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Rare-Variant Association Testing
for Sequencing Data with the Sequence
Kernel Association Test

Michael C. Wu,1,5 Seunggeun Lee,2,5 Tianxi Cai,2 Yun Li,1,3 Michael Boehnke,4 and Xihong Lin2,*

Sequencing studies are increasingly being conducted to identify rare variants associated with complex traits. The limited power of clas-

sical single-marker association analysis for rare variants poses a central challenge in such studies. We propose the sequence kernel asso-

ciation test (SKAT), a supervised, flexible, computationally efficient regression method to test for association between genetic variants

(common and rare) in a region and a continuous or dichotomous trait while easily adjusting for covariates. As a score-based vari-

ance-component test, SKAT can quickly calculate p values analytically by fitting the null model containing only the covariates, and

so can easily be applied to genome-wide data. Using SKAT to analyze a genome-wide sequencing study of 1000 individuals, by segment-

ing the whole genome into 30 kb regions, requires only 7 hr on a laptop. Through analysis of simulated data across a wide range of

practical scenarios and triglyceride data from the Dallas Heart Study, we show that SKAT can substantially outperform several alternative

rare-variant association tests. We also provide analytic power and sample-size calculations to help design candidate-gene, whole-exome,

and whole-genome sequence association studies.
Introduction

Genome-wide association studies (GWASs) have identified

more than 1000 genetic loci associated with many human

diseases and traits,1 yet common variants identified

through GWASs often explain only a small proportion of

trait heritability. The advent of massively parallel

sequencing2 has transformed human genetics3,4 and has

the potential to explain some of this missing heritability

through identification of trait-associated rare variants.5

Although considerable resources have been devoted to

sequence mapping and genotype calling,6–9 successful

application of sequencing to the study of complex traits

requires novel statistical methods that allow researchers

to test efficiently for association given data on rare vari-

ants10 and to perform sample-size and power calculations

to help design sequencing-based association studies.

Rare genetic variants, here defined as alleles with

a frequency less than 1%–5%, can play key roles in influ-

encing complex disease and traits.11 However, standard

methods used to test for association with single common

genetic variants are underpowered for rare variants unless

sample sizes or effect sizes are very large.12,13 A logical alter-

native approach is to employ burden tests that assess

the cumulative effects of multiple variants in a genomic

region.12–18 Burden tests proposed to date are based on

collapsing or summarizing the rare variants within a region

by a single value, which is then tested for association with

the trait of interest. For example, the cohort allelic sum test

(CAST)14 collapses information on all rare variants within

a region (e.g., the exons of a gene) into a single dichoto-
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mous variable for each subject by indicating whether or

not the subject has any rare variants within the region

and then applies a univariate test. Instead of collapsing by

dichotomizing the number of rare variants within a region,

collapsing by counting them is also possible.18 The

combined multivariate and collapsing method12 extends

CAST by collapsing rare variants within a region into

subgroups on the basis of allele frequency, collapsing

subgroups as in CAST, and applying a multivariate test to

the subgroups. The weighted sum test (WST)13 specifically

considers the case-control setting and collapses a set of

SNPs into a single weighted average of the number of

rare alleles for each individual. Numerous alternative

methods are largely variations on these approaches.16,17,19

A limitation for all these burden tests is that they implic-

itly assume that all rare variants influence the phenotype

in the same direction and with the same magnitude of

effect (after incorporating known weights). However, one

would expect most variants (common or rare) within

a sequenced region to have little or no effect on pheno-

type, whereas some variants are protective and others dele-

terious, and the magnitude of each variant’s effect is likely

to vary (e.g., rarer variants might have larger effects).

Hence, collapsing across all variants is likely to introduce

substantial noise into the aggregated index, attenuate

evidence for association, and result in power loss. Further-

more, burden tests require either specification of thresh-

olds for collapsing or the use of permutation to estimate

the threshold.16–20 Permutation tests are computationally

expensive, especially on the whole-genome scale, and are

difficult for covariate adjustment because permutation
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requires independence between the genotype and the co-

variates.

The recently proposed C-alpha test21 is a non-burden-

based test and is hence robust to the direction and magni-

tude of effect. For case-control data, it compares the

expected variance to the actual variance of the distribution

of allele frequencies. These important advantages allow the

C-alpha test to have improved power over burden-based

tests, especially when the effects are in different directions.

Despite these attractive features, the C-alpha test does not

allow for easy covariate adjustment, such as for controlling

population stratification, which is important in genetic

association studies. The C-alpha test also uses permutation

to obtain a p value when linkage disequilibrium is present

among the variants, which is, as noted earlier, computa-

tionally expensive for whole-genome experiments. The

approach has not been generalized to analysis of contin-

uous phenotypes.

We propose in this paper the sequence kernel association

test (SKAT), a flexible, computationally efficient, regression

approach that tests for association between variants in a

region (both common and rare) and a dichotomous (e.g.,

case-control) or continuous phenotype while adjusting for

covariates, such as principal components, to account for

population stratification.22 The kernel machine regression

framework was previously considered for common vari-

ants.23,24 In this paper, weprovide several essentialmethod-

ological improvements necessary for testing rare variants.

SKAT uses a multiple regression model to directly regress

the phenotype on genetic variants in a region and on cova-

riates, and so allows different variants to have different

directions and magnitude of effects, including no effects;

SKAT also avoids selection of thresholds. We develop a

kernel association test to test the regression coefficients of

the variants by using a variance-component score test in a

mixed-model framework by accounting for rare variants.

SKAT is computationally efficient. This quality is espe-

cially important in genome-wide studies because SKAT

only requires fitting the null model in which phenotypes

are regressed on the covariates alone; p values are easily

computed with simple analytic formulae. Additional

features of SKAT include exploitation of local correlation

structure, incorporation of flexible weights to boost power

(e.g., by increasing the weight of rarer variants or incorpo-

rating functionality), and allowance for epistatic variant

effects. As discussed in more detail below, under special

cases, the SKAT, C-alpha test, and individual variant test

statistics are closely related.

We demonstrate through simulation and analysis of

resequencing data from the Dallas Heart Study that SKAT

is often more powerful than existing tests across a broad

range of models for both continuous and dichotomous

data. We also investigate the factors that influence power

for sequence association studies. Finally, we describe

analytic tools to estimate statistical power and sample sizes

to guide the design of new sequence association studies of

rare variants with SKAT.
The
Material and Methods

Sequencing Kernel Association Test
SKAT is a supervised test for the joint effects of multiple variants in

a region on a phenotype. Regions can be defined by genes (in

candidate-gene or whole-exome studies) or moving windows

across the genome (in whole-genome studies). For each region,

SKAT analytically calculates a p value for association while adjust-

ing for covariates. Adjustments for multiple comparisons are

necessary for analyzing multiple regions, for example with the

Bonferroni correction or FDR control.

Notation

Assume n subjects are sequenced in a region with p variant sites

observed. Covariates might include age, gender, and top principal

components of genetic variation for controlling population strat-

ification.22 For the i-th subject, yi denotes the phenotype variable,

Xi ¼ (Xi1, Xi2, .., Xim) denotes the covariates, andGi ¼ (Gi1, Gi2,.,

Gip) denotes the genotypes for the p variants within the region.

Typically, we assume an additive genetic model and let Gij, ¼ 0,

1, or 2 represent the number of copies of the minor allele. Domi-

nant and recessive models can also be considered.

SKAT Model and Test for Linear SNP Effects

For a simple illustration of SKAT, we focus here on testing for a rela-

tionship between the variants and the phenotype by using clas-

sical multiple linear and logistic regression. We describe how the

SKAT can incorporate epistatic effects later. To relate the sequence

variants in a region to the phenotype, consider the linear model

yi ¼ a0 þ a0Xi þ b0Gi þ 3i; (Equation 1)

when the phenotypes are continuous traits, and the logistic model

logit P
�
yi ¼ 1

� ¼ a0 þ a0Xi þ b0Gi; (Equation 2)

when the phenotypes are dichotomous (e.g., y ¼ 0/1 for case or

control). Here a0 is an intercept term, a ¼ [a1,., am]’ is the vector

of regression coefficients for the m covariates, b ¼ [b1,.,bp]’ is the

vector of regression coefficients for the p observed gene variants in

the region, and for continuous phenotypes 3i is an error term with

a mean of zero and a variance of s2. Under both linear and logistic

models, and evaluating whether the gene variants influence the

phenotype, adjusting for covariates, corresponds to testing the

null hypothesis H0: b ¼ 0, that is, b1 ¼ b2 ¼ . ¼ bp ¼ 0. The stan-

dard p-DF likelihood ratio test has little power, especially for rare

variants. To increase the power, SKAT tests H0 by assuming each

bj follows an arbitrary distribution with a mean of zero and

a variance of wjt, where t is a variance component and wj is a pre-

specified weight for variant j. One can easily see that H0: b ¼ 0 is

equivalent to testing H0: t ¼ 0, which can be conveniently tested

with a variance-component score test in the corresponding mixed

model; this is known to be a locally most powerful test.25 A key

advantage of the score test is that it only requires fitting the null

model yi ¼ a0 þ a1’Xi þ 3i for continuous traits and the logit

P(yi ¼ 1) ¼ a0 þ a1’Xi for dichotomous traits.

Specifically, the variance-component score statistic is

Q ¼ �
y� bm�0K�

y� bm�; (Equation 3)

where K ¼ GWG’, bm is the predicted mean of y under H0, that isbm ¼ ba0 þXba for continuous traits and bm ¼ logit�1ðba0 þXbaÞ for

dichotomous traits; and ba0 and ba are estimated under the null

model by regressing y on only the covariates X. Here G is an

n 3 p matrix with the (i, j)-th element being the genotype of
American Journal of Human Genetics 89, 82–93, July 15, 2011 83



variant j of subject i, andW¼ diag(w1,., wp) contains the weights

of the p variants.

In fact, K is an n 3 n matrix with the (i, i’)-th element equal to

KðGi;Gi0 Þ ¼
Pp

j¼1wjGijGi 0 j. Kð,; ,Þ is called the kernel function, and

KðGi;Gi0 Þ measures the genetic similarity between subjects i and i’

in the region via the p markers. This particular form of Kð,; ,Þ is
called the weighted linear kernel function. We later discuss other

choices of the kernel to model epistatic effects.

Good choices of weights can improve power. Each weight wj

is prespecified, with only the genotypes, covariates and external

biological information, that is estimated without using the

outcome, and reflects the relative contribution of the j-th variant

to the score statistic: if wj is close to zero, then the j-th variant

makes only a small contribution to Q. Thus, decreasing the

weight of noncausal variants and increasing the weight of

causal variants can yield improved power. Because in practice

we do not know which variants are causal, we propose to setffiffiffiffiffi
wj

p ¼ BetaðMAFj; a1; a2Þ, the beta distribution density function

with prespecified parameters a1 and a2 evaluated at the sample

minor-allele frequency (MAF) (across cases and controls

combined) for the j-th variant in the data. The beta density is flex-

ible and can accommodate a broad range of scenarios. For

example, if rarer variants are expected to be more likely to have

larger effects, then setting 0 < a1 % 1 and a2 R 1 allows for

increasing the weight of rarer variants and decreasing the weight

of commonweights.We suggest setting a1¼ 1 and a2¼ 25 because

it increases the weight of rare variants while still putting decent

nonzero weights for variants with MAF 1%–5%. All simulations

were conducted with this default choice unless stated otherwise.

Note that a smaller a1 results in more strongly increasing

the weight of rarer variants. Examples of weights across a range

of a1 and a2 values are presented in Figure S1, available online.

Note that a1 ¼ a2 ¼ 1 corresponds to wj ¼ 1, that is all variants

are weighted equally, and a1 ¼ a2 ¼ 0.5 corresponds toffiffiffiffiffi
wj

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAFjð1�MAFjÞ

p
, that iswj is the inverse of the variance

of the genotype of marker j, which puts almost zero weight for

MAFs > 1% and can be used if one believes only variants with

MAF < 1% are likely to be causal. Note that SKAT calculated

with this weight is identical to the unweighted SKAT test with

the standardized genotypes in Equations 1 and 2. Other forms of

the weight as a function of MAF can also be used. Because SKAT

is a score test, the type I error is protected for any choice of pre-

chosen weights. Note that the weights used in the weighted sum

test13 involve phenotype information and will therefore alter

the null distribution of SKAT if such weights are used.

Under the null hypothesis, Q follows a mixture of chi-square

distributions, which can be closely approximated with the compu-

tationally efficient Davies method.26 See Appendix A for details.

A special case of SKAT arises when the outcome is dichotomous,

no covariates are included, and all wj ¼ 1. Under these conditions,

we show in Appendix A that the SKAT test statistic Q is equivalent

to the C-alpha test statistic T. Hence, the C-alpha test can be

seen as a special case of SKAT, or alternatively, SKAT can be seen

as a generalized C-alpha test that does not require permutation

but calculates the p value analytically, allows for covariate adjust-

ment, and accommodates either dichotomous or continuous

phenotypes. Because SKAT under flat weights is also equivalent

to the kernel machine regression test23,24 and because the kernel

machine regression test is in turn related to the SSU test,27 it

follows transitively that SKAT under flat weights, the kernel

machine regression test, the SSU test, and the C-alpha test are all

equivalent and special cases of SKAT. Note that the null distribu-
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tion is calculated differently via these methods, and SKAT gives

more accurate analytic p values, especially in the extreme tail,

when sample sizes are sufficient.

Relationship between Linear SKAT and Individual Variant Test Statistics

One can efficiently compute the test statistic Q by exploiting

a close connection between the SKAT score test statistic Q and

the individual variant test statistics. In particular, Q is a weighted

sum of the individual score statistics for testing for individual

variant effects. Hence, by letting gj ¼ [G1j, G1j, ., Gnj]’ denote

the n 3 1 vector containing the genotypes of the n subjects for

variant j, it is straightforward to see that Q ¼ Pp
j¼1wjS

2
j , where

Sj ¼ g0
jðy� bm0Þ is the individual score statistic for testing the

marginal effect of the j-th marker (H0: bj ¼ 0) under the individual

linear or logistic regression model of yi on Xi and only the j-th

variant Gij:

yi ¼ a0 þX0
i aþ bjGij þ 3i

for continuous phenotypes and

logit P
�
yi ¼ 1

� ¼ a0 þX0
i aþ bjGij

for dichotomous phenotypes. bm0 is estimated as bm0 ¼ ba0 þX0
i
ba

for continuous traits and bm0 ¼ logit�1ðba0 þX0
i
baÞ for dichotomous

traits. As a score test, one needs to fit the null model only a single

time to be able to compute the Sj for all individual variants j as well

as all regions to be tested. Similarly, if multiple regions are under

consideration, then the same bm0 can be used to compute the

SKAT Q statistics for each region.

Accommodating Epistatic Effects and Prior Information under the SKAT

An attractive feature of SKAT is the ability to model the epistatic

effects of sequence variants on the phenotype within the flexible

kernel machine regression framework.28–30 To do so, we replace

Gi’b by a more flexible function f(Gi) in the linear and logistic

models (1) and (2) where f(Gi) allows for rare variant by rare

variant and common variant by rare-variant interactions. Specifi-

cally, for continuous traits we use the semiparametric linear

model23,29

yi ¼ a0 þ a0Xi þ f ðGiÞ þ 3i; (Equation 4)

and for dichotomous traits, we use the semiparametric logistic

model24,30

logit P
�
yi ¼ 1

� ¼ a0 þ a0Xi þ f ðGiÞ: (Equation 5)

Here the variants, Gi, are related to the phenotype through

a possibly nonparametric function f($), which is assumed to lie

in a functional space generated by a positive semidefinite kernel

function Kð,; ,Þ. Models (1) and (2) assume linear genetic effects

and are specified by KðGi;Gi0 Þ ¼
Pp

j¼1wjGijGi 0 j. By changing

Kð,; ,Þ, one can allow for more complex models. Intuitively,

KðGi;Gi0 Þ is a function that measures genetic similarity between

the i-th and i’-th subjects via the p variants in the region, and

any positive semidefinite function KðGi;Gi0 Þ can be used as

a kernel function. We tailored several useful and commonly used

kernels specifically for the purpose of rare-variant analysis: the

weighted linear kernel, the weighted quadratic kernel, and the

weighted identity by state (IBS) kernel.

The weighted linear kernel function KðGi;Gi0 Þ ¼
Pp

j¼1wjGijGi0 j

implies that the trait depends on the variants in a linear fashion

and is equivalent to the classical linear and logistic model pre-

sented in Equations 1 and 2. The weighted quadratic kernel

KðGi;Gi0 Þ ¼ ð1þPp
j¼1wjGijGi0 jÞ2 implicitly assumes that the model

depends on the main effects and quadratic terms for the gene



variants and the first-order variant by variant interactions. The

weighted IBS kernel KðGi;Gi0 Þ ¼
Pp

j¼1wjIBSðGij;Gi0 jÞ, defines simi-

larity between individuals as the number of alleles that share

IBS. For additively coded autosomal genotype data, KðGi;Gi0 Þ ¼Pp
j¼1wjð2� jGij �Gi0 jjÞ. The model implied by the weighted IBS

kernel models the SNP effects nonparametrically.31 Consequently,

this allows for epistatic effects because the function f($) does not

assume linearity or interactions of a particular order (e.g., the

second order), Using the weighted IBS kernel removes the assump-

tion of additivity because the number of alleles that are identical

by state is a physical quantity that does not change on the basis

of different genotype encodings.

We note that a kernel function that better captures both the

similarity between individuals and the causal variant effects will

increase power. In particular, if relationships are linear and no

interactions are present, then the weighted linear kernel will

have highest power. If interactions are present, the weighted

quadratic and weighted IBS kernels can increase power. Our expe-

rience suggests using the IBS kernel when the number of interact-

ing variants within the region is modest. As our understanding of

genetic architecture improves so too will our knowledge of which

kernel to use.

In each of the above kernels, wj is an allele specific weight that

controls the relative importance of the jth variant and might be

a function of factors such as allele frequency or anticipated func-

tionality. Without prior information, we suggest the use of theffiffiffiffiffi
wj

p ¼ BetaðMAFj;1;25Þ suggested earlier. However, if prior infor-

mation is available, for example some variants are predicted as

functional or damaging via Polyphen32 or Sift,33 weights can be

selected to increase the weight for likely functionality.

To test for the effects of gene variants in a region on a phenotype,

one tests the null hypothesis H0: f(G) ¼ 0. SKAT tests for this null

hypothesis by assuming the n 3 1 vector f ¼ [f(G1), ., f(Gn)]’ for

the genetic effects of n subjects follows a distribution with mean

zero and covariance tK, where t is a variance component that

indexes the effects of the variants.29,30 Hence, we can test the

null hypothesis that corresponds to testing H0: t ¼ 0 by a vari-

ance-component score test. In particular, we simply replace K in

Equation 3 by using the K discussed in this section, for example,

the weighted IBS kernel, for epistatic effect. All subsequent calcu-

lations for computing a p value remain the same.

Because the SKAT evaluates significance via a score test, which

operates under the null hypothesis, the SKAT is valid (in terms

of protecting type I error) irrespective of the kernel and the

weights used. Good choices of the kernel and the weights simply

increase power.

Planning New Sequencing-Based Association Studies:

Estimation of Power and Sample Size
Power and sample-size calculations are important in designing

sequencing studies of complex traits. Using a modification of

the higher-order moment-approximation method,34 we provide

an analytic method to carry out efficiently such calculations for

SKAT.35 Specifically, for a fixed sample size and a level, given a prior

hypothesis on the genetic architecture of a particular region, the

effect size, and the proportion and number of causal variants

within a region, our method provides the power to detect the

region as significant with SKAT. Similarly, if the desired power is

fixed, the approach can be used to find the necessary sample size.

There are key differences between the power and sample-size

estimation for single-variant- and region (set)-based tests. For

a region (set)-based test, the power depends strongly on the under-
The
lying genetic architecture, and its estimation requires modeling

this genetic architecture and the linkage disequilibrium (LD)

between variants. Therefore, to estimate power to detect a partic-

ular region as associated with a phenotype requires specification

of the significance level, sample size, which variants in the region

are causal with corresponding effect size, and the LD structure of

the variants in the region. Ideally, one could use prior data to

assess the LD and MAF. Because prior data can be difficult to

obtain, we currently recommend the use of either 1000 Genomes

Project data36 or data simulated under a population genetics

model.37 Relevant preliminary data will become increasingly

available as sequencing studies become more common.

Our SKAT software uses simulated data based on the coalescent

population genetic model (released with the software package) as

a default in performing sample-size and power calculations, and

instead of directly specifying the effects of any given variant, the

user can input an MAF threshold for determining which variants

are regarded as rare and also a proportion determining how many

of the rare variants are causal. The causal variants are then randomly

selected from the alleles with true MAF (based on simulated or

preliminary data) less than the threshold. The magnitudes of the

effects jbjj for causal variants are set to be equal to c 3 jlog10 MAFj
where c is determined on the basis of the maximum effect size the

user would like to allow (described below in the power simulations

section) at MAF ¼ 10�4. This allows the effects of causal variants to

decrease with MAFs. Because these parameters can be difficult to

choose as apriori, powerandsample size canbe reasonably estimated

by averaging results over a range of parameter values. Similarly,

because the regional architecture can vary across different regions,

for genome-wide studies, one can average over multiple randomly

selected regions as currently implemented in the SKAT software.

Numerical Experiments and Simulations
To validate SKAT in terms of protecting type I error and to assess its

power compared to burden tests and the accuracy of our power

and sample-size tools, we carried out simulation studies under

a range of configurations. For all simulations, we determined

sequence genotypes by simulating 10,000 chromosomes for a

1 Mb region on the basis of a coalescent model that mimics the

LD pattern local recombination rate and the population history

for Europeans by using COSI.37

Type I Error Simulations

To investigate whether SKAT preserves the desired type I error rate

at the near genome-wide threshold level, for example a ¼ 10�6, it

is necessary to conduct simulations with hundreds of millions of

simulated datasets. Although SKAT is computationally efficient,

generating such a large number of datasets is challenging. To

reduce the computation burden, we took the following approach.

Using 10,000 randomly selected sets of 30 kb subregions within

a 1 Mb chromosome, we first generated 10,000 sets of genotypes

G(n 3 p) from the coalescent model, with p variants on n subjects.

Then, for each of the 10,000 simulated genotype data sets, we

simulated 10,000 sets of continuous phenotypes such that we

were able to obtain 108 individual genotype-phenotype data sets

by using the model:

y ¼ 0:5X1 þ 0:5X2 þ 3;

where X1 is a continuous covariate generated from a standard

normal distribution, X2 is a dichotomous covariate taking values

0 and 1 with a probability of 0.5, and 3 follows a standard normal

distribution. Note that the continuous trait values are not related

to the genotype so that the null model holds. The 30 kb regions on
American Journal of Human Genetics 89, 82–93, July 15, 2011 85
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Figure 1. Simulation-Study-Based Power Comparisons of SKAT and Burden Tests
Empirical power at a¼ 10�6 under an assumption that 5% of the rare variants withMAF< 3%within random 30 kb regions were causal.
Top panel: continuous phenotypes with maximum effect size (jbj) equal to 1.6 when MAF ¼ 10�4; bottom panel: case-control studies
with maximum OR ¼ 5 when MAF ¼ 10�4. Regression coefficients for the s causal variants were assumed to be a decreasing function
of MAF as jbjj ¼ c jlog10MAFjj (j ¼ 1,.,p [see Figure S2]), where c was chosen to result in these maximum effect sizes. From left to right,
the plots consider settings in which the coefficients for the causal rare variants are 100% positive (0% negative), 80% positive (20% nega-
tive), and 50% positive (50%negative). Total sample sizes considered are 500, 1000, 2500, and 5000, with half being cases in case-control
studies. For each setting, six methods are compared: SKAT, SKAT in which 10% of the genotypes were set to missing and then imputed
(SKAT_M), restricted SKAT (rSKAT) in which unweighted SKAT is applied to variants with MAF < 3%, the weighted sum burden test (W)
with the sameweights as used by SKAT, counting-based burden test (N), and the CASTmethod (C). All the burden tests usedMAF< 3% as
the threshold. For each method, power was estimated as the proportion of p values < a among 1000 simulated data sets.
which the genotype values are based contained 605 variants on

average, but the number of observed variants for any given data

set was considerably less and depended on the sample size n,

which we set to 500, 1000, 2500, and 5000.

We repeated the type I error simulations for dichotomous

phenotypes as above, except the dichotomous outcomes were

generated via the model:

logit Pðy ¼ 1Þ ¼ a0;

where a0 was determined to set the prevalence to 1% and case-

control sampling is used.

For both continuous and dichotomous simulations, we applied

SKAT by using the default weighted linear kernel to each of the 108

data sets and estimated the empirical type I error rate as the

proportion of p values less than a ¼ 10�4, 10�5, or 10�6.

We note that the estimated type I error from this approach is

not the same as the empirical type I error when genotypes are

generated randomly for each simulation, because for each of the
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10,000 genotype data sets, only the outcomes are resampled.

However, our type I error estimator is still unbiased and results

in very accurate type I error estimates. For larger a levels (0.05

and 0.01), we directly computed the empirical type I error rate

by using data sets in which genotypes were randomly generated

for each simulation.

Empirical Power Simulations

We simulated data sets in which 30 kb subregions were randomly

selected from the generated 1 Mb chromosomes and used to

create causal variants and aphenotype variable aswell as additional

simulated covariates. We generated continuous phenotypes by

y ¼ 0:5X1 þ 0:5X2 þ b1G
c
1 þ b2G

c
2 þ.þ bpG

c
p þ 3;

where X1, X2, and 3 are as defined for the type I error simulations,

Gc
1;G

c
2;.;Gc

s are the genotypes of the s causal rare variants (a

randomly selected subset of the simulated rare variants, for

example 5% of variants that have MAF < 3% in Figure 1), and

the bs are effect sizes for the causal variants. Similarly, we



Table 1. Type I Error Estimates of SKAT Aimed at Testing an Association between Randomly Selected 30 kb Regions with a Continuous
Trait at Type I Error Rates as Low as the Genome-wide a ¼ 10�6 Level

Total Sample Size (n)

Continuous Phenotypes Dichotomous Phenotypes

a ¼ 10�4 a ¼ 10�5 a ¼ 10�6 a ¼ 10�4 a ¼ 10�5 a ¼ 10�6

500 7.4 3 10�5 6.5 3 10�6 5.9 3 10�7 2.2 3 10�5 1.0 3 10�6 1.0 3 10�8

1000 8.5 3 10�5 8.2 3 10�6 8.0 3 10�7 5.0 3 10�5 3.5 3 10�6 2.3 3 10�7

2500 9.6 3 10�5 9.1 3 10�6 8.4 3 10�7 7.6 3 10�5 6.3 3 10�6 5.6 3 10�7

5000 9.8 3 10�5 9.6 3 10�6 8.8 3 10�7 8.9 3 10�5 7.8 3 10�6 7.0 3 10�7

Each entry represents type I error rate estimates as the proportion of p values a under the null hypothesis based on 108 simulated phenotypes.
generated dichotomous phenotypes for case-control data under

the logistic model

logit Pðy ¼ 1Þ ¼ a0 þ 0:5X1 þ 0:5X2 þ b1G
c
1 þ b2G

c
2 þ.þ bpG

c
p;

where Gc
1;G

c
2;.;Gc

p are again the genotypes for the causal rare

variants and bs are log ORs for the causal variants. We controlled

prevalence by a0 and set to it 1% unless otherwise stated. Under

both models, we set the magnitude of each bj to cjlog10MAFjj
such that rarer variants had larger effects. In the simulation

studies, for continuous traits, c ¼ 0.4, which gives the maximum

effect size jbjj ¼ 1.6 for variants with MAF ¼ 10�4 and small effects

jbjj ¼ 0.28 for MAF ¼ 0.2. For dichotomous traits, c ¼ ln5/4 ¼
0.402, which gives the ‘‘maximum’’ OR ¼ 5.0 (jbjj ¼ ln5) for vari-

ants with MAF ¼ 10�4 and smaller OR ¼ 1.32 for MAF ¼ 0.2. The

effect size curves are given in Figure S2.

We compared SKAT, an unsupervised variation on the WST13

that uses weighted-count-based collapsing, counting-based

collapsing,18 and CAST.14 For each of these tests, we considered

variants with observed MAF < 3% as rare: whether CAST collapses

depends on whether an individual exhibits any variants with

allele frequency < 3%, the counting method counts the number

variants with MAF < 3%, and the weighted count inflates the

contribution of each rare variant by multiplying the genotype

with the same beta-density-based weights as used in SKAT.

To accommodate missing genotypes commonly observed in

sequence data, we considered the effect of imputing missing

values by randomly setting 10% of the genotypes as missing,

imputing genotypes on the basis of observed allele frequencies

and Hardy-Weinberg equilibrium, and then applying SKAT to

the imputed data. We also performed restricted SKAT (rSKAT) by

applying unweighted SKAT to rare variants with MAF < 3%.

Note that for dichotomous phenotypes, rSKAT is essentially equiv-

alent to a covariate adjusted C-alpha test with the p value calcu-

lated analytically instead of via permutation. For each of the

methods, power was estimated as the proportion of p values < a,

where a ¼ 10�6 to mimic genome-wide studies.

Power and Sample-Size Formulae

To demonstrate the utility and accuracy of our power and sample-

size calculation method, we conducted several numerical experi-

ments. We first illustrated the use of the methods by computing

the sample size necessary to detect a 30 kb region with 5% of

the variants with MAF < 3% being causal. We assume effect size

(OR) increases with decreasing MAF, and seek 80% power at

significance levels a ¼ 10�6, 10�3, 10�2, corresponding to approx-

imate genome-wide sequencing significance and candidate-gene-

sequencing studies of 50 and five genes, respectively. We consid-

ered both continuous and dichotomous traits.
The
To show that the power estimated from our sample-size formula

is accurate, we compared empirical power for SKAT under simula-

tions to power estimated via our analytic method. Specifically, we

simulated continuous and case-control data under the same

setting as that used in the power simulations, and we estimated

power as a function of the sample size by computing the propor-

tion of p values < a ¼ 10�6 and compared the empirical power

curve to the power estimated by using our analytical method.

Results

Simulation of the Type I Error

The empirical type I error rates estimated for SKAT are pre-

sented in Table 1 for a ¼ 10�4, 10�5, and 10�6 and suggest

the type I error rate is protected for continuous pheno-

types, though for smaller sample sizes the SKAT can be

slightly conservative. For dichotomous phenotypes, SKAT

is conservative for smaller sample sizes and very small

a levels. Additional results from simulations of the type I

error for SKAT and the competing methods are presented

in Figure S3 for both continuous traits and dichotomous

traits and show that at larger a levels, all of the considered

tests correctly control at the a¼ 0.05 and 0.01 levels. These

results show that SKAT is a validmethod, and despite being

conservative at low a levels, SKAT maintains good power

relative to existing methods (see below). However, if

sample sizes are small or sharp control of type I error is

necessary, then standard permutation-based procedures

can be used to generate a Monte Carlo p value for signifi-

cance, though this can be computationally expensive

and does not work in the presence of covariates, such as

controlling for population stratification and require carful

modifications.

Statistical Power of SKAT and Competing Methods

We compared the power of SKAT with three burden tests

in a series of simulation studies for both continuous traits

and dichotomous traits by generating sequence data

in randomly selected 30 kb regions with a coalescent

model.37 For our primary power simulation, within each

region, 5% of variants with population MAF < 3% were

randomly chosen as causal, the effect size of causal variants

was a decreasing function of MAF, and 50%–100% of the

causal variants being positively associated with the trait
American Journal of Human Genetics 89, 82–93, July 15, 2011 87



Table 2. Characteristics of the 30 kb Region Data Sets Used in the
Simulation Studies

Average Number of Observed Variants

Sample Size (n)

500 1000 2500 5000

All traits* 255 330 438 512

Continuous trait** 9.6 13.3 18.6 22.3

Dichotomous trait (b 5 ¼ 100/0)** 14.4 18.7 23.5 25.2

Dichotomous trait (b5 ¼ 80/20)** 13.3 17.1 22.0 24.3

Dichotomous trait (b5 ¼ 50/50)** 11.1 14.9 19.7 22.6

The number of observed variants* and the number of observed causal
variants** within the region are averaged over the 1000 simulated data sets.
(See Materials and Methods and Figure S2). The simulated

regions for our power analysis contained on average

605 variants (26 causal), of which 530.9 (88%), 502.9

(83%), and 422.8 (70%) had population MAF < 3%, < 1%,

and< 0.1%, respectively. The average allele frequency spec-

trum across the samples is similar to that of theDallas Heart

Studydata (Figure S4). Because themajority of variantshave

a low MAF, they might not be observed in any particular

sample. The average number of observed variants

(assuming no genotyping error) and the average number

of observed causal variants are presented in Table 2.

For continuous traits, SKAT had much higher power

than all the burden tests, and the weighted count method

tended to outperform the count and CAST methods

(Figure 1). SKAT’s power was robust to the proportion of

causal variants that were positively associated with the

trait, whereas the burden tests suffered substantial loss of

power when causal variants had the opposite effects. The

simulation results examining dichotomous traits were

qualitatively similar in that SKAT dominated the compet-

ing methods. However, here the power of the SKAT

decreased when both protective and harmful variants

were present, although less so than for the burden tests.

The difference in power for SKAT for different proportions

of protective variants is due to the fact that given fixed

population MAFs, protective variants imply negative log

ORs and lower disease risk and hence lower MAFs in cases

and more difficulties in observing rare variants in cases.

The larger decrease in power for the competing methods

is additionally driven by sensitivity to direction of effect

due to aggregation of genotypes. Across all configurations,

using imputed genotypes instead of the true genotype

for 10% missing genotype data led to a very small

reduction in power, despite the use of a very simple

Hardy-Weinberg-based imputation strategy. This is true

in part because most variants are rare.

Note that SKAT increases the weight of rare variants but

does not require thresholding. To show that the superior

performance of SKAT is intrinsic and is not driven by the

particular choice of the weight used, we calculated rSKAT,

which does not weight the rare variants but instead uses

the same threshold as the burden tests. Our results, pre-
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sented in Figure 1, show that rSKAT is still substantially

more powerful than all three burden tests.

Power simulation results for other type I error rates (a ¼
0.01, 0.001), lower causal variant frequencies (population

MAF < 1%), and other region sizes (10 kb and 60 kb)

yielded the same conclusions (Figures S5–S8).

In the 30 kb genomic regions considered, reflecting anal-

ysis of genome-wide sequencing data, it is unlikely that

a large proportion of the rare variants are all causal.

However, for exome-scale sequencing, the number of

observed rare variants can be considerably smaller and

the proportion of causal rare variants can be greater.

Hence, we also conducted power simulations for smaller

region sizes (3 kb and 5 kb) and larger proportions of causal

variants (10%, 20%, and 50%). Results for both continuous

and dichotomous phenotypes are presented in Figures S9–

S12 and show that if 50% of the rare variants are causal and

that all of the causal variants have effects in the same direc-

tion, then SKAT and rSKAT are less powerful compared to

collapsing methods, with count-based collapsing having

the greatest power. This result held for both 3 kb and

5 kb regions and is expected because the collapsing

methods implicitly assume that all of the variants are

causal and have unidirectional effects. In all other settings

we considered, SKAT was the most powerful method.

Power and Sample-Size Estimation

To illustrate our power and sample-size calculation

method, in Figure 2 we present the estimated sample-size

curves as a function of maximum effect sizes (ORs for

dichotomous traits) necessary to detect a 30 kb region

with 5% of the variants with MAF < 3% being causal.

Table 3 presents estimated sample sizes for several configu-

rations of practical interest. Additional sample-size curves

when causal variants are rarer (MAF < 1%) or occur more

frequently (10% of variants are causal) or when prevalence

is varied (5%, 0.1%) can be found in Figures S13–S15.

These results show that, for a given region, one will

have more power (and a lower required sample size) to

detect rare causal variants if the percentage of variants

that are causal is higher, the causal rare variants have

higher MAFs and/or larger effect sizes (e.g., odds ratios

[ORs]), and the effects are more consistently in the same

direction. For case-control designs, lower prevalence

yields higher power because given the same OR and popu-

lation MAF, the lower prevalence results in enrichment of

more harmful (ORs > 1) variants, that is higher MAFs,

across both cases and controls, that is for rarer diseases

harmful rare variants are more likely to be observed.

Conversely, if the prevalence is low, fewer protective vari-

ants (ORs< 1), that is lower MAFs, are likely to be observed

in the sample.

We also compared the power and sample-size formulae

estimates to the empirical, simulation-based power esti-

mates for both continuous and dichotomous traits. The

curves plotted in Figure 3 show that the empirical power

is accurately approximated by our analytical formula.
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Figure 2. Sample Sizes Required for Reaching 80% Power
Analytically estimated sample sizes required for reaching 80% power to detect rare variants associated with a continuous (top panel) or
dichotomous phenotype in case-control studies (half are cases) (bottom panel) at the a¼ 10�6, 10�3, and 10�2 levels, under the assump-
tion that 5% of rare variants with MAF < 3% within the 30 kb regions are causal. Plots correspond to 100%, 80%, and 50% of the causal
variants associated with increase in the continuous phenotype or risk of the dichotomous phenotype. Regression coefficients for the s
causal variants were assumed to be the same decreasing function of MAF as that in Figure 1. The absolute values of Required total sample
sizes are plotted again themaximumeffect sizes (ORs) whenMAF¼ 10�4. Estimated total sample sizes were averaged over 100 random30
kb regions.
Application to Dallas Heart Study Data

We analyzed sequence data on 93 variants in ANGPTL3

(MIM 604774), ANGPTL4 (MIM 605910), and ANGPTL5

(MIM 607666) in 3476 individuals from the Dallas Heart

Study38 to test for association between log-transformed

serum triglyceride (logTG) levels and rare variants in these

genes. We adjusted for sex and ethnicity (black, Hispanic,

or white) but did not adjust for age as a large number of

subjects have missing ages. In addition to testing for asso-

ciation via SKAT and the three burden tests considered

earlier, we also applied the permutation-based varying-
Table 3. Required Total Sample Size to Achieve 80% Power to Detect
Case-Control Phenotype at the Genome-wide Level a ¼ 10�6

Total Sample Size

Maximum b ¼ 1.6/ Maximu

5% Causal 10%

Continuous trait 5,990 1,80

Dichotomous trait with prevalence 10% 15,120 4,81

Dichotomous trait with prevalence 1% 12,030 3,87

Power was estimated via the analytical formulae assuming 5% or 10% of varian
were assumed to be a decreasing function of MAF, jbjj ¼ c jlog10MAFjj (j ¼ 1,.,s)
total sample sizes (cases and controls) are given for different ‘‘maximum’’ effect size
Estimated sample sizes were averaged over 100 random 30 kb regions.

The
threshold method (VT) and the Polyphen-score-adjusted

VT (VTP),16 which are based on the residuals obtained

from regressing the phenotype on the covariates and

assume gene-covariate independence. Because VT and

VTP require permutation, they are computationally expen-

sive when applied genome wide. For VTP, we used the

Polyphen score for rare variants (MAF< 0.01) and assigned

a constant score of 0.5 to all other variants. We also

analyzed a dichotomized phenotype on the highest and

lowest quartiles of each of the six sex-ethnicity groups

(Table 4).
Rare Variants Associated with a Continuous or Dichotomous

m OR ¼ 5 Maximum b ¼ 1.9/ Maximum OR ¼ 7

Causal 5% Causal 10% Causal

0 4,260 1,290

0 9,650 3,120

0 7,010 2,290

ts with MAF < 3% are causal. Regression coefficients for the s causal variants
, where 80% of bj’s are positive and 20% are negative; see Figure S2. Required
s (or ORs) whenMAF¼ 10�4 and different prevalences for case-control studies.
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Figure 3. Power Comparisons Based on
Simulation and Analytic Estimation
Power as a function of total sample size
estimated by simulation with 1000 repli-
cates and by the proposed power formula
for continuous and dichotomous case-
control traits. Simulation configurations
correspond to those used in Figure 1, in
which 80% of the regression coefficients
for the causal rare variants were positive.
SKAT was by far the most powerful test for the dichoto-

mous trait. For continuous traits, SKAT has much smaller

p values than two burden methods (CAST and WST) and

VT, and has a slightly higher p value than the counting-

based burden test (N) and VTP. Note that SKAT was easier

to apply because it did not require prior functional infor-

mation (available for only a subset of variants) or permuta-

tion, and it adjusted for covariates without assuming gene-

covariate independence.

Computation Time

The computation time for the SKAT depends on the

sample size and the number of markers. To analyze a 30 kb

region sequenced on 1000, 2500, or 5000 individuals,

SKAT required 0.21, 0.73, and 2.3 s, respectively, for

continuous traits and ~20% longer for dichotomous traits,

on a 2.33 GHz laptop with 6 Gb memory. Analyzing

300 kb, 3Mb, or 3 Gb (the entire genome) on 1000 individ-

uals requires 2.5 s, 25 s, and 7 hr, respectively.

Discussion

We propose SKAT as a supervised, flexible, and computa-

tionally efficient statisticalmethod that tests for association

between a continuous or dichotomous phenotype and rare

and common genetic variants in sequencing-based associa-

tion studies. We demonstrate that SKAT’s power is greater

than that of several burden tests over a range of genetic

models. Furthermore, we have developed analytical power

and sample-size calculations for SKAT that assist in

designing sequencing-based association studies.
Table 4. Analysis of the Dallas Heart Study Sequencing Data

SKAT C N W

Continuous TG level 9.5 3 10�5 1.9 3 10�3 7.2 3 10�5 2.3 3 10

Dichotomized TG level 1.3 3 10�4 3.2 3 10�2 2.2 3 10�3 3.1 3 10

Analysis of the Dallas Heart Study sequencing data with SKAT, the weighted sum burden test (W), the countin
varying-threshold method (VT), and the Polyphen-score adjusted VT (VTP) method. Beta (1, 25) is used as th
a p values are estimated on the basis of 106 permutations.
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Like burden tests, SKAT performs

region-based testing. However, SKAT

has several major advantages over the

existing tests. As a supervisedmethod,

SKAT directly performs multiple re-
gressions of a phenotype on genotypes for all variants in

the region, adjusting for covariates. Hence, as with conven-

tional multiple regression models, neither directionality

nor magnitudes of the associations are assumed a priori

but are instead estimated from the data. To test efficiently

for the joint effects of rare variants in the region on the

phenotype, SKAT assumes a distribution for the regression

coefficients of the markers, whose variances depend on

flexible weights. SKAT performs a score-based variance-

component test, whose calculation only requires fitting

the null model by regressing phenotypes on covariates

alone and computing p values analytically. The flexible

regression framework also allows us to allow for epistatic

effects.

Besides region-based analysis, SKAT can also be applied

to any biologically meaningful SNP set. As SKAT is a regres-

sion-based method, it can be easily extended to survival,

and longitudinal and multivariate phenotypes and hence

provides a comprehensive framework for a wide variety

of sequencing-based association studies.

The ability to obtain a p value directly without the need

for permutation is an attractive feature of SKAT, and allows

for rapid estimation of p values in exome and genome-

wide sequencing studies. Our simulations showed that

for continuous phenotype, the p values are accurate

when the sample size is moderate or large; for dichoto-

mous phenotypes, the p values are conservative at lower

a levels (e.g., < 10�4) if the sample size is modest or

small. Permutation can be used to obtain a more accurate

estimate in the absence of covariates. In the presence of

covariates, for example population stratification, standard
VTa VTPa

�4 3.5 3 10�4 2.0 3 10�5

�3 8.6 3 10�3 2.1 3 10�3

g-based burden test (N), the CAST method (C), the
e weight in the SKAT and the weighted sum test.



permutations fail and require careful modifications.

Despite the conservative nature of the score test, SKAT

often still has higher power than competing methods at

small a levels.

SKATcan be combined with collapsing strategies to form

a hybrid testing approach. If most of the variants within

a range of allele frequencies are causal and have the same

directionality (i.e., under settings that are optimal for

burden-based tests), collapsing these variants and then

applying SKAT to the collapsed variants can improve

power. For example, because singletons are common in

sequencing studies (57 of 93 variants in the Dallas Heart

Study data), a possible hybrid strategy is to first collapse

all of the singletons into a single value and then apply

SKAT to the collapsed value and the other 36 variants.

Compared to the original SKAT, this strategy gives a slightly

lower p value, 3.1 3 10�5, for the continuous trait and

a slightly higher p value, 1.6 3 10�4, for the dichotomous

trait. Simulation studies showed that the two methods are

of similar power under the settings we used to generate

Figure 1.

An important feature of SKAT is that it allows for incor-

poration of flexible weight functions to boost analysis

power, for example by increasing the weight of variants

with lower MAFs and decreasing the weight of information

from variants inferred with lower confidence. Good

choices of weights are likely to improve the power of the

association test with SKAT, although simulations show

that even equal weights can yield high power when

combined with thresholding. In our simulation studies,

we employed a class of flexible continuous weights as

a function of MAF by using the beta function, which

increases the weight of rare variants and does not require

thresholding. Users can define other types of weight func-

tions. To further improve analysis power, one can estimate

weights by incorporating information besides MAF, for

example by using the Polyphen score or integrating other

annotation information, which will become increasingly

available as our understanding of genome variation

improves. Therefore, because of its flexibility, SKAT has

the capacity to mature, and its power to increase, as the

field progresses.
Appendix A

Estimating the Null Distribution for Q

Under the null hypothesis, Q follows a mixture of chi-

square distributions.29,30 More specifically, we define P0 ¼
V�V ~Xð ~X0

V ~XÞ�1 ~X
0
V where ~X is the n 3 (p þ 1) matrix

equal to [1, X]. For continuous phenotypes, V ¼ bs2

0I

where bs0 is the estimator of s under the null model where

f(G) ¼ 0, and I is an n 3 n identity matrix. For dichoto-

mous phenotypes, V ¼ diagðbm01ð1� bm01Þ; bm02ð1� bm02Þ;.;bm0nð1� bm0nÞÞ where bm0i ¼ logit�1ðba þ ba0
XiÞ is the esti-

mated probability that the i-th subject is a case under the

null model. Then under the null model
The
Q �
Xn
i¼1

lic
2
1;i; (Equation 6)
where (l1, l2, ., ln) are the eigenvalues of P1=2
0 KP1=2

0 , and

c2
1;i are independent c2

1 random variables.

Several approximation and exact methods have been

suggested to obtain the distribution of Q.39 Among these,

the Davies exact method,26 based on inverting the charac-

teristic function of Equation 6, appears to work well in

practice and is used here.

SKAT Is a Generalization of the C-Alpha Test

The recently proposed the C-alpha test has advantages

over burden tests in that it explicitly models the possibility

that minor alleles can be deleterious or protective.

However, it does not currently allow for the analysis of

quantitative outcomes or the inclusion of covariates and

p value calculation requires permutation. We demonstrate

that for a dichotomous trait in the absence of covariates,

the C-alpha test statistic is equivalent to the SKAT statistic

with unweighted linear kernel, which is the same as the

kernel machine test in Wu et al.24

Suppose the j-th variant is observed dj times in the cases,

out of nj times total in cases and controls, and that

p0 ¼ Pn
i¼1yi=n. For a dichotomous trait and no covariates,

the C-alpha test statistic

Ta ¼
Xp

j¼1

h�
dj � njp0

�2�njp0
�
1� p0

�i
(Equation 7)

Denote T1
a ¼ Pp

j¼1ðdj � njp0Þ2. Because
Pp

j¼1njp0ð1� p0Þ
is the mean of Ta under the null hypothesis of no associa-

tion,T1
a is theC-alpha test statisticwithoutmeancentering.

Because dj ¼ y0G:j and nj ¼ J0G:j, where G:j is the j-th

column of the genotype matrix G and J ¼ ð1;1;.;1Þ0, it
can be easily shown that

T1
a ¼ �

y� p0J
�0
GG0�y� p0J

�
: (Equation 8)

Note that under the unweighted linear kernel, K ¼ GG’

and bm0 ¼ p0J if no covariates are present. Hence, Equation

8 is identical to Equation 3, that is T1
a is equivalent to the

SKAT test statistic with unweighted linear kernel.

Although the SKAT statistic with unweighted linear

kernel and the C-alpha test statistic are equivalent, SKAT

and C-alpha test use different null distributions to assess

significance: C-alpha test uses a normal approximation,

whereas we use a mixture of chi-squares. The normal

approximation gives a valid p value when the tested rare

variants are independent and sample sizes are large, and

so requires an assumption of linkage equilibrium. In the

presence of LD, permutation is used by the C-alpha test

for significance testing. One can easily see that the test

statistic takes a quadratic formof y, which follows amixture

of chi-square distributions. SKAT approximates this distri-

bution directly with the Davies method and hence gives

accurate estimation of significance regardless of the LD

structure when sample size is sufficient.
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Supplemental Data include 15 figures and can be found with this

article online at http://www.cell.com/AJHG/.
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