Dunn, 1997), in which the patient
must match a heard word to one of the four pictures that best represent the meaning of that
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word. (3) Finally, phonological comprehension was measured using the 40-item
Phonological Discrimination test (N. Martin, 1996). In this task, the patient hears two items
in immediate succession (20 lexical trials, and 20 nonlexical trials) and has to judge whether
the items in each trial were the same or different. Non-identical pairs differ by a single onset
or final phoneme. This task could be accomplished without access to meaning or even
lexical knowledge.

Refining the sample for a study of error detection

Results

Correlations

The goal of the analyses was to find which measures reliably predict success or failure of
error detection. To this purpose, we created a subsample of the 63 patients whose data were
most likely to be accurately coded and to be revealing of error detection behavior.
Specifically, patients were excluded from the subsample if they met either of the following
criteria:

1. Moderate to severe speech apraxia (as measured by the Apraxia Battery for Adults;
Dabul, 2000): the reason for this exclusion is that in such patients a portion of the
phonological errors may not be due to low p weights, but instead to the malfunction
of the articulatory system (e.g., Romani, Olson, Semenza & Grana, 2002). In this
case, detection of such errors is not expected to correlate with the strength of the
patient’s p weight.

2. High rate of omissions: This was defined by calculating two scores for each patient.
The raw score was the proportion of correct responses overall, and the normalized
score was the proportion of correct responses when omission trials were thrown
out. If the difference between these two scores was greater than 20%, the patient
was excluded. One reason for excluding these high-omission patients is that when
there are too many omissions, the model’s estimate of the s and p weights becomes
unreliable (Dell et al., 2004). Another is that many silent omissions could be due to
covert error detection, which directly speaks to the ability of the patient in detecting
errors; but we had no way of discriminating between omissions that did or did not
reflect covert error detection.

After these criteria were enforced, 29 patients were selected. Their error detection behavior
was assessed and related to the measures of comprehension and production ability.

Recall from simulation I that conflict at each layer was predictive of the error type
originating mainly from that layer. We showed that the probability of the model making a
semantic error was best predicted by the amount of conflict at the word layer while the
probability of making a nonword error was best predicted by the amount of conflict in the
phoneme layer. Moreover, simulation Il showed that the reliability of the error signal varied
as a function of the weights in the production system. If weights were strong, detection
sensitivity was high. As weights decreased, so did the sensitivity with which errors were
detected. Taken together, these two principles suggest that the strength of the s weights
(which predicts conflict at the word layer) must be correlated with the detection of the
semantic errors (which originate mainly from that layer). The same relationship should hold
between the strength of the p weights and the detection of the phonological errors.

Table 2 shows the patients’ scores on the four comprehension tests (expressed in percentage
correct), their s and p parameters estimated from their naming performance, along with the
total number of their semantic and phonological errors and the proportion of those errors
detected. A total of 384 semantic and 461 phonological errors were coded for the 29
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patients, out of which 251 (65%) and 262 (57%) were detected respectively. Figure 4 shows
the correlations between the production weights and each error type. Semantic-error
detection was correlated with the strength of the s weights (r= .59, p =.001), while
phonological-error detection showed a correlation with the strength of the p weights (r= .43,
p =.021). As expected by the principle of layer specificity, these positive correlations were
not observed when the level-specific detection rates were paired with the “wrong” model
weights. In fact, the corrections were negative (—.34 for detection of phonological errors and
the strength of s weights; —.55 for semantic error detection with the strength of the p
weights). These negative correlations may have arisen in part because of a negative
correlation between the values of the s and p weights in our sample (r = —.32). In any case, it
is clear that higher weights at a particular level are associated with better detection rate for
errors only at that level.

Table 3 presents the correlations between the comprehension measures and percentages of
detected semantic and phonological errors, none of which reaches significance. This lack of
significance contrasts with the significant correlations between error detection and the
appropriate layer-specific production measures, suggesting that the sample size had adequate
power. Moreover, note that none of the comprehension correlations was larger than .24, and
that the mean of the eight such correlations was —.01, which we consider to be a convincing
null result. Finally, recall that the lack of a correlation between comprehension and error
detection is consistent with the study of Nickels and Howard (1995), who used a different
set of comprehension tests (but see Roelofs, 2005).

As Table 2 shows, some of the patients make very few errors of a certain type. This is
especially true of semantic errors; 9 patients make 5 or fewer semantic errors. When turned
into proportions, small numbers can cause problems, for example, imagine a patient who
makes only a single semantic error. If he detects that error, it will be registered as 100%
detection, but if he misses, suddenly the detection rate drops to zero. This bounciness makes
for noisy data. For this reason, we checked our results using a simplified hierarchical logistic
mixed model, which uses the information on each trial, nested under each patient, to assess
the effect of the independent variables on error detection.

The two-step nature of the production model, which gives rise to the layer specificity of
conflict-based error detection, made it reasonable to build two logistic regression models
one concerned with semantic-error detection and one with phonological-error detection.
Each model contained random effects for subjects and items, and detection of the error was
the binary dependent variable. Critically, the independent variables for each model were
chosen to explicitly pit the relevant production predictor against the relevant comprehension
predictors, because the key question is whether detection depends on good production or
good comprehension. For the regression examining detection of semantic errors, the
predictors included s weight (for production) and measures of comprehension processes that
would be expected to be needed to detect a semantic error such as “dog” for “cat”. The
relevant comprehension processes involve the phonological, lexical, and semantic levels. It
is thus reasonable to include all four of our comprehension measures in the logistic
regression model with the detection of semantic errors as its dependent variable.

For the regression examining detection of phonological errors (e.g. “cag” for “cat™), the
relevant predictors are p weight (for production) and a comprehension measure that indexes
the ability to recognize and compare strings of speech sounds, which is exactly what is
assessed by the Phonological Discrimination test. This was, therefore, the only
comprehension measure entered in the model with the phonological error detection as the
dependent variable. The semantic model was thus built with five fixed effects: the strength
of subjects’ s weights, as well as their scores on the Pyramids & Palm Trees, Synonym
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Judgment (Noun), PPVVT-I11, and Phonological Discrimination tests. The phonological
model had only two fixed effects, the strength of the p weights and the Phonological
Discrimination scores.

The findings of the correlation analysis were confirmed: In the semantic error analysis, the s
weights were predictive of semantic error detection (coefficient = 52.17; p = .042. A positive
coefficient means that the larger the s weights, the greater the proportion of semantic errors
that were detected). But Pyramids & Palm Trees, Synonym Judgment, PPV T-111 or
Phonological Discrimination scores had no predictive power (coefficients = —.001, .001, —.
009, and —0.014; p = .98, p = .93, p = .64, and p= .44 respectively). In the Phonological
error analysis, the p weights were predictive of the detection of phonological errors
(coefficient = 100.44; p = .008), but Phonological Discrimination scores were not
(coefficient = —.02; p = .19).

In summary, we found no correlation between error detection and comprehension at
semantic, lexical or phonological level. This result is compatible with the cases of aphasic
patients reported to have shown a discrepancy between the ability to comprehend and the
ability to monitor their own speech for errors. These cases and our results cannot be
explained by a comprehension-based monitor such as the perceptual loop. On the other
hand, we did observe a correlation between the detection of specific error types and specific
production parameters, in the fashion predicted by our simulations of the conflict-based
model. In the remainder of this section, we discuss some cases where the difference between
the predictions of the comprehension and production-based monitors can be observed at the
level of individual patients. In addition, we report two phenomena exhibited by some
patients, which, we believe, are more easily explained by the conflict-based account. In the
summaries below, the reported brain imaging findings were obtained from research CT or
MRI studies performed near to the time of behavioral testing.

This patient was a 59-year old male, 16 months post-onset of acute stroke due to Left
Middle Cerebral Artery infarct. His CT scan showed that the lesion was mostly frontal (BA
44) to parietal (BA 39). His comprehension profile reflected low comprehension ability at
all three levels, with 46% correct on the Pyramids & Palm Trees test (mean of the sample of
the 29 patients = 87.59, 95% CI = 83.45-91.73), 13% correct on the Synonym Judgment
(Noun) test (sample mean = 83.45, 95% CI = 75.32-91.58), 61% correct on PPV T-II1I
(sample mean = 80.93, 95% CI = 76.09-85.77), and 55% correct on the Phonological
discrimination test (sample mean = 88.72, 95% CI = 84.08-93.37). His production profile,
showed marked weakness of the semantic weights (s= 0.003; sample mean s weight = 0.027,
95% CI = 0.023-0.031) but relatively preserved phonological weights (p= 0.032; sample
mean p weight = 0.024, 95% CI = 0.021-0.028).

There are two characteristics of this patient which make him an excellent case for testing the
predictions of the conflict-based monitor: (1) The discrepancy between the values of the two
production parameters predicts differential ability to detect semantic and phonological
errors, if the monitor is in fact production-based. The prediction would be that since the
patient’s s weight is lower than the sample’s average, his semantic-error detection should
also be lower than average semantic-error detection in this sample. On the other hand, his
better-than-average p weights, would predict superior phonological-error detection
compared to the sample’s average detection of such errors. (2) At the phonological level
alone, there is a discrepancy between production and comprehension phonological
processing abilities. The patient’s p parameter is close to normal and above the sample’s
average p weight (see above), while his score on the Phonological Discrimination task is
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markedly lower than the sample’s average score. So, the conflict-based monitor predicts
good phonological detection while the perceptual-loop account predicts the opposite.

As expected from the patient’s pattern of deficit, he made many semantic errors (n = 30) but
fewer phonological errors (n = 12). He detected 50% of his semantic errors, which is lower
than the sample’s average (mean percentage of semantic-error detection in the sample =
65.28; 95% CI = 55.96-74.59) but his 100% detection of his 9 phonological errors, was well
above the sample’s average (mean percentage of phonological-error detection in the sample
=56.83; 95% CI = 46.54-67.12). Thus, the difference in the production parameters is
directly reflected in this patient’s differential ability in the detection of semantic vs.
phonological errors. Moreover, perfect detection of phonological errors is unexpected from a
patient with such poor phonological input processing if the monitor is comprehension-based,
but is well expected from the perspective of a production-based monitor, since the patient
has near-normal phonological weights.

Patients 05, 17 and 20

Patient 05 was a 26-year old female, 7 months post-onset of stroke due to left parietal-
occipital intraparenchymal hemorrhage. Her MRI showed the lesion to be mostly confined
to inferior parietal areas, BA 7, 40, 39. She had good semantic and lexical comprehension
with 87% correct on Pyramids & Palm Trees, 80% correct on Synonym Judgment (Noun),
86% correct on PPVT-III and almost perfect phonological comprehension (95% correct on
the Phonological Discrimination test). Her production profile showed higher than average
semantic weights (s = 0.046) but poorer than average phonological weights (p = 0.018), the
opposite of the pattern observed in patient 24. A production-based monitor, thus, would
predict better than average semantic error detection, but lower-than average phonological
error detection. Also, when production and comprehension abilities are compared only at the
phonological level, again the patient shows a discrepancy in the opposite direction of patient
24. Her phonological comprehension is intact, but her phonological production is degraded.

On the PNT, she made a single semantic error which she detected, and 11 phonological
errors, only 2 of which (18%) she detected. Although her single semantic error does not
allow for any conclusions to be drawn about semantic error detection, recall from the above
that 18% is well below the average phonological-error detection in the sample. This is what
the production-based monitor would predict from the weak p weights. A comprehension-
based monitor, though, would have a hard time explaining why a patient with very good
phonological comprehension would be so poor in detecting her phonological errors.
However, as we pointed out in the introduction, it has been suggested that in addition to
perfect comprehension, other abilities are required for successful error-detection through
comprehension. Speakers must be able to successfully hold representations of both the target
and the uttered word in their working memory and perform some kind of phonological
comparison between the two.

To explore whether problems other than comprehension were interfering with the patient’s
ability to detect her phonological errors, we looked at a number of other measures in this
patient. To assess the general ability of the patient to hold items in the memory, we
evaluated her short-term memory span with Immediate Serial Recall Span for Words (R.
Martin, Shelton, & Yaffee, 1994). The patient scored 3.2, meaning that she correctly
recalled more than 50% of the 3-word lists, as well as about 20% of the 4-word lists. For a
comprehension-based monitor to successfully compare the response to the target, holding
only two words in working memory is sufficient.

To more specifically assess the patient’s ability to compare phonological strings in short-
term memory, we used the Rhyme Probe task (based on Freedman & R. Martin, 2001). The
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subject listens to a string of two words, quickly followed by a third, and then must determine
if the final word rhymed with either of the preceding words by saying or pointing to “Yes/
No”. The string of words gradually increases and the test is terminated when a subject drops
to 75% accuracy on any list. Performance yields the subject’s maximum phonological short
term memory span. Patient 05 scored 3.16, meaning that she could successfully hold 3
words in her working memory and compare them to a fourth one to make a decision about
the similarity of their phonological properties (again, all that is needed for monitoring is
successful comparison of two words). We conclude that this patient seems to have the
cognitive resources required by a comprehension-based monitor for successful phonological
error-detection. Yet she rarely detects these errors. A similar case has been reported by
Oomen et al. (2005).

It is noteworthy that two other patients in our sample demonstrated a strikingly similar
profile to patient 05. Patient 17 was a 48-year-old male, 148 months post-onset of acute
stroke due to Left Middle Cerebral Artery infarct. According to his CT scan the lesion was
mostly frontal, including extensive damage to BA 44. He had good comprehension scores
(96 on Pyramids & Palm Trees test, 100 on the Synonym Judgment, 83 on PPVT-III, and 88
on Phonological Discrimination), strong semantic weights (s = 0.045), but poor
phonological weights (p = 0.017). His short-term memory span score was 3.4, and his
Rhyme Probe score, 3.66. He made 2 semantic errors, both of which he detected, but only
28% of his 18 phonological errors were detected. This 28% is well below the sample’s mean
detection rate for phonological errors, while the patient’s phonological comprehension score
is no lower than average. Together with his sufficient memory span and phonological
comparison skills, this finding is problematic for a comprehension-based monitor.

Patient 20 was a 46-year-old male, 81 months post-onset of stroke due to left intracerebral
subarachnoid hemorrhage with mostly posterior frontal lesion, affecting BA 6 and adjacent
prefrontal regions on CT scan. He also had very good comprehension scores (96 on
Pyramids & Palm Trees test, 100 on the Synonym Judgment, 92 on PPVT-III, and 93 on
Phonological Discrimination), strong semantic weights (s = 0.05), but poor phonological
weights (p = 0.017). His short-term memory span score was 4, and his Rhyme Probe score,
2.38. Similar to patient 17, he detected both of his semantic errors, but only 25% of his 12
phonological errors. The latter is too low when compared to his above-average phonological
comprehension and his sufficient working memory and phonological short-term memory
capacity.

To summarize, we reported four aphasic patients whose error-detection ability was
dissociated from their comprehension ability. Three of these patients had good
comprehension but poor self-monitoring, and one showed the reverse pattern. Although
problematic for the perceptual loop theory, this pattern is well-predicted by the conflict-
based account: detecting a certain error type for all four patients was predicted by the
strength of the production weight that was responsible for the generation of that error type.

Doubts and false rejections

In normal speakers, false alarms are thought to manifest mainly as disfluencies. Our data
suggest that in aphasic patients, false alarms can surface in other ways, as doubts and false
rejections.

By doubts we refer to cases where the patient responds correctly, but immediately questions
the accuracy of his/her response (e.g. in response to the target “towel” the patient says
“towel, is it towel?”). False rejections are cases where the patient overtly rejects his/her
correct response and may or may not replace it with an incorrect one (e.g. in response to the
target “pineapple”, the patients responds “pineapple, no.” or “pineapple, no, watermelon™).
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Although not very common, 7 patients in our sample showed more than one instance of
doubts/false rejections, with one showing a remarkably high number (15 doubts and 3 false
rejections). Interestingly, this patient had high scores on all four comprehension measures
(87 on the Pyramids & Palm Trees test, 100 on the Synonym Judgment test, 84 on the
PPVT-III, and 98 on the Phonological Discrimination test), along with good working
memory span (3.6) and Rhyme Probe (2) scores. If the response is monitored by the
comprehension system, there is no compelling reason for this patient to show so many false
alarms.

The conflict-based account, though, has an explanation. As weights become weaker, there is
overall more conflict on correct trials, compared to when weights are strong. In other words,
the amount of conflict on correct trials approaches that on the error trials, which means
lower detection sensitivity. Lower sensitivity leads to fewer hits (more misses) and more
false alarms. Missing more errors as the weights decrease is common in our sample (as
evidenced by our correlation analysis). However, it appears that many patients are
continuing to detect and some have reasonable hit rates despite damage. The cost of
achieving these hits will then be more false alarms. We thus propose that the doubts and
false rejections seen in our data are aphasic manifestations of false alarms of the error
detection system.

General Discussion

A comprehensive study of some particular cognitive function consists of studying that
function when it is carried out perfectly, when it encounters problems and ends in errors and,
finally, how those errors are processed and repaired. The first two of these -the analysis of
correct performance and error generation- require a detailed study of the cognitive domain in
question. For example, knowing a lot about word-production response times does not give
you much information about how visual scenes are processed. Similarly, visual illusions are
not particularly informative about the nature of speech errors, because the errors in each
domain reflect the specific processes within that domain. However, detection of errors might
not be quite as domain-specific. A domain-general error detection system may be
responsible for the detection of all slips independent of the cognitive process from which
those slips arise (Rabbitt, 19664, b).

In recent years, the domain-general error detection system has found support in an
electrophysiological potential, the ERN, observed in speeded forced-choice tasks. Even
though the exact mechanism by which the ERN is generated is still debated, there is no
doubt about its relation to error detection, and most importantly its significance as a signal
for central processing of errors committed by different effectors and in different tasks. In
light of this, a number of domain-general theories of error processing have been proposed
and supported (e.g. Yeung et al., 2004). We believe that speech production provides an
excellent opportunity for the application of the conflict-based approach to error processing,
because (1) all speakers slip and all neurologically unimpaired speakers can detect their
slips, (2) the pressure to keep the speech flow in spite of problems like slips makes speaking
a “speeded” task, and (3) the growing body of ERP evidence attests to the similarities
between monitoring linguistic and non-linguistic processes. However, unlike the forced-
choice tasks, speech production is a natural task, in which the response alternatives are
constrained by the speaker’s intention and functional properties of the production system.
Therefore, there are enough similarities between speech production and forced-choice tasks
to presume that a common error-detection mechanism might be shared between the two, but
at the same time, there are clear differences, which require that the theory be tailored to
language production before a generalization can be made. The possibility of a domain-
general error detection mechanism for language production has been recently proposed (Ries
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et al., 2011), but no implemented or otherwise detailed and testable model has as of yet been
developed.

For this paper, we had two goals: (1) To develop a new model of error detection in language
production. (2) In so doing, to provide additional support for the notion of a central generic
monitoring mechanism for detecting errors that extends beyond the scope of laboratory tasks
with limited response choices. To this end, we implemented a simple version of a conflict-
based monitor in the interactive two-step model of word production (Dell et al., 1997), laid
out and tested its assumptions in two simulations, and tested explicit predictions about
patient data using the model.

Our first goal was motivated by the evidence pertaining to the insufficiency of the current
theory of speech monitoring, the perceptual loop account, in explaining the empirical data.
We reviewed the assumptions of this account, along with the various pieces of evidence
questioning those assumptions. Instead, we proposed a conflict-based model of error-
detection which is not subject to the two main objections against the perceptual loop theory:
it does not assume processing of inner speech during overt speech production and, more
fundamentally, it does not rely on comprehension for error detection. Its central premise is
that an error is signaled by the presence of high conflict between various options at the time
of selection among activated words, and later, among activated phonemes. Conflict can be
measured in different ways. In our implementation we measured it in two ways, once by
taking into account the competition from all alternatives, and once by considering only the
strongest competitor. In either case, the crucial measure was the difference between the
activation of the selected (response) node and the activation of the competitor(s). The
greater this difference (the more distinct the response node), the less the conflict between the
selected node and other potential responses and the lower the chance of making an error.

We identified three principles that should hold for conflict-based error-detection in a speech
production model. According to the first principle (detection sensitivity), the amount of
conflict should correlate directly with the probability of error commission. This principle is
modulated by the second principle (layer specificity), which constrains the relationship
between the amount of conflict at specific layers of the production system and the
probability of certain error types. To demonstrate these principles, we used the interactive
two-step model of word production. In the model, the nonlinearity of the process of mapping
meaning to sound is enforced by selection at two points in the process of lexical access: if
“cat” is to be produced, selection 1 happens at the word layer, when a lemma (e.g. “cat”) is
chosen; and selection 2 happens at the phoneme layer, when the sounds of the selected
lemma (e.g. /k/, /el ,/t) are chosen. Although there is only one overt response, the two-step
process of lexical retrieval makes it desirable to measure conflict at two layers, where a node
is selected among other potential nodes.

Also, the two-step nature of the model, which enforces separate mapping of meaning to
word units and word to sound units, creates differential error probabilities during each step.
If selection 1 suffers, a semantic error may be generated and, if selection 2 suffers, a
phonological error (often a nonword error) is created. Thus, conflict measured at the word
layer (selection 1) must be correlated with the probability of semantic error commission and
conflict at the phoneme layer (selection 2) with the probability of nonword error
commission. This relationship between the conflict arising at a specific point in the model
and a certain error type is summarized by the principles of detection sensitivity and layer
specificity and our simulation of a normal speaker (simulation 1) confirms it.

The third principle of the model (integrity contingency) establishes the relationship between
the informativeness of the error signal and the quality of the production system, as
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determined by the s and p weights. In a damaged production system with weak weights,
noise has more effect, and conflict is more likely to be omnipresent, regardless of whether
the trial ends in a correct or an incorrect response. In this case, using conflict as a signal will
not reliably discriminate between errors and correct responses. Thus, the third principle
predicts a direct relationship between the first two principles and the strength of the
production weights. When weights are strong, conflict at each layer should accurately
predict the probability of the relevant type of error. As weights become weaker, this
precision should decrease, so that when production is greatly disrupted (as in a case of
severe aphasia), the conflict signal no longer carries useful information. Our second
simulation confirms the third principle.

It is this third principle that is most relevant to the distinction between the perceptual loop
model and the conflict-based model. While the former predicts a correlation between
comprehension and error detection and little correlation between the quality of the
production system and error detection, the latter makes the opposite prediction. The patient-
data section of the paper tested the predictions of these two theories on a sample of aphasic
patients. We replicated the previous finding of no correlation between comprehension and
error detection (Nickels & Howard, 1995), and in the same sample showed correlations
between detection ability and production weights, as predicted by the conflict-based model.

Finally, we applied a criterion-setting model (Kac, 1962) to the data generated using the
conflict-based model and showed that the model is capable of simulating the detection rate
observed in normal speakers and its drop in the aphasic patients. Based on our findings, we
propose the conflict-based account of monitoring for detecting speech errors. It is
noteworthy that a conflict-based model may be capable of explaining other error-related
findings. One such example is the fidelity of speech errors to the phonotactic constraints of
the language (e.g. Fromkin, 1971). For example, maybe producing the phonotactically
illegal /kd/ onset cluster is much less probable than producing the legal /kl/ onset cluster,
because at the phonological level, an activated /k/onset and /d/onset is viewed as more
conflicted than an activated /k/onset and /l/onset and hence the illegal cluster is inhibited or
covertly repaired. Similarly, an overall pattern of phonological activation that is, or is
similar to, a word, might be viewed as less conflicted than one corresponding to a honword,
a perspective that is consistent with claims that speech errors that create nonwords are more
detectable than ones that form words (Baars et al.,1975; Hartsuiker, Corley, & Martensen,
2005; Nooteboom & Queng, 2008). In this way, conflict is more like the inverse of the
“goodness” of an activation pattern, such as the Hopfield Energy measure of conflict used
by Botvinick et al. (2001) and Yeung et al. (2004). Unconflicted or “good” activation
patterns require a clear distinction between activated and unactivated units (as in our
measures) and that the set of activated units cohere with background knowledge (e.g.
phonotactic or lexical constraints).

Our claim that the primary mechanism for speech monitoring is detection of conflict does
not imply that we deny the role of perceptual processes in speech monitoring altogether.
Empirical studies have shown that although error detection is possible in noise-masked
conditions, the percentage of detected errors (at least for phonological errors) decreases
(Lackner & Tuller, 1979), suggesting some role of an external monitoring loop that
processes the auditory signal. Electrophysiological data second this observation: on some
error trials a slow positive wave with centroparietal distribution (Pe) appears, the timing of
which, unlike the ERN, is compatible with processing of peripheral information
(Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; Falkenstein, Koshlykova, Kiroj,
Hoormann, & Hohnsbein, 1995). On the basis of these and similar arguments, the possibility
of a hybrid (production/comprehension) model of monitoring has been discussed in recent
years (Nickels & Howard, 1995; Postma, 2000; Schlenk et al., 1987; Slevc, 2006; Vigliocco
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& Hartsuiker, 2002). In a similar vein, Logan and Crump (2010) presented evidence for a
dual monitoring system in type-writing, which seems to take advantage of both production-
based and perceptual signals for detecting errors. It is possible that in such a hybrid model,
the conflict signal, since it is available before production, contributes different information
to the repair process than does post-response perceptual feedback. Perhaps the former
readies the system for repair while the latter provides information about the details that need
to be fixed.

Cues for error detection could be provided in a number of other ways as well. A good
example is the processing of social signals. Language production is, for the most part, an
interaction between a speaker and a listener (e.g. Branigan, Pickering, McLean, & Cleland,
2007; Clark, 1996; Clark & Wilkes-Gibbs, 1986) and there is growing interest in how social
interaction affects the cognitive processes underlying speech generation (e.g. Horton &
Gerrig, 2005). Speech monitoring might also take advantage of the interactive nature of
conversation. It is plausible that the listener’s confusion would act as a cue for the speaker
that revision is required. Such an adaptive error-detection strategy has been proposed for
jargon aphasics whose detection ability improves over time (J. Marshall et al., 1998).

Also, we have only modeled error detection at the level of individual words. Most accounts
of language production/acquisition propose that speakers are sensitive to the transitional
probabilities of words in their context, meaning that certain categories (noun, verbs, etc.)
appear before or after other categories with probabilities that are learned by the speakers
(e.g. Chang, Dell, & Bock, 2006; Wonnacott, Newport, & Tanenhaus, 2008). It is thus
conceivable that when there is a context involved, violations of such contingencies will
provide additional cues for the detection of certain error types. This proposal shares a
perspective with MacKay’s NST, in which occurrence of a unit in a novel context is
proposed as a signal for error detection.

In short, we propose the conflict-based account as the core mechanism for speech
monitoring, while acknowledging the possibility of complementary mechanisms which, in
the case of pathology of the core mechanism, might gain a more substantial role in
monitoring speech for errors.

Towards a domain-general account of error detection

Throughout the paper, we argued for a domain-general error-detection mechanism, and
claimed that the model proposed here implements that view for language production. In this
section, we elaborate on the similarities and differences between our model and other
conflict-based theories (e.g. Botvinick et al., 2001; Yeung et al., 2004). The model proposed
in this paper is not simply an implementation of prior conflict-based theories in the domain
of language production. The differences between our model and models of Botvinick et al.
(2001) and Yeung et al. (2004) stem from the differences in the target tasks. For us it is error
detection during natural speech production, for them it is error detection under laboratory
conditions for forced-choice tasks. This leads to two ways in which our models differ:

The point of conflict measurement—We measured conflict only at the time of
response selection (once at the word level, and once at the phonological level). This differs
from conflict-based models where the point of measurement is post-response. In those
models, activation of a hasty response conflicts with the subsequent activation of the correct
answer which emerges from further processing after the response is made. We focus on our
two selection points because, first, they are motivated by the production theory, and second,
because they successfully simulate the empirical findings. On the theoretical side, conflict-
resolution for selection is an inevitable step in word production. The greater the conflict, the
more difficult the selection. In fact, the amount of conflict at the time of selection is most
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relevant for estimating the accuracy of the selection. Thus it seems natural that the conflict
signal is relayed for the (secondary) task of error detection at the time when the system must
face conflict resolution in order to accomplish the (primary) task of production. A
consequence of measuring conflict at the time of selection is that our model is blind to the
correct response. It picks the most activated node and at the same time assesses its
confidence in its pick by comparing that node’s activation to others. Post-response measures
of conflict, on the other hand, are sensitive to the conflict between the executed and the
correct response (which is derived from continuing process of the stimulus in forced-choice
tasks).

On the empirical side, measuring conflict at the point of selection leads to a model which
explains the data well. Conflict at the time of word selection is strongly predictive of word-
level errors, and conflict at the time of phonological selection is strongly predictive of
phonological errors. When a criterion is derived using the simulated distributions, the model
correctly predicts that normal speakers detect around half of their errors. Moreover, our
decision to assess conflict at the point with which semantic errors occur (the word level) is
consistent with findings in the literature. Ganushchak and Schiller (2008a) found that ERNs
have larger amplitudes on errors that follow semantic distractors. Similarly, Ganushchak and
Schiller (2008b) found larger ERNs in semantically-related (compared to unrelated) blocks.
If the amplitude of ERN is assumed to be directly proportional to the amount of conflict, our
model predicts this finding. Yeung et al.’s (2004) model on the other hand, always predicts
larger ERN for low-conflict stimuli.

Choice of the conflict measure—The conflict based models that were applied to binary
tasks use a measure of conflict derived from Hopfield energy (e.g. Botvinick et al. 2001,
Yeung et al., 2004). This measure assesses the extent to which the activation pattern in a
network is compatible with its connection weights. Specifically, response alternatives are
assumed to have mutual inhibitory connections and thus their simultaneous activation
indicates conflict. Our model does not have such connections, and thus we chose simpler
and, we believe, more intuitive measures of conflict, such as the difference in the activation
between the selected node and its principal competitor(s). Furthermore, Hopfield energy, as
used in Yeung et al. (2004), is most informative if calculated over a period of time (as
opposed to a single point in time), which makes it unsuitable for a model like ours which
associates conflict at the exact point of response selection with the error signal.

Given these differences, what does our model share with the other conflict-based models?
Before answering this question we briefly digress by considering the role of monitoring in
complex motor movements. In motor movement -just as in language production- initial
theories of monitoring emphasized monitoring through perception (e.g. correctness of arm
movements determined by visual input after the motion). However, behavioral studies of
arm movements showed that the trajectory of the movement can be amended at latencies
much shorter (30-45 ms) than the time needed for the sensory feedback to be processed
(Cooke & Diggles, 1984; van Sonderen, Gielen, & Denier van der Gon, 1989). To explain
such fast and efficient corrections, a feedback loop was proposed, in which a copy of the
efferent signal (the efference copy) is generated and monitored for its compatibility with the
action, so that a predicted output is compared to the actual output. This so-called forward
model (Desmurget & Grafton, 2000; Jordan & Rumelhart, 1992; Kawato, 1999; Miall &
Wolpert, 1996), similar to the conflict-based model, uses the information generated by the
production system (in this case, the motor system) for error detection rather than relying on
the peripheral information processed by the perceptual system. We consider the relation
between the conflict-based model and forward models by focusing on this question: Is
monitoring a comparative process, and if so, what exactly is the nature of this comparison?

Cogn Psychol. Author manuscript; available in PMC 2012 August 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nozari et al.

Page 29

Whether to view error detection as a comparative process or not, depends on what the error
is being compared to. In some theories, detection is achieved by comparison to the correct
response (e.g. the perceptual loop account). Earlier, we mentioned that not all agree that it is
plausible for the system to have the correct response at its disposal, while making an error.
However, there are other potential comparative processes which are not subject to the same
criticism. One such example is the forward model discussed above. Note that the
comparison is between the actual and the predicted outcome, which the system derives from
the information available from the action and the knowledge it has about the state of the
environment. The predicted outcome might or might not be the desired outcome (i.e. the
correct response), but the process is nevertheless a comparative process. A similar proposal
has been formulated in the response monitoring theory (e.g., Steinhauser, Maier, & Hubner,
2008), in which error detection consists of a comparative process between the actual
response and a representation of a response that is derived from further processing of the
input information. The idea is that slips result from premature response generation, before
the system has had time to use all the information and settle on the final (and presumably
correct) response.

Conflict-based error detection can also be viewed as a comparative process. In its simplest
form, such as the model used in this paper, errors are detected based on a comparison
between the activation of two (or more) alternatives at the time of responding. The conflict
model of Yeung et al. (2004) uses a more sophisticated comparison. Its monitor detects the
conflict between the executed response and the response derived from continued processing
of the stimulus. Note that in both cases the comparison is between an actual response and an
internally-generated criterion of comparison.

Against this background, we can now consider the sense in which the models are similar.
For one thing, all view error detection as a loop involving a lower system (e.g. motor or
language production system) that generates signals of conflict and some other domain-
general system (frontal, perhaps the ACC) that interprets these so as to mitigate or
ultimately, to learn from, the error. Furthermore, all agree that the information necessary for
error detection is provided by a non-perceptual comparison between various options
generated within the system being monitored. Whether this comparison includes the desired
response or not should matter little for error detection. In cases where the ultimate purpose
of error detection is learning to avoid producing the error in the future, a forward model or a
conflict-based process could be situated in a larger loop that compares the output of the
model to the desired outcome. This loop could be a learning-reinforcement algorithm
(Holroyd et al., 2002) or alternatively, a supervised learning algorithm (Jordan & Rumelhart,
1992).

In conclusion, this research assessed whether conflict-based error-detection can apply to
speech production, and more generally, whether mechanisms of this sort that have been
proposed for simple button-push tasks can apply to a more natural and complex task,
specifically, speaking. We believe that the work presented here supports such an application.
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Figure 1.

The interactive two-step model of word production. Boxes indicate the places where conflict
was measured, once at the word layer at the time of lemma selection (the upper box), and
once at the phoneme layer at the time of onset selection (the lower box).
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Figure 2.

Demonstration of the principle of detection sensitivity using hypothetical distributions. The
graphs plot the number of trials showing a certain amount of conflict, and are categorized
based on whether the trial ended in the correct or incorrect response. The two panels on the
left show the case where detection sensitivity is high. If conflict correctly signals error
occurrence, errors should on average show higher conflict compared to correct trials. On the
other hand, if conflict is not a useful signal for error detection, the distribution of correct and
incorrect responses should not differ with regard to measures of conflict (right panels). d =
Cohen’s d (see text).
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Page 40

Distribution of the —In(diff(max)) measure of conflict for semantic errors and correct trials in
a simulated normal speaker. The dashed line indicates the criterion derived from Kac’s
(1962) model. The area to the right of the criterion consists of conflict values translated into

error signals. This area indicates false alarms (~ 1%) in the correct distribution (upper
panel), and detected errors or hits (*47%) in the error distribution (lower panel).
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Correlations between the production parameters and error detection in the 29 patients. The
two left-hand panels show semantic error detection, and the two right-hand panels,
phonological error detection. Stronger s weights are associated with better semantic error
detection, and stronger p weights with better phonological error detection. The correlation
between the s weights and phonological error detection is in the opposite direction, as is the
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Table 1

Detection sensitivity and layer specificity in the 6 simulated speakers with normal to severely damaged
production systems. The last two columns show the Cohen’s d’s for semantic and nonword errors at word and
phoneme layers calculated using the —In(diff(max)) measure of conflict, with the —In(sd)-based values

reported in the parentheses. The Bold numbers identify cases where there is some detection sensitivity. Note
that as the weights decrease, detection sensitivity decreases as well. When the production system is completely
distorted (s=p = 0.008) detection sensitivity is very low.

Weights Cohen’s d for Error type
level of conflict measurement

S p Semantic Nonword
0.04 | 0.04 Word layer 3.26(1.18) | 0.57 (0.50)
Phoneme layer 0.09 (0.11) | 2.83(1.52)
0.02 | 0.04 Word layer 1.41(0.76) | 0.55(0.33)
Phoneme layer 0 (0) 3.05 (1.95)

0.04 | 0.02 Word layer 2.81(1.18) | 0.05(0)
Phoneme layer 0.04 (0.04) | 1.42(0.95)
0.008 | 0.04 Word layer 0.37 (0.34) | 0.03(0.37)
Phoneme layer 0.09 (0.20) | 3.58 (2.18)
0.04 | 0.008 Word layer 2.03(0.82) | 0.29(0.29)
Phoneme layer 0.09 (0) 0.55 (0.43)
0.008 | 0.008 Word layer 0.25(0.19) | 0.25(0.18)
Phoneme layer 0.12 (0.04) | 0.31(0.26)
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Table 3

Correlation between comprehension measures and detection of semantic and phonological errors for the 29
patients. Pearson’s r is reported along with the relevant p-value in the parentheses. PPV T= Peabody Picture
Vocabulary Test.

Semantic error detection | Phonological error detection
Pyramids & Palm Trees 0.20 (p =0.29) -0.23 (p=0.22)
Synonym Judgment 0.24 (p=0.22) —0.08 (p = 0.67)
PPVT-111 —0.03 (p = 0.88) —0.04 (p=0.83)
Phoneme Discrimination 0.02 (p=0.91) —0.15 (p = 0.44)
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