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Abstract Regulation of energy balance is extremely

complex, and involves multiple systems of hormones,

neurotransmitters, receptors, and intracellular signals. As

data have accumulated over the last two decades, the CNS

melanocortin system is now identified as a prominent

integrative network of energy balance controls in the

mammalian brain. Here, we will review findings from rat

and mouse models, which have provided an important

framework in which to study melanocortin function. Per-

haps most importantly, this review attempts for the first

time to summarize recent advances in our understanding of

the intracellular signaling pathways thought to mediate the

action of melanocortin neurons and peptides in control of

longterm energy balance. Special attention will be paid to

the roles of MC4R/MC3R, as well as downstream neuro-

transmitters within forebrain and hindbrain structures that

illustrate the distributed control of melanocortin signaling

in energy balance. In addition, distinctions and controversy

between rodent species will be discussed.
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Abbreviations

AY Agouti yellow

AAV Adeno-associated virus

ACTH Adrenocorticotropic hormone

AgRP Agouti-related protein

AMPK Adenosine monophosphate protein kinase

BAT Brown adipose tissue

BDNF Brain-derived neurotrophic factor

CART Cocaine- and amphetamine-regulated

transcript

CCK Cholecystokinin

CNS Central nervous system

CRH Corticotropin-releasing hormone

DIO Diet-induced obesity

DVC Dorsal vagal complex

FI Food intake

Fos-Li Fos-like immunoreactivity

GABA c-Aminobutyric acid

GK Glucokinase

GLP-1 Glucagon-like peptide 1

HFD High-fat diet

IBAT Intrascapular brown adipose tissue

ICV Intracerebroventricular

IR Insulin receptor

LHA Lateral hypothalamic area

LPS Lipopolysaccharide

MAPK/ERK Mitogen-activated protein kinase

(a.k.a. = extracellular signal-regulated

kinase)

MCR Melanocortin receptor

MC3R Melanocortin 3 receptor

MC4R Melanocortin 4 receptor

MSH Melanocyte-stimulating hormone

MTII Melanotan 2

NPY Neuropeptide Y

NR Not reported

NT-4 Neurotrophin-4

NTS Nucleus tractus solitarius

NUCB2 NEFA/nucleobindin2
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PI3 K Phosphatidyl inositol 3-kinase

PBN Parabrachial nucleus

PC Subtilisin-related prohormone convertase

PIP3 Phosphatidylinositol (3,4,5)-trisphosphate

POMC Proopiomelanocortin

PTP1B Protein tyrosine phosphatase 1B

PVH Paraventricular nucleus of the

hypothalamus

RER Respiratory exchange ratio

RMR Resting metabolic rate

RQ Respiratory quotient

SHP2 SH2 domain-containing protein tyrosine

phosphatase-2

SIM1 Single-minded gene 1

SNS Sympathetic nervous system

SOCS3 Suppressor of cytokine signaling 3

SON Supraoptic nucleus

STAT3 Signal transducer and activator of

transcription 3

trkB Tropomysosin-receptor kinase-B

WAT White adipose tissue

Tg Transgenic

Introduction

The prevalence of obesity within the US and several

developing countries the world over [1–4] has catalyzed the

need for a greater understanding of how physiological sig-

nals of food intake, thermogenesis, and energy expenditure

converge within the brain to regulate body weight. A

recurring theme that has emerged from decades of research

using a multitude of human and animal models is that the

melanocortin system appears to be an essential component

of the overall regulation of energy balance [5–7]. The

melanocortin ‘‘system’’ can be defined as a neural circuit

comprised of cells expressing either pro-opiomelanocortin

(POMC)-derived melanocortin receptor (MCR) agonists, or

the melanocortin antagonist agouti-related peptide (AgRP),

as well as the MCR-expressing cells that are targets of these

neurons. Melanocortin peptides and associated receptors are

found in almost every region of the body: from dense

concentrations within specific sites of the brain [8], to

peripheral tissues including the testes, duodenum, kidney,

lungs, stomach, skin, and placenta [9, 10]. Such ubiquitous

expression speaks to the diversity and wide array of phys-

iological functions governed by the melanocortin system [6,

11, 12]. Foremost of these melanocortin-mediated functions

is energy balance regulation as a result of MCR signaling

within hypothalamic and hindbrain nuclei [13, 14].

Studies in rodents and humans have highlighted the

importance of melanocortin signaling in the control of

body weight [15]. Among the most compelling findings are

those in mice showing that genetic knockout of POMC

[16], or targeted destruction of POMC neurons [17], results

in significant obesity and dysregulated energy balance.

Similarly, overexpression of AgRP [18] leads to hyper-

phagia and obesity, while targeted destruction of AgRP

neurons in adult mice [17, 19] leads to lowered body

weight and anorexia. In humans, POMC mutations have

also been observed in patients with severe early-onset

obesity [20].

Many hormones have been implicated in the regulation

of melanocortin signaling, including the adipocyte-secreted

hormone leptin. With the discovery and identification of

leptin in 1994 [21, 22], it quickly became clear that some

of the most well-studied obese rodent models including the

Zucker rat [23], as well as ob/ob and db/db mice [24], all

developed excessive adiposity through a lack of leptin or

absence of leptin receptor signaling. Either of these man-

ifestations will lead to subsequent dysregulation of the

melanocortin system. This breakthrough catapulted adipose

tissue into the limelight as a source of secreted factors

contributing to energy balcony control. In addition, it

established the central nervous system (CNS), specifically

the hypothalamus, a brain area previously well known to be

involved in body weight regulation, as the staging ground

for leptin’s central effects [see [5] for review]. Since this

time, mouse and rat models have been credited with pro-

viding the basis of our current knowledge on leptin’s action

within POMC and AgRP neurons, as well as the activation

of many downstream signals. Arguably the most important

secondary sites of action of the melanocortin system are

melanocortin 3 receptor (MC3R)- and melanocortin 4

receptor (MC4R)-containing neurons within the arcuate

nucleus of the hypothalamus (ARC) and paraventricular

nucleus of the hypothalamus (PVH) [25, 26]. These

receptors and the neurons which express them have been

heavily studied in both the mouse and rat through com-

plementary approaches. MC4R dysregulation has been

studied in detail in rodents [27, 28] and humans [29] and is

perhaps the most prevalent monogenic variant in the sus-

ceptibility of human obesity [7].

This review will attempt to highlight how advances in

rodent models over the last several years have helped

establish a model of melanocortin control of energy

balance from an intracellular, neuroanatomical, and

neurochemical perspective. The use of Cre-LoxP recom-

bination technology in mice has allowed for tissue- or

neuron-specific knockout, and/or re-constitution of specific

genes involved in melanocortin signaling. These mouse

models have been critical in establishing the importance of

various receptors and signaling molecules in melanocortin

control of energy balance. Studies of the melanocortin

system in the rat have primarily involved pharmacological
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stimulation/inhibition of melanocortin signaling pathways

via direct intraparenchymal delivery of agonists/antago-

nists into specific nuclei of the brain. As will be discussed

in greater detail in the balance of this review, the activation

of specific MCR types within the hypothalamic and hind-

brain nuclei (e.g., MC3/4R), as well as potential

transcription factors and downstream projection sites of

melanocortin receptor-expressing neurons, reveal a dis-

tributed network of interactive sites in many regions of the

brain which may cooperate, or function independently, to

ultimately regulate energy balance [14].

POMC and AgRP function in energy balance

Alpha-melanocyte-stimulating hormone (a-MSH) is a

potent endogenous ligand for both MC3R and MC4R, the

two most prominent melanocortin receptor types involved

in body weight regulation, and has been shown under many

paradigms to reduce food intake and/or increase energy

expenditure in rodents [30]. Conversely, agouti-related

protein (AgRP) serves as the main endogenous peptide

directly antagonizing the action of a-MSH by competing

for binding on MCRs and inhibiting receptor activation

[31]. For the purposes of this review, we will focus pri-

marily on the role of a-MSH and AgRP peptides and

associated MC3R and MC4R binding in melanocortin

action of energy balance.

Differential cleavage of POMC produces melanocortin

peptides

The production of all melanocortin peptides occurs via

cleavage of the POMC precursor in one or more steps [6, 9,

32]. Posttranslational cleavage of POMC is accomplished

through the actions of two subtypes of the subtilisin-related

proprotein convertase: PC1/3 and PC2 [33, 34]. Depending

on the site of POMC expression, the peptides produced

may be influenced by the presence or lack of convertase

activity. For example, the principal end-product of POMC

cleavage in corticotrophs of the anterior pituitary is adre-

nocorticotropic hormone (ACTH1-39), which results after

two successive cleavage steps via PC1/3 [32]. It is worth

noting that in this region of the brain there appears to be no

inherent PC2 activity [34], suggesting regional control of

melanocortin production at the cleavage level. However,

this notion may be more complex, as animals that geneti-

cally lack PC1/3 still manage to produce ACTH,

suggesting a degree of plasticity under certain develop-

mental conditions [35]. In the ARC, the nucleus tractus

solitarius (NTS) of the hindbrain, and the melanotrophs of

intermediate lobes of the pituitary, POMC processing

continues beyond ACTH via PC2 and multiple additional

enzymatic steps to produce two principally occurring

melanocortin peptides: desacetyl-a-MSH and a-MSH. It is

still unclear how the relative concentrations of specific

melanocortins may complement or antagonize the down-

stream effects of one another, yet it is interesting to note

that, within the ARC, desacetyl-a-MSH is present in larger

concentrations than a-MSH, whereas a-MSH is found in

greater levels in the NTS (see [6] for review). The rele-

vance of this apparent disparity is unknown; however, it

may have implications for the overall melanocortinergic

tone in each of these nuclei as it relates to energy balance

regulation.

AgRP cleavage and melanocortin receptor binding

in energy balance

Murine AgRP is a 131 amino acid peptide displaying a

high degree of homology to the 132 amino acid human

AgRP (hAgRP) peptide [36]. The posttranslational car-

boxy-terminal fragment AgRP83–132 of hAgRP has been

used for over a decade as a potent antagonist of MCR

activity [37]. What is not so straightforward is how the

cleavage, posttranslational processing, and mechanism of

AgRP action on MCRs may collectively occur and influ-

ence melanocortin control of energy balance. Indeed,

AgRP in the circulation largely corresponds to fragmented

forms of the original peptide [36, 38]. This processing has

been shown to occur within AgRP-containing neurons of

the hypothalamus primarily via PC1/3, although other PCs

may also be involved [39].

Processing of AgRP prior to release from AgRP neurons

seems to be critical to the proposed mechanism of AgRP in

melanocortin receptor binding. Specifically, syndecan-3, a

cell surface proteoglycan, has been postulated to act as a

co-receptor for AgRP on MC4R neurons within the PVH

via binding of the amino-terminal end of AgRP [40]. Mice

lacking syndecan-3 are more sensitive to the effects of the

MC3/4R nonselective melanocortin agonist melanotan 2

(MTII) [41] and show decreased endogenous levels of

AgRP in the PVH [42], suggesting a decrease in AgRP tone

localized to the PVH due to less efficient AgRP binding in

the absence of syndecan-3. However, in light of the evi-

dence of pre-synaptic AgRP cleavage prior to release, the

physiological relevance of syndecan-3-mediated AgRP

action at MCRs is controversial, as the endogenous AgRP

fragment reaching the PVH would likely not possess the

necessary amino-terminal recognition sequence necessary

for syndecan-3 binding [see [39] for additional discussion].

This notion is also supported by the recent finding that

AgRP83–132 increases intake comparably in wild-type and

syndecan-3 knockout mice [42]. Together, these results

suggest that pre-synaptic posttranslational cleavage of

AgRP is important for energy balance control.
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Location of POMC and AgRP neurons

Within the ARC, two distinct populations of neurons syn-

thesize either AgRP or POMC, and mediate opposing

anabolic or catabolic effects on energy balance. Circulating

hormones, such as leptin and insulin, can act upon these

‘‘first-order’’ neurons to decrease appetite and increase

energy expenditure via simultaneous suppression of AgRP

neurons and stimulation of POMC neurons [5]. Indeed,

hypothalamic AgRP neurons increase in basal firing rate

during fasting, likely through leptin-dependent mecha-

nisms [43]. POMC neurons are also expressed in the NTS

of the hindbrain [44], a nucleus that receives and integrates

both vagal afferent satiation and blood born energy status

signals, and issues output commands essential to energy

balance control [45–48]. Direct administration of leptin in

the hindbrain is sufficient to produce decreased food intake

and increased energy expenditure, and leptin receptor sig-

naling in the NTS is required for normal control of energy

balance regulation [49–51]. The function of POMC neu-

rons within the NTS may differ significantly from those in

the ARC, although the literature contains only a handful of

reports addressing this issue. For example, one report has

shown that leptin does not induce the phosphorylation of

signal transducer and activator of transcription 3 (STAT3)

or Fos-like immunoreactivity (Fos-Li) in POMC NTS

neurons, in contrast to robust activation in ARC POMC

neurons [52]. However, another report suggests the oppo-

site, that pSTAT3 is induced in a significant population of

POMC NTS neurons following leptin treatment [53]. The

disparate findings, both in mice, may involve the genetic

background of the animals, as well as the feeding state

when leptin treatment occurred [52, 53]. Notably, both

NTS and ARC POMC mRNA have been shown to decrease

following periods of food restriction [52]. More recent data

in the rat show that NTS-specific expression of POMC

ameliorates chronic diet-induced obesity (DIO) and meta-

bolic defects, while identical treatment in the ARC

produces only transient improvements [54]. In an obese rat

model, recombinant adeno-associated viral POMC gene

delivery (rAAV-POMC) into the NTS results in long-term

sustainable reductions in food intake, body weight, and

improved insulin sensitivity in contrast to rAAV-POMC

delivery to the ARC, which results in only transient

improvements in these parameters [55]. These differences

presumably involve compensation by AgRP activity, which

is restricted to expression in the ARC, and is not found in

the hindbrain. Overall, these reports in mice and rats sug-

gest divergent roles of hindbrain and forebrain POMC

neurons on energy balance depending on location within

the brain, highlighting both brainstem and hypothalamic

POMC neurons as potential sites of energy balance

regulation.

First-order melanocortin neurons in the ARC send pro-

jections to other areas of the brain to coordinately regulate

energy balance. For example, a-MSH-containing neurons

in the ARC activate downstream secondary neuronal pop-

ulations within proximal nuclei of the hypothalamus, e.g.,

the lateral hypothalamic area (LHA) and PVH, as well as at

distant sites such as the parabrachial nucleus (PBN),

amygdala, and the NTS [5]. Notably, ARC-originating a-

MSH projections have axons which terminate in proximity

to gastric distension-responsive neurons in the NTS, sug-

gesting coordination of melanocortin tone and satiation

signals arising from the gastrointestinal tract [56]. As

described in detail later in this review, ARC and PVH

neurons express melanocortin receptors relevant to body

weight regulation and serve as a branch point for activation

of many central melanocortin-induced neurons.

Signaling pathways within POMC and AgRP neurons

regulate energy balance

Leptin and insulin signaling in POMC and AgRP

neurons

The generation and characterization of POMC-Cre and

AgRP-Cre mice in 2004 has allowed investigators to utilize

these genetic tools to probe the function of signaling

components of the melanocortin system as it relates to

energy balance [57, 58]. The POMC-Cre; Leprflox/flox mice

were the first mice published using this technology, pro-

viding a unique model in which to study the role of leptin

signaling specifically in POMC neurons [58]. These mice

are obese, highlighting the important homeostatic role for

POMC neuron leptin signaling in control of body weight.

However, the extent of obesity in these mice is less than

might be predicted given the well-established prominent

role of leptin in regulating neuropeptide expression and

POMC neuron activity, and the importance of a-MSH on

downstream targets that regulate energy balance. This

study, as well as several follow-up studies, highlight both

the important contribution of POMC- and AgRP-neuron

leptin signaling to overall energy balance, and the need to

consider possible melanocortin receptor-independent

effects of leptin [58–63].

Two proteins have been identified as important negative

regulators of leptin signaling: suppressor of cytokine sig-

naling 3 (SOCS3) and protein tyrosine phosphatase 1B

(PTP1B) (reviewed in [64]). As expected, deficiency of

either SOCS3 or PTP1B in POMC neurons results in

reduced body weight and adiposity (due to enhanced leptin

sensitivity and increased energy expenditure) when mice

are maintained on a high-fat diet (HFD) [65, 66]. STAT3 is

activated downstream of leptin signaling, and is a critical
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signaling molecule which promotes many of the physio-

logical effects of leptin [67–69]. Deficiency of STAT3 in

POMC neurons results in an increase in body weight and

adiposity of female mice only, and a decrease in POMC

gene transcription, suggesting that leptin-induced STAT3

signaling within POMC neurons is only one component

mediating the physiological effects of leptin [70]. Sur-

prisingly, however, mice expressing a constitutively active

version of STAT3 within POMC neurons (STAT3-CPOMC

mice) develop hyperphagia and obesity on a chow diet due

to chronic STAT3-induced upregulation of SOCS3, leading

to a feedback inhibition of leptin signaling and the devel-

opment of leptin resistance [71]. Collectively, these studies

highlight the physiological relevance of leptin signaling in

POMC neurons.

In addition to leptin, signaling stemming from the pan-

creatic hormone insulin has been shown to reduce food

intake and increase energy expenditure and thus play an

important role in the central control of energy balance

[72, 73]. Insulin receptors (IR) are expressed throughout

the CNS, including in the hypothalamus and NTS of the

medulla [74–76]. Mice with neuronal deficiency of insulin

receptors (NIRKO mice) demonstrate mild diet-sensitive

obesity, yet the precise neurons mediating the effects on

energy balance are not entirely clear [77]. Somewhat sur-

prisingly, deletion of IR in either POMC neurons or AgRP

neurons does not have any significant effect on overall

energy balance parameters [78]. It should be noted, how-

ever, that reconstitution of IR into POMC neurons of mice

with hypothalamic IR-deficiency (L1 mice), does rescue

energy expenditure and locomotor activity defects of L1

mice [79]. No rescue occurs if IR is put back into AgRP

neurons of L1 mice, suggesting that restoring IR signaling

specifically in POMC neurons may play a more important

role in regulating energy balance than insulin signaling in

AgRP neurons. To complicate matters, mice lacking both

leptin receptors and IR in POMC cells are leaner than mice

lacking POMC-leptin receptors alone [63]. These data

suggest that IR signaling in POMC neurons normally

promotes or maintains body weight, and that the anorectic

effects of central insulin are mediated by non-POMC and

non-AgRP neurons.

Despite the lack of (or minimal) effect of manipulating

IR’s in POMC and AgRP neurons, genetic disruption of

particular isoforms of downstream phosphatidyl inositol

3-kinase (PI3 K) can affect energy balance. PI3 K is

composed of a regulatory 85-kDa subunit (p85) and a

110-kDa catalytic subunit (p110) [80]. Mice with POMC-

p85a deficiency display a sex-specific body mass pheno-

type; male POMC-p85a-/- mice are normal weight when

maintained on chow or high-fat diet, whereas female

POMC-p85a -/- mice have reduced body weight and

adiposity on HFD [81]. Although there are some

discrepancies between the reported phenotypes (see

Table 1), overall it appears that disruption of the p110a or

p110b subunit of PI3 K in POMC neurons results in

increased body weight and adiposity [81, 82]. Deletion of

p110a in AgRP neurons does not alter energy balance, but

mice lacking p110b in AgRP neurons have decreased body

weight and adiposity on either chow or high fat diet, due at

least in part to decreased food intake [82]. It is worth

noting that disrupting PI3 K signaling in arcuate neurons

does seem to significantly affect glucose homeostasis and

peripheral insulin sensitivity [63, 81], a topic that we will

not cover in this review. Overall, these studies are con-

sistent with previous reports which highlight the

importance of POMC neuron PI3 K signaling to effects on

feeding [83], yet also suggest that neuronal PI3 K signaling

may be more important in control of glucose homeostasis

than in long-term control of energy balance [84]. In addi-

tion, POMC-specific ablation of the phosphatase which

dephosphorylates phosphatidylinositol (3,4,5)-trisphos-

phate (PIP3), phosphatase and tensin homolog (PTEN),

results in hyperphagia, increased adiposity, and increased

body weight [85]. This is likely due, however, to POMC

neuron hyperpolarization and a reduction in firing rate due

to increased ATP-sensitive potassium (KATP) channel

activity rather than an effect on insulin receptor signaling

per se.

Since 2004, numerous studies have been published

analyzing the metabolic role of various signaling molecules

in POMC or AgRP neurons (see discussion above and

Table 1). Most of these studies confirm the important

contribution these neurons play in energy balance control.

One note of caution in interpreting these studies comes

from a recent report demonstrating that Pomc is widely

expressed in immature embryonic hypothalamic neurons,

many of which adopt a non-POMC cell fate in adult mice

[86]. It is important to keep this caveat in mind when

interpreting the energy balance phenotypes of mice which

are lacking a gene of interest in any cell that has ever

expressed POMC, compared with mice that may have a

disruption of the gene in adult POMC neurons. To this end,

the field seems to be moving toward more ‘‘conditional-

inducible’’ transgenic mouse models to allow for better

temporal resolution of specific gene functions.

Melanocortin receptors

Five MCR subtypes have been identified to date, each with

some distinguishable (as well as overlapping) physiological

characteristics. MC1R, MC2R and MC5R, do not appear to

be essential for regulation of energy balance. Mutation in

the recessive allele for MC1R in mice is not accompanied

by a change in energy balance [6, 87]; similarly, MC2R-/-
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or MC5R-/- mice do not exhibit obesity but may have

defects in gluconeogenesis, adrenal atrophy, hypoglyce-

mia, and exocrine functioning [88–90]. The most relevant

and well-studied melanocortin receptors in the physiology

of energy balance are the MC4R and MC3R, and the roles

of these two receptor subtypes will be described in detail.

Effects of melanocortin MC4R and MC3R on energy

balance

MC4R is critical to energy balance

The MC4R, a 7-transmembrane G-protein coupled receptor

that shares structural similarity to the MC3R [91], is

expressed on the surface of neurons throughout the brain

and in high proportion within the hypothalamus, hippo-

campus, and hindbrain [31]. MC4R can be directly

activated via ACTH or a-MSH, or inhibited by AgRP, via

release from terminals of POMC or AgRP/NPY axonal

projections from the ARC [31]. MC4R-/- mice show

marked hyperphagia, hyperinsulinemia, hyperleptinemia,

and obesity [28]. Selective MC4R re-expression in the

PVH and amygdala can significantly blunt obesity devel-

opment and completely block the hyperphagia otherwise

seen in globally-deficient mice [92]. However, this tissue-

specific MC4R re-expression does not affect the reduced

energy expenditure phenotype of these animals, suggesting

that at least in the PVH and amygdala, MC4R pathways

regulate feeding and energy input, rather than output.

Interestingly in the rat, AAV-mediated knockdown of PVH

MC4R stimulates hyperphagia and DIO [93].

Given the wide distribution of the MC4R population

within the CNS, identification of the relevant MC4R-

expressing nuclei that regulate food intake has proven

challenging. It is interesting to note that MTII induces

neuronal activation, measured by Fos-like immunoreac-

tivity (Fos-Li), in the PVH and area postrema (AP) of wild-

type mice, while in MC4R-/- mice PVH Fos-Li remains

intact, but AP expression is absent [94]. Other reports have

also highlighted a role for MC4R signaling in food intake

control using targeted parenchymal delivery of MTII in

non-PVH nuclei [95–97]. Collectively, these data point to a

distributed control of MC4R signaling within and between

the forebrain and hindbrain in determining the obese phe-

notype of MC4R-/- mice.

Acute inhibition or activation of MC4R alters feeding

and energy balance

In rat and mouse models, the use of selective or non-

selective MC3R/MC4R agonists and antagonists has

greatly contributed to the understanding of how MC4R

neurons in the CNS regulate food intake. When adminis-

tered intracerebroventricularly (ICV) in rats, selective

blockade of MC4R increases both food intake and body

weight [98–100]. Conversely, MC4R agonists given ICV

reduce food intake in chow maintained [101] and DIO rats

[102], suggesting that MC4R pathways are essential to the

regulation of food intake.

The reduction of food intake observed in normal rodent

models following administration of MTII is markedly

attenuated [94] or blocked [103] in MC4R-/- mice. Simi-

larly, double MC3R/MC4R-/- knockouts, as expected, do

not reduce food intake following ICV MTII [94]. The failure

of MTII to evoke a feeding response in MC4R-/- mice is due

in large part to blockade of endogenous AgRP and leptin

signaling, as these animals do not increase food intake fol-

lowing exogenous AgRP treatment and become resistant to

leptin-induced anorexia when grossly obese [103]. Together,

these data suggest that MC4Rs are likely the predominant

MCR mediating the intake inhibitory effects of endogenous

melanocortins and thus are the major CNS MCR responsible

for mediating melanocortin’s effects on energy balance.

An important recent publication illustrates that the

stimulation of AgRP neurons involves a melanocortin

receptor-independent mechanism to increase food intake,

whereas POMC neuron activation requires intact melano-

cortin receptors to reduce food intake [104]. Feeding

stimulatory effects of AgRP neuron activation is instead

likely through GABA release/GABA-ergic signaling [105,

106]. These findings are not necessarily in contrast to

results using ICV AgRP injections cited above in

MC4R-/- mice, instead they demonstrate the significant

distinction between methodologies of delivering a phar-

macological compound (e.g., AgRP) versus the direct and

indirect actions of AgRP neuronal excitation, the latter

presumably involving a multitude of mechanisms not

necessarily entirely due to release of AgRP.

Positive energy balance and increased adiposity can of

course stem not only from hyperphagia but also decreased

energy expenditure. In addition to inducing reductions in

intake, MTII can increase core temperature and heart rate

when administered into the forebrain or hindbrain [51, 107].

Interestingly, ventricular MTII does not appear to alter

spontaneous activity in mice [108] or rats [51, 107]. Simi-

larly, MC4R-/- mice do not show an alteration in physical

activity when placed on HFD, whereas wild-type mice do

[109]. On the other hand, specific re-constitution of MC4R

within cholinergic neurons, likely through action of pre-

ganglionic sympathetic neurons, has recently been shown to

increase energy expenditure, but not affect food intake

[110]. It is also worth noting that specific allelic mutations

of MC4R in humans can be associated with decreased

energy expenditure as a likely cause of obesity in these

individuals [111].
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The melanocortin system mediates energy expenditure

through activation and regulation of the sympathetic nervous

system (SNS). Classical studies in rats with VMH lesions

show profound obesity and large reductions in sympathetic

activity, supporting a role for the VMH in energy balance

though SNS action [112]. Parenchymal injection of leptin

into the VMH, but not LHA, increases glucose uptake in

SNS-target tissues including skeletal muscle, heart, and

brown adipose tissue (BAT), but not in white adipose tissue

(WAT) [113]. Leptin-stimulated glucose uptake in BAT is

inhibited via VMH injection of SHU9119 and, conversely,

MTII injections into either VMH or PVH stimulate glucose

uptake in BAT [114]. If BAT is surgically sympathetically

denervated, the aforementioned effects of leptin are com-

pletely blocked, suggesting that increased BAT uptake

occurs via leptin-induced increases in sympathetic activation

[113, 115]. These data show that leptinergic and melano-

cortinergic pathways are potent inducers of BAT activity via

SNS activation. In the Siberian hamster, MTII increases lipid

mobilization from WAT and increases ‘‘sympathetic drive’’

in BAT as evidenced by increased intrascapular BAT

(IBAT) temperature and norepinephrine turnover [116].

Furthermore, intraPVH injections of MTII robustly increase

IBAT temperature. It is likely that this effect is through

MC4R receptor activation, particularly within the PVN,

where a high density of SNS outflow projections to IBAT

originates [117]. Taken together, these findings illustrate

hypothalamic MC4R involvement in energy expenditure via

the SNS regulation of BAT function.

MC4R activation stimulates anorexic signals

within distinct nuclei and brain regions

CRH in the PVH

MC4R activation in the PVH can exert inhibitory actions

on food intake through the stimulation of downstream

effectors. Corticotropin-releasing hormone (CRH) is one

such signal that reduces food intake when exogenously

administered in rats [118]. Antagonism of the CRH

receptor CRH-1 partially reduces MTII-induced reduction

of food intake potentially through action in a small subset

of PVH neurons that coexpress CRH and MC4R [119]. The

anorectic action of CRH must be downstream of MC4R

activation as CRH-induced reductions in food intake

remain potent in obese MC4R-/- mice [103]. Together,

these data show a role for CRH downstream of MC4R

activation, likely within the PVH, to reduce food intake.

BDNF in the VMH, DVC, and Hippocampus

Classically examined as a contributor to neurodevelop-

ment, brain-derived neurotrophic factor (BDNF) is thought

to regulate energy balance as a downstream effector of

MC4R [120]. Acute injections of BDNF can ameliorate

hyperphagia and/or obesity in many animal models,

including BDNF heterozygous mice, [121], agouti yellow

(Ay), and db/db mice [120, 122], as well as in rats [123–

125]. BDNF null mice die perinatally [126]; however,

selective deletion of BDNF within the VMH and DMH

results in hyperphagia and obesity, but not alterations in

energy expenditure [127]. Similarly, knockout of the long

form of the BDNF receptor, tropomysosin-receptor kinase-

B (trkB), results in hyperhphagia and obesity when mice

are maintained on a moderate-fat diet [120].

The control of intake by BDNF is distributed to mul-

tiple CNS locations, involving both forebrain and

hindbrain action. BDNF expression in the VMH is reduced

following food restriction in wild-type mice, increased

after ICV administration of MTII, and less expressed in

MC4R2/2 mice. [120]. Evidence for BDNF involvement

in hindbrain control of intake comes from a set of studies

showing that BDNF and MC4R antagonist co-adminis-

tration into the 4th ventricle of the rat attenuates increases

in food intake due to MC4R antagonism alone [128].

Activation of the trkB receptor via BDNF, trkB agonist

antibody, or neurotrophin-4 (NT-4), all suppress food

intake and ameliorate obesity [129, 130]. Furthermore,

hindbrain MC4R stimulation requires functional kinase

activity of trkB to reduce intake [128]. Consistent with

these data, it is likely that peripheral leptin-induced BDNF

expression in the dorsal vagal complex (DVC) of the

hindbrain [131] may be mediated by MC4R activation in

the hindbrain. Additional BDNF populations, such as

those within the hippocampus [132], may also play a role

in feeding, specifically in the mediation of DIO [133]. As

a whole, these data suggest multiple regulatory sites of

BDNF/trkB regulation of MC4R-induced alterations in

food intake. Although it remains unknown, it would be

interesting to examine CNS distribution of melanocortin

signaling in BDNF- or trkB-deficient rodent models, and

whether or not the feeding effects of MC4R agonists or

antagonists would remain intact in BDNF?/- or trkB

knockout mice.

Sim1 and Oxytocin in PVH

Single-minded homolog 1 (Sim1) encodes a transcription

factor critical to the proper neural development of the

PVH, supraoptic nucleus (SON) [134], and potentially the

LHA and amygdala [135]. Transgenic Sim1 overexpres-

sion in mice induces DIO resistance, but does not influence

energy expenditure [136]. While the relationship between

Sim1 action and MC4R is not well defined, several

emerging reports clearly show that MC4R function in

energy balance is impacted by manipulation of Sim1
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expression. The obese Ay mouse, a genetic model for

impaired melanocortin signaling [137], shows attenuated

hyperphagia and obesity with overexpression of a Sim1

transgene [136]. These results suggest that Sim1 function

may be involved in the rescue of melanocortin signaling

efficiency in these animals. Interestingly, populations of

Sim1 PVH neurons may also co-express MC4R, which is

intriguing given that restoration of MC4R expression spe-

cifically within the PVH in obese MC4R-null mice largely

prevents weight gain [92]. From both an anatomical and

behavioral perspective, Sim1/MC4R function within spe-

cific PVH neurons may be essential for maintaining energy

balance.

Similar to BDNF knockout mice discussed above, mice

with homozygous germ line null mutations for Sim1 do not

survive long after birth, likely due to deficient neural

development. Heterozygous mice (haplotype Sim1?/-),

however, are viable and exhibit many deficits relating to

energy balance, such as hyperphagia, hyperinsulinemia,

hyperleptinemia, and obesity [138]. Sim1?/- mice show

resistance to MTII-induced reductions in food intake and

PVH Fos-Li, but normal MTII-induced increases in energy

expenditure compared to wild-type mice [139].

Haploinsufficiency of Sim1 likely causes hyperphagia

and obesity via downstream effects inhibiting oxytocin

[140–142]. The selective MC4R-agonist cyclo(b-Ala-His-

D-Phe-Arg-Trp-Glu)-NH2 activates PVH oxytocin neurons

in wild-type mice, while Sim1?/- mice are hypersensitive

to the feeding inhibitory effects of oxytocin antagonism

[143]. Postnatal Sim1-deficient mice, where Sim1 has been

conditionally deleted shortly after birth, survive and show

decreased hypothalamic oxytocin and MC4R mRNA in the

PVH [140]. In summary, PVH Sim1 and oxytocin signaling

may act in conjunction with, or downstream of, MC4R

activation in the regulation of energy balance, although

important components of the mechanism remain elusive, in

particular how Sim1 may selectively affect food intake, but

not energy expenditure.

NUCB2/Nesfatin-1 in the hypothalamus and NTS

Within the past few years, NEFA/nucleobindin-2 (NUCB2)

has been identified as a precursor and potential mediator of

melanocortin signaling in controlling food intake and body

weight via cleavage into the active peptide fragment

nesfatin-1 [144]. NUCB2 is expressed in multiple hypo-

thalamic nuclei (PVH, ARC, LHA, SON) as well as the

NTS [144], and peripheral tissues [145]. ICV injection of

either NUCB2 or nesfatin-1 reduces food intake in Wistar

[144], Sprague–Dawley [146], and lean or obese Zucker

rats [144], and peripheral injection of nesfatin-1 is effective

in dose-dependently reducing food intake in db/db and DIO

mice [147]. Thus, in multiple animal models, including

those of leptin resistance/absence, NUCB2/Nesfatin-1 is a

potent mediator of food intake.

Interestingly, fasting appears to decrease both NUCB2

and nesfatin-1 levels only within the PVH, while a-MSH

injection increases PVH expression of NUCB2 [144]. Fos-

Li is robustly increased in PVH nesfatin-1 neurons sub-

sequent to a 2-h refeeding following a 48-h fast [148],

suggesting that these neurons are responsive to food

deprivation. Along these lines, SHU9119, a selective MC3/

4R antagonist, blocks the anorexic effect of nesfatin-1

[144] as well as oxytocin [149]. Similarly, oxytocin

receptor antagonism via ornithine vasotocin blocks

a-MSH- and oxytocin-induced anorexia in Sprague–

Dawley rats [150] and nesfatin-1-induced anorexia in the

Zucker rat [149]. Recent data also point to an inhibitory

effect of nesfatin-1 in orexigenic neuropeptide Y (NPY)

neurons of the ARC, which could also be a mechanism

mediating food intake reductions induced by nesfatin-1

[151]. However, this relationship is unclear, as POMC and

cocaine- and amphetamine-regulated transcript (CART)

neurons of the NTS are activated at peripheral doses of

nesfatin-1 that reduce food intake in mice [147], while in

rats nesfatin-1 injection does not affect ARC/PVH

expression of POMC, NPY, AgRP or CRH [144]. Taken

together, these data suggest that the role of nesfatin-1 in

food intake regulation involves MCR activation and/or

participation of proposed downstream mediators of MCR

signaling, such as oxytocin.

MCH and Orexin in the LHA

Melanin-concentrating hormone (MCH), a peptide found

predominantly in the LHA, shows reduced expression after

feeding and stimulates food intake when administered ICV

[152] or parenchymally into the PVH [153], while MCH-1

receptor blockade reduces food intake [154]. MCH is

capable of antagonizing the feeding effects of a-MSH, but

not a-MSH binding to MC4R [153, 155], suggesting a

downstream role in the MC4R-induced anorectic effect.

Indeed, MCH expression is reduced by specific MC4R

inhibition [156]. MCH2/2 mice are hypophagic and lean,

with reduced plasma leptin levels and ARC POMC

expression, suggesting impaired melanocortin signaling

[157]. Furthermore, Ay mice show increased MCH

expression, which may mediate hyperphagia downstream

of melanocortin signaling defects in these mice [158, 159].

Orexin in the LHA represents a potential downstream

signal of melanocortin receptor activation that may show

significant divergence in energy balance function between

the mouse and the rat. Orexin expression in the LHA is

increased in POMC2/2 mice, and ICV injection of a-MSH

reduces expression to WT levels [160], although adminis-

tration of orexin is unable to significantly alter food intake
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in both WT and MC4R2/2 mice [103]. Furthermore,

models of orexin deficiency in mice have produced con-

trasting results, showing that knockout of orexin precursor

prepro-orexin and destruction of orexin-containing neurons

both induce slight hypophagia [161, 162]. On the other

hand, HFD induces obesity in animals lacking orexin

neurons when mice are on a mixed genetic background

[161]. Thus, the role of orexin in energy balance in mice is

not straightforward, although melanocortinergic involve-

ment is likely.

In the rat, directed chemical destruction of ARC NPY or

POMC neurons results in hyperphagia and obesity and

induces a downregulation of both hypothalamic MCH and

orexin mRNA expression [163]. AgRP induces Fos-Li in

orexin, but not MCH neurons of the LHA [164], while

conversely, ICV injection of the MC3/4R antagonist,

SHU9119, or AgRP increases MCH mRNA, but does not

affect orexin mRNA [159]. Together, these reports show

responsiveness of MCH and orexin to inhibition or stim-

ulation by melanocortinergic signals, although the precise

mechanisms remain unclear.

Brainstem MC4R can integrate peripheral signals

of satiation and energy balance independently

and via crosstalk with forebrain signals

The brainstem has long been recognized as an integrator of

both short-term satiety signals and long-term signals of

energy balance. In this regard, it has been shown that

exogenous cholecystokinin (CCK)-induced reductions in

food intake are blunted in MC4R-/- mice, and SHU-9119

administered into the PVH attenuates CCK-induced anor-

exia in the rat [165], although the physiological role of

CCK and gut peptide response mediating in MC4R effects

on intake are controversial [166–168].

Evidence using a decerebrate rat model suggests that

brainstem activation of MCRs is sufficient to induce

increases in core and BAT temperature, and in heart rate

[169], although in an intact animal, it is likely that the these

effects are mediated by both local activation within the

brainstem and hypothalamus, as well as descending or

reciprocal connections between the two areas [170]. Sev-

eral brainstem populations, such as the NTS, PBN and

raphe pallidus, contain sympathetic pre-motor neurons

[171], and injection of MTII activates these areas, stimu-

lating thermogenic mechanisms and energy expenditure

[51, 169, 172]. Interestingly, forebrain or hindbrain injec-

tion of MTII comparably elevates UCP-1 in BAT, of which

the effects of the latter are blocked following surgical

denervation of BAT [172].

In addition to integration of peripheral signals, the NTS

receives direct descending a-MSH containing projections

from forebrain POMC neurons in the ARC [173], as well as

MC4R expressing projections from the PVH [165].

Downstream effectors of MCR activation, namely oxytocin

and CRH, induce Fos-Li in the NTS and brainstem [174,

175]. Similarly, subpopulations of both PVH oxytocin and

CRH cells [176, 177], as well as LHA orexin and MCH-

containing neurons, all project to the NTS [178, 179].

Together, these results suggest that local actions of mela-

nocortin signals within the hypothalamus and hindbrain, as

well as projections between the two, may cooperatively

and/or independently regulate food intake and energy

balance.

MC3R

MC3R is essential for energy balance

Like MC4R, the expression of MC3R is present throughout

the brain, and is highly pronounced in regions of the

forebrain and hindbrain involved in the control of food

intake and energy balance, such as the ARC and NTS

[180]. Endogenous melanocortins, such as a-MSH,

potently bind to both MC3R and MC4R receptors [181],

which initially suggested potentially redundant or over-

lapping roles of MC3R and MC4R. However, peripheral

administration of a selective MC3R agonist stimulates food

intake [182]. Furthermore, unlike MC4R-/- mice,

MC3R-/- mice are hypophagic on chow [27], and do not

exhibit hyperphagia on HFD despite the development of

mild obesity on HFD [27, 183]. Decreased voluntary

energy expenditure and spontaneous locomotor activity is

also apparent in MC3R-/- mice, along with increased

adiposity, reduced lean mass, and elevated respiratory

quotient when switched to high-fat diet [27, 183] sug-

gesting that the positive energy balance phenotype is likely

due to decreased energy expenditure and lipid oxidation.

Double knockouts for both MC4R and MC3R exhibit

higher weight gain than either deletion alone [27], also

supporting a role for independent effects of both receptor

types in energy balance regulation.

MC3R activation may regulate melanocortin signaling

through auto-inhibition of ARC neurons

The co-expression of MC3R on POMC and AgRP neurons

within the ARC is particularly important. MC3R mRNA is

expressed in about half of POMC [184, 185] and AgRP

[185] cells located in the rostral section of ARC, while no

such expression is found for MC4R. The role of these

MC3Rs is thought to be auto-inhibitory, serving as a

messenger in a feedback loop within and between ARC

neurons and projection sites, such as the PVN, to maintain

melanocortinergic tone and regulate POMC activity. The

specific mechanism for the auto-inhibition may be through
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inhibitory input via c-Aminobutyric acid (GABA)-ergic

terminals onto ARC NPY/AgRP neurons expressing MC3R

and/or direct inhibition via MC3R activation on POMC

neurons themselves [186].

MC3R as a mediator of circadian and entrainment patterns

of food intake

MC3R also appears to have a regulatory role in the

entrainment of food intake, under both restrictive and

ad libitum feeding conditions ([187, 188], and for review,

see [189]). Restrictive, scheduled feeding induces antici-

patory behaviors characteristic of food expectation. Unlike

wild-type mice, MC3R-/- mice do not show increased

voluntary or spontaneous activity prior to scheduled meal

presentation and exhibit abnormal oscillation patterns of

rhythmically expressed clock genes such as Bmal1, Npas2

and Per2 when ad libitum fed [188]. These alterations in

circadian patterns related to food intake also appear

to extend to metabolic pathways, as hyperinsulinemia,

glucose intolerance, and lipid metabolism impairments in

MC3R-/- may be caused in part by defects in rhythmic

expression in a number of transcription factors involved in

liver function and metabolism of nutrients [187].

Peripheral signals from the gut activate central

melanocortin signaling

Melanocortin signaling mediates the action

of gastrointestinal signals and peptides

There is a significant body of literature showing commu-

nication between satiation signals arising from the gut and

the central melanocortin system. Gastric nutrient infusion,

for example, produces Fos-Li in a-MSH immunoreactive

neurons within the NTS, suggesting that melanocortin sig-

naling mediates nutrient signals from within the gut during

digestion [173]. Furthermore, CCK-induced suppression of

food intake occurs following vagal afferent activation and

subsequent CNS processing that begins with hindbrain

nuclei, including neurons involved in leptin and MC4R

signaling [166, 190, 191]. Within the NTS, POMC neurons

depolarize and increase firing rate and show increased Fos-

Li in response to exogenous CCK treatment [192]. More

recent data suggest that activated MAPK signaling within

NTS POMC neurons plays a significant role in CCK-

induced satiation [193]. The actions of CCK are not limited

to the hindbrain. Intriguingly, forebrain melanocortin neu-

rons in the PVH have also been shown to mediate the effects

of CCK, in addition to hindbrain action [165, 194]. Simi-

larly, projections containing downstream effectors of

melanocortin receptor activation, such as oxytocin, appear

to provide a neurochemical link between hypothalamic and

NTS action of CCK [176, 195]. Interestingly, chronic

decerebrate rats reduce food intake following CCK

administration in the absence of brainstem–forebrain neural

communication [196], suggesting that hindbrain action may

be sufficient to mediate the reduced intake effects of CCK.

In addition to CCK, the intestinal hormone glucagon-

like peptide-1 (GLP-1) may act through central mecha-

nisms to reduce food intake [197] via melanocortin

neurons. In the rat, GLP-1 injection attenuated fasting-

induced decreases in POMC/CART expression, and con-

versely, reduced increases in AgRP/NPY expression [198].

Worth noting, however, is evidence of a divergence

between mice and rats in leptin-induced pSTAT3 expres-

sion in NTS neurons containing proglucagon, the precursor

for GLP-1. Specifically, in the rat, GLP-1 NTS neurons

show no pSTAT3 expression following leptin treatment,

while in mice, 100% of GLP-1-positive NTS neurons show

expression of pSTAT3 [199]. This apparent conundrum

requires further investigation, but warrants caution in

similar interpretations of GLP-1/melanocortin signaling

communication in each species.

Glucose sensing by central POMC neurons

The melanocortin system is involved in the meditation of

nutrient signaling through specialized ARC, VMH, or NTS

neurons which sense glucose, responding by excitation or

inhibition when exposed to high or low circulating con-

centrations of the nutrient [200–202]. One of the main

glucose sensors within neurons, the hexokinase glucoki-

nase (GK), is found within VMH POMC neurons, and may

control glucose sensing via KATP channels in glucose-

excitatory POMC neurons [203–205]. Glucose sensing is

impaired in DIO rats, as evidenced by reduced VMH GK

expression [203], or defective uncoupling protein 2-regu-

lation of glucose-induced ATP production in POMC

neurons in mice [205], suggesting POMC glucose sensing

pathways are critical to energy balance. a-MSH may also

excite non-POMC-containing ARC neurons [206], and this

pathway may require functional glucose transporter 2

expression in cells of the LHA and DVC that then project

back to POMC neurons [207]. Overall, a role for POMC

neurons in glucose sensing in the control of glucose

homeostasis appears likely, and may involve multiple sites

of action and cell type-specific sensor mechanisms.

Lessons from both the rat and mouse in melanocortin

signaling of energy balance

As discussed in detail above, both rat and mouse mod-

els have been extensively studied in the melanocortin
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system-mediated control of energy balance. While the

overarching findings are often consistent, there are clearly

some reported differences between the species. An all

inclusive list of these differences would not be justified, as it

is very possible that some of these differences are due in part

to varying experimental techniques and pharmaceutical and

genetic manipulations themselves. Instead, here we high-

light a few interesting comparative and differential findings

as they relate to melanocortin-mediated effects on energy

balance between the rat and mouse. At least two important

points can be made with regard to these comparisons: (1) the

question of which species (rat or mouse) represents the

appropriate model to understand the normal physiology and

pathophysiology of human diseases is not straightforward,

and will always depend on the physiological system under

investigation; and (2) caution should be taken when making

generalizations to human physiology from individual stud-

ies using the mouse or rat regarding the role of the

melanocortin system in energy balance regulation.

Perhaps no region of the CNS has gained more attention in

POMC-mediated effects on energy balance than the hypo-

thalamus. Critical among the hypothalamic nuclei mediating

the intake inhibitory and energetic responses to MC3/4R

stimulation is the neuronal communication between the ARC

and PVH as discussed above. Stimulation of MC4R in the

PVH of the rat [208] or hamster [117] engages thermoreg-

ulatory responses that include increased core temperature,

heart rate and locomotor activity, as well as reduced food

intake and body weight. In contrast, MC4R re-expression in

the PVH of MC4R knockout mice does not result in changes

in energy expenditure [92], only amelioration of the hyper-

phagia of these mice. In the mouse, it appears that the energy

intake and energy expenditure effects of the central mela-

nocortin system are controlled by anatomically distinct

portions of the system; namely, that food intake is regulated

principally by forebrain MC4R-expressing nuclei, and

hindbrain MC4R-expressing nuclei are regulating energy

expenditure responses [92]. On the other hand, several

studies in rats have shown clear food intake regulation by

MC4R stimulation and/or blockade in the caudal brainstem

[96, 208–210]. Specifically, Wan et al. [211] have shown that

MC4R signaling in the NTS leads mainly to presynaptic

modulation of glutamatergic synaptic transmission arising

from the GI tract and suggests that melanocortinergic-

induced decrease of food intake in the caudal brainstem may

occur via enhancement of vagal afferent satiation signals

from the gastrointestinal tract. Although there may be some

differences between rat and mouse models, it is likely that

stimulation of MCRs in a variety of central sites, including

those within the hypothalamus and caudal brainstem, redu-

ces food intake and increases energy expenditure.

The essential role of the CNS melanocortin system in

energy balance regulation is attractive for the future

development of pharmaceuticals aimed at treating not only

obesity but other disease states affecting ingestive behav-

ior. The pathogenesis of cachexia and malnutrition

(specifically decreased food intake) caused by chronic

disease or infection appears to involve the melanocortin

system [212–215]. Various rodent models of cachexia exist

in the rat and mouse, and include but are not limited to

lipopolysaccharide (LPS) treatment, tumor implantation,

and uremia-associated or cardiac injury-induced cachexia.

The MC4R is reportedly involved in cachexia-induced

suppression of food intake and alterations in basal metab-

olism, as MC4R null mice or wild-type mice treated with

AgRP maintain their food intake and body weight when

exposed to these various cachexia-induced paradigms (see

[216, 217] for review). At least for cachexia it would

appear that the rat and mouse models are consistent with a

role of MC4R participation in regulating the disease-

induced anorexia. Similar to the aforementioned findings

with MC4R null mice, tumor-induced cachexia was

prevented by treatment with the MC3/4R antagonist SHU-

9119 in the rat [218]. Likewise, in both murine and rat

models of heart failure, genetic and pharmacologic block-

ade of melanocortin signaling attenuated the metabolic

manifestations of cardiac injury-induced cachexia [215].

From the vast amount of research exploring MCR media-

tion of cachexia it is not always clear whether the

manipulations of the melanocortin system, either geneti-

cally or pharmacologically, attenuate the metabolic and

anorexic effects of cachexia simply by engaging competing

orexigenic responses (food appetitive/consummatory

behaviors) or by actual direct blockade of signaling

responses of the disease state on the melanocortin system.

Nonetheless, it is clear from both mouse and rat studies that

the melanocortin system holds promise in the potential

treatment of disease-induced cachexia.

While various ligands are being developed to target the

MC3/4R in the hope of treating obesity, none have so far

emerged with FDA approval. It is clear that the overcon-

sumption of calories by obese humans is not driven by

energy depletion, but instead likely involves disrupted

regulation of hedonic feeding. Principal among the limi-

tations that need to be overcome before melanocortin

treatments will be effective in treating obesity is the lack of

knowledge about which POMC- and MCR-expressing

nuclei are most involved in modulating hedonic feeding.

Zhang et al. [54] showed that POMC gene-transfer to the

NTS caused mild anorexia, persistent weight loss,

improved insulin sensitivity, and increased propensity for

voluntary wheel running in the dietary obese rats; similar

intervention in the ARC only had minimal physiological

and metabolic impacts. The authors speculated that both

the ARC and NTS are important brain sites for regulating

caloric need (chow consumption), whereas the NTS POMC
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neurons may play more of a role in hedonic feeding (i.e.,

high fat diet consumption) compared to the ARC. The

notion of limited involvement of hypothalamic melano-

cortin signaling in hedonic feeding driving obesity is

directly challenged by the report of Garza et al. [93],

showing that local knockdown of MC4R by AAV-shRNA

interference in rats results in hyperphagia driven increase

in body weight gain when rats were maintained on high fat

diet (similar effects were not observed when maintained on

chow). Unfortunately, less research has been conducted in

the mouse on which population(s) of MCR-expressing

neurons is involved with hedonic feeding. Part of this

limitation comes from the genetic approaches classically

used in examining the melanocortin system in energy

balance regulation, namely MC4R-/- mice and mice with

genetic manipulations within POMC neurons. Both these

genetic strategies affect neuronal systems outside of the

hypothalamus, in particular the NTS. Future approaches

should be taken in both the rat and the mouse to explore the

role of MCR signaling in extra-hypothalamic and extra-

brainstem structures (e.g., ventral tegmental area, hippo-

campus, nucleus accumbens) in food intake regulation,

especially with regard to hedonic or palatable food intake

regulation.

Summary

Without question, our picture of melanocortin regulation

in energy balance has advanced considerably over the

past two decades. Rodent models have provided evidence

of distributed sites of neuronal control as well as the

identification of numerous endogenous ligands, receptors,

transcription factors, and intracellular signals which

illustrate the complexity of the melanocortin pathway as

a whole. From this perspective, understanding the etiol-

ogy and pathogenesis of human diseases characterized by

chronic disturbances of food intake and energy expen-

diture, such as obesity, requires an appreciation of the

complexity of the central melanocortin system, and an

understanding of how melanocortin effectors function to

control energy balance and ultimately, body weight.
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