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Australia harbors some of the most nutrient-impov-
erished soils on Earth. Southwestern Australian soils
are especially phosphorus (P) impoverished, due to
the age of this ancient landscape and it being unaf-
fected by major geological disturbance for millions of
years (Hopper, 2009; Lambers et al., 2010). We are only
now beginning to understand how plants acquire and
use P in such highly infertile landscapes. At the same
time, we are running out of nonrenewable, global
phosphate resources in an era when we need more P
fertilizers to produce more food and fiber to sustain a
growing global population (Vance et al., 2003; Cordell
et al., 2009; Gilbert, 2009). Can we learn valuable les-
sons for crop selection, breeding, and engineering
from a flora that has evolved to function in soils with
an extremely low availability of P (Lambers et al., 2006,
2008b, 2010)? Or are the traits in this flora highly
suitable for the most P-impoverished soils but disad-
vantageous on the more fertile soils in which our crops
currently grow? These questions can only be answered
by learning more about the mechanisms that underpin
the high plant P-efficiency traits that enable survival in
P-impoverished landscapes as found in southwestern
Australia. This Update explores traits in Proteaceae
from soils with extremely low P availability and as-
sesses whether these traits would be desirable for
crops.

The ability to form root clusters and mycorrhizal
associations are two adaptive traits that improve the
ability of plants to acquire soil P (Lambers et al., 2008b;
Smith et al., 2011). The root systems of species that
develop cluster roots have a unique capacity for al-
tered branch-root development (Shane and Lambers,
2005). Vast numbers of branch roots (“rootlets”) are
initiated, which are compacted into specific regions
along the axes of growing roots (Lambers et al., 2006).
Species with root clusters (Shane and Lambers, 2005;
Lambers et al., 2006) are relatively more abundant than
mycorrhizal species on the most P-impoverished soils
within old landscapes (Lambers et al., 2008b, 2010;

Brundrett, 2009). Even though the majority of crop and
forest species are mycorrhizal, some do form cluster
roots, such as Macadamia integrifolia (macadamia nut),
Aspalathus linearis (rooibos tea), Casuarina cunninghami-
ana (sheoak), Gevuina avellana, and Lupinus albus (white
lupin); most of these species are nonmycorrhizal, but
Casuarina species have both cluster roots and mycor-
rhizas (Halloy et al., 1996; Lambers and Shane, 2007).

In addition to P acquisition, we compare P use in
plants that are common in old landscapes, particularly
members of the Proteaceae, with that in plants from
other regions of the world. We focus on Proteaceae
because this is a plant family that is well represented in
landscapes with a low P availability (Pate et al., 2001);
consequently, much research attention has been de-
voted to their P nutrition (Lambers et al., 2010). We
discuss the P-use efficiency of photosynthesis and
growth, P-remobilization efficiency and proficiency,
and P allocation to seeds. More sustainable, P-efficient
cropping systems are urgently needed, and knowl-
edge about native plant physiology in ancient land-
scapes may guide us toward their development, either
through directing the breeding or engineering of ex-
isting major crop species or through aiding the devel-
opment as crops of species that originate from these
P-impoverished landscapes (Ryan et al., 2009; Pang et al.,
2010a, 2010b; Suriyagoda et al., 2010; Bell et al., 2011).

ROOT CLUSTERS

Root clusters combine specialized structure and
physiology (Johnson et al., 1994; Shane et al., 2004b)
to maximize P acquisition from soils of low P availabil-
ity, especially when P is present in insoluble complexes
(e.g. rock phosphate and iron phosphate; Shane
and Lambers, 2005; Lambers et al., 2006). They occur
in monocots (e.g. “dauciform” roots in Cyperaceae;
Lamont, 1982; Shane et al., 2005; Playsted et al., 2006) as
well as dicots (e.g. “proteoid” roots in numerous fam-
ilies, including Proteaceae; Purnell, 1960; Gardner et al.,
1983; Lamont, 2003; Lambers et al., 2006). Root clusters
effectively “mine” soil P (Fig. 1A), as opposed to the
“scavenging” strategy of mycorrhizas, and hence spe-
cies that produce cluster roots dominate on the most
P-depauperate soils (Lambers et al., 2008b, 2010).
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Proteoid roots in Proteaceae can be “simple” bottle-
brush-like structures (Lamont, 1972a, 1972b; Shane
et al., 2004b) or “compound” Christmas tree-like struc-

tures (Fig. 1, B, D, and E). The structures comprise
rootlets emerging from primary or secondary roots
that usually end in normal apices; the rootlets typically
show abundant root hairs (Fig. 1B), except for the
“claviform” apices of G. avellana (Ramirez et al., 2004;
Fig. 1C). Cluster roots produce large amounts of car-
boxylates, which are released in an “exudative burst”
(Watt and Evans, 1999; Shane et al., 2004b). Carboxyl-
ates release P from strongly sorbed forms by replacing
P bound to aluminum or iron in acid soils or P bound
to calcium in alkaline soils (Geelhoed et al., 1998;
Veneklaas et al., 2003) or by locally reducing pH in
highly alkaline soils (Dinkelaker et al., 1989). In addi-
tion, exudation of phosphatases from root clusters of
Dryandra sessilis (Proteaceae) releases P from organic
sources (Grierson and Comerford, 2000). Banksia spe-
cies produce compound clusters (Fig. 1D; Purnell,
1960); the vast majority of these species occur in south-
western Australia (Mast et al., 2005), the most ancient
and P-impoverished part of the continent (Mast et al.,
2005; Lambers et al., 2010). Their root clusters tend to
form root mats at the interface between mineral soil
and the litter layer (Fig. 1F; Grierson and Attiwill,
1989; Denton et al., 2007b), which may reflect their
dependency on litter as a P source in extremely
weathered sandy soils. In comparison, simple cluster
roots entrap soil and organic matter in “sand sau-
sages” that tend to be close to the soil surface (Fig. 1, A
and G). However, depending on P availability in the
profile, cluster roots may also be found at depth (Fig.
1A; Pate et al., 2001). The cluster-root strategy, partic-
ularly that of compound cluster roots, may come at a
very high carbon cost (Lambers et al., 2008b). This high
carbon cost precludes a large carbon investment in leaf
growth and hence is associated with slow growth, thus
making this P-acquisition strategy disadvantageous in
environments where P is more available (Lambers
et al., 2006, 2008b, 2010).

In the context of managed systems, monocultures
would minimize penalties associated with the dimin-
ished competitiveness associated with slow growth
due to greater carbon allocation to cluster roots. On the
other hand, using crop species with cluster roots in
intercropping systems or crop rotations may confer
benefits to the noncluster root species with the less
efficient root system, as demonstrated by facilitated
P uptake by wheat (Triticum aestivum) when inter-
cropped with L. albus (Gardner and Boundy, 1983). In
both cases, however, whether introducing root clusters
into crop plants is desirable or not depends on the
exact yield penalty associated with root-cluster forma-
tion and on the fate of the P that is removed. Cluster
roots in crop and pasture plants may well be advan-
tageous, compared with mycorrhizal associations, in
soils that have a high level of total P but where most of
this is only sparingly available, such as young volcanic
soils with low pH (Borie and Rubio, 2003). Examples of
Proteaceae on such volcanic soils include Embothrium
coccineum in Chile (Zúñiga-Feest et al., 2010). Old
lateritic soils also contain high levels of occluded P

Figure 1. Simple and compound types of proteoid root clusters of
Proteaceae. Both types have large numbers of ephemeral rootlets
arising from a persistent mother root. A to C, Roots of G. avellana (in
Parque Katalapi, Chile). A, Soil profile beneath G. avellana showing
numerous white clumps of simple proteoid roots at the trench face. B,
Young proteoid root with a high density of growing rootlet tips and
normal-shaped apices. C, Mature proteoid rootlets, after the soil has
been washed off in water, showing “claviform” apices. D, Roots of
Banksia repens, native to southwestern Australia, hydroponically
grown at a very low [P] (1 mM or less), with compound proteoid roots.
Mature Christmas tree-like morphology is shown at the top, with a
developing cluster at bottom (arrow). E, Simple proteoid root clusters of
H. prostrata, native to southwestern Australia, each with thousands
of rootlets. Plants were grown hydroponically at a very low [P] (1 mM or
less). This group of root clusters, about 8 to 12 d old, is likely at its peak
in exudation of P-mobilizing carboxylates. Rootlets develop abundant
root hairs. Unbranched noncluster roots release very little carboxylate.
F, Banksia attenuata, native to southwestern Australia, develops in the
field in dense mats of compound proteoid root clusters with rootlets
and root hairs just below and in the litter layer. G, Simple proteoid roots
of Hakea trifurcata, from the Jurien Bay area of southwestern Australia.
Mature rootlets develop abundant root hairs that entrap soil and
organic matter, forming sand sausages. Bars = 240 mm in A, 20 mm
in B, 8 mm in C, 17 mm in D, 40 mm in E, 50 mm in F, and 30 mm in G.
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(Tiessen et al., 1996), but it has yet to be investigated if
any of this P is available to species with cluster roots.
Crop and pasture plants with root clusters may pro-
vide a more reliable source of plant P than the variable
benefits from mycorrhizal fungi (as well as utilizing a
different soil P pool). For instance, in eastern Australia,
mycorrhizas provide large benefits for P nutrition in
the subtropical north (Thompson, 1987), whereas ben-
efits are small and variable from year to year in tem-
perate southern areas (Ryan et al., 2002, 2003, 2005;
Ryan and Angus, 2003). Yet, despite these potential
benefits, genetically transforming crops with the abil-
ity to form cluster roots by introducing genes from
unrelated species is bound to be problematic, since we
have yet to discover which genetic and molecular
factors are responsible for cluster-root formation. That
said, introducing cluster roots by crossing species
with cluster roots with species without cluster roots
appears to be possible. Interspecific crosses between
Lupinus species with cluster roots (e.g. L. albus) with
ones that lack them is certainly possible (Roy and
Gladstones, 1985; Clements et al., 2008). Moreover,
some Lupinus species that do not form true cluster
roots produce “cluster-like” structures, which function
just the same as true cluster roots (Hocking and Jeffery,
2004). Therefore, in the genus Lupinus, there is a wide
range of genetic material with desirable P-efficient
traits to choose from for crop improvement, without
the immediate need of genetic transformation.

Variation in investment in cluster roots and sensi-
tivity of cluster-root development to high shoot P
status among Lupinus species suggests that the invest-
ment of carbon in cluster-root functioning associated
with mining for P could be optimized to minimize
the cost of P acquisition under cropping conditions
(Pearse et al., 2006a, 2006b, 2007). Root clusters of L.
albus, the best-studied cluster-root-forming crop spe-
cies, do more than mine P; they show an exudative
burst of isoflavonoids prior to the peak of organic acid
exudation (Weisskopf et al., 2006b). Consequently,
bacterial abundance in the surrounding soil is de-
creased at the stage when cluster roots exude large
amounts of citrate and protons (Weisskopf et al., 2005).
While flavonoids from L. albus roots mobilize inor-
ganic phosphorus (Pi), they also decrease soil mi-
crobial respiration, citrate mineralization, and soil
phosphohydrolase activities (Tomasi et al., 2008,
2009). Exudation of phenolic compounds, mainly iso-
flavonoids, induces fungal sporulation, thus reducing
fungal vegetative growth and potential citrate con-
sumption (Weisskopf et al., 2006b). In addition, the
activity of two exuded antifungal cell wall-degrading
enzymes, chitinase and glucanase, is highest at the
stage preceding citrate excretion (Weisskopf et al.,
2006a; Cesco et al., 2010). Do Proteaceae exhibit a
similarly complex strategy to reduce microbial degra-
dation of phosphate-solubilizing agents and to inhibit
microbial P uptake (Grierson and Attiwill, 1989)? The
roots of many Australian species exude malonate
(Playsted et al., 2006; Pang et al., 2010a), a potent

respiratory inhibitor, previously found in chickpea
(Cicer arietinum; Veneklaas et al., 2003). Their ability to
exude other compounds with the potential to inhibit
microbial growth, such as flavonoids and other phe-
nolics, needs to be investigated. Potentially, cluster-
root-forming crop plants may not only be better at
solubilizing P from sparingly soluble forms in soil but
may also be able to restrict the amount of P that
becomes incorporated into soil microbial pools as well
as to access P from these pools. Breeding or develop-
ment of crop plants that better compete againstmicrobes
for soil P could be very important if this translates into
increases in yield. An alternative would be not to in-
hibit but to promote the growth of microorganisms
that hydrolyze phytate, a compound that is not avail-
able to most higher plants. The challenge would be to
reduce microbes that compete for P without reducing
beneficial microbes. The research on lupin clusters
demonstrates that this requires a complex and tightly
coordinated series of biochemical processes.

LEAF P CONCENTRATIONS

Leaf P concentrations ([P]) in southwestern Austra-
lian Banksia species (Denton et al., 2007a) and plants in
general (Lambers et al., 2010) are considerably lower
than global average values. Slightly greater leaf [P]
values are found in fynbos vegetation in the Cape
Region of South Africa and for plants in other regions
of Australia (Fig. 2). While these Banksia leaves have a
very high leaf mass per unit of leaf area (LMA;

Figure 2. Concentrations of P in leaves of plants in different regions
of the world. Data are based on sources used by Lambers et al. (2010)
with some additional values (Pate and Dell, 1984; Diehl et al., 2003;
Niinemets et al., 2009). Values for Australia are for various regions on
the continent, except southwestern Australia, which are presented
separately. The central vertical bar in each box shows the median, the
box represents the interquartile range, the whiskers show the location
of the most extreme data points that are still within a factor of 1.5 of the
upper or lower quartiles, and the black points are outliers that fall
outside the values of the “extreme limits” described above.
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Hassiotou et al., 2009b), their high nitrogen-P ratios
indicate that the low [P] is not simply the result of
“dilution” by a high LMA but point to severe P
limitation (Lambers et al., 2010). Despite their low
leaf [P], area-based rates of photosynthesis are similar
to global averages; in contrast, when expressed per
unit of leaf P, rates of photosynthesis are extremely
high (Denton et al., 2007a; Lambers et al., 2010).
Understanding adaptations that allow for P-efficient
photosynthesis of Proteaceae from southwestern Aus-
tralia may provide valuable knowledge that can be
used to improve the photosynthetic P-use efficiency
(PPUE) of crops.
How can leaves exhibit ordinary rates of area-based

photosynthesis at extraordinarily low leaf [P]? Because
the LMA of barley (Hordeum vulgare; Gunn et al., 1999)
is 11 times lower than that of Banksia (Denton et al.,
2007a), the difference in P per unit of leaf area is
actually smaller. Using rates of photosynthesis for
barley leaves at different P supplies (Fay et al., 1996),
we expect rates of photosynthesis to decrease from 22
to 15 mmol CO2 m

22 s21 with decreasing P supply and
the rate of photosynthesis per unit of P to be about 210
mmol CO2 g

21 P s21, remarkably similar to the average
for Banksia leaves (Denton et al., 2007a) and about
twice as high as global average values (Lambers et al.,

2010). This shows that both thin leaves with a low
LMA, such as in barley (Fig. 3B), and thick leaves with
a very high LMA, such as in Banksia (Fig. 3A), can
use P equally efficiently in terms of photosynthesis.
The high-LMA leaves live considerably longer, so the
photosynthetic return per unit of P over a leaf’s life-
time is considerably higher in Banksia. Moreover, the
cells and their functional components that account for
the extra mass in the high-LMA Banksia leaves (Fig.
3A) must contain some P in essential compounds, such
as nucleic acids. This implies that the photosynthetic
cells of Banksia leaves must invest P very efficiently,
even more so than barley.

What is the biochemical mechanism underpinning
the high PPUE of thick Banksia leaves with a very high
LMA? To address this question, we first consider what
P is used for in leaves of a mesophytic crop plant such
as barley (Fig. 4). When grown with an optimum
amount of P (100 mM), 75% of the total P in leaves is Pi
(Fig. 4B; Chapin and Bieleski, 1982), most of which is
located in the vacuole (Foyer and Spencer, 1986).When
the P supply is decreased to 10 or 1 mM, the leaf Pi
concentration ([Pi]) in barley leaves declines to 30%
of total [P]. At the lowest P supply, the total leaf [P]
is 8.86 mg g21 dry weight in barley (Fig. 4A), still much
higher than the approximately 200 mg g21 dry weight

Figure 3. Hand-cut transverse sections of mature
leaves. The lower leaf surface is at the bottom in
each micrograph. UV-induced autofluorescence
is shown. A, Scleromorphic leaf of B. repens
(Proteaceae). Heavily thickened cell walls of epi-
dermis, fibers, and vascular tissues fluorescence
blue. Transverse veins (black arrows) connect
longitudinal veins that separate each stomatal
crypt. Chlorophyll in palisade parenchyma fluo-
resces red. Bright yellow fluorescence of some
vacuolar contents is typical, but its identity is
unknown. Upper and lower cuticles are thick
(white arrows). Entrances to stomatal crypts are
filled with long, thick-walled hairs. B, Mesophytic
leaf of barley. The relatively thin-walled longitu-
dinal veins (from left to right: large, small, and
large intermediate lateral veins) and fibers fluo-
rescence blue, and chlorophyll in mesophyll pa-
renchyma fluorescences red. The outer epidermal
cell wall and cuticle are thin. Bars = 440 mm in A
and 240 mm in B.
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found in leaves of a range of Banksia species (Denton
et al., 2007a). Looking at the various P fractions in
barley leaves (Fig. 4), Banksia leaves could economize
by accumulating very little Pi and allocating it prefer-
entially to photosynthetically active cells.

Vacuolar [Pi] in Hakea prostrata (Proteaceae) leaves,
which have a low leaf [P], about twice that of the leaf
[P] in Banksia species referred to above, is below the
detection limit of cryoscanning electron microscopy
(Shane et al., 2004c). However, that technique is rela-
tively insensitive, with a detection limit of about 10 mM

(Ryan et al., 2003; Shane et al., 2004c). The vacuolar [P]
in maize (Zea mays) leaves grown at very low P supply
is about 5 mM, measured using 31P NMR (Loughman
et al., 1989). Therefore, little accumulation of Pi in vac-
uoles is something that requires further exploration
in Proteaceae, using 31P NMR.

Are Proteaceae investing less in phospholipids,
replacing these with galactolipids or sulfolipids
(Andersson et al., 2003; Raven, 2008)? Based on data
from barley leaves (Fig. 4), such a replacement may
only have a minor effect, because the fraction of total P
in lipids is relatively small. Is there less investment in
P esters, which play a role in photosynthetic and
respiratory carbon metabolism? Can these metabolic
pathways operate at lower substrate concentrations
than are present in plants found on higher P soils? If
so, how has the enzymology of metabolism adapted to
accommodate smaller substrate pools (e.g. by increas-
ing amounts of enzymes in these metabolic path-
ways)? Indeed, nitrogen-P ratios of Australian plants
from severely impoverished soils are high (Lambers
et al., 2010), and the photosynthetic nitrogen-use effi-

ciency of leaves of some Australian plants from drier
locations is relatively low (Wright et al., 2001). Wright
et al. (2001) interpreted this as a water-conserving
strategy, because greater investment in Rubisco and
leaf nitrogen would allow photosynthesis to operate at
lower internal CO2 concentrations. However, it might
also enhance PPUE. A lower photosynthetic nitrogen-
use efficiency, reflecting higher investment in Rubisco
and other photosynthetic enzymes, which represent a
major component of all organic nitrogen in C3 leaves
(Evans, 1989), might allow the Calvin cycle to operate
at lower levels of phosphorylated intermediates. Is this
something we want in crop plants, or would it cause
greater reliance on nitrogen inputs and hence be
undesirable?

We should bear in mind that most photosyntheti-
cally active leaves on evergreen species, such as Bank-
sia species, are mature and fully expanded; they only
require protein synthesis associated with protein re-
pair, turnover, and acclimation. Can a lower invest-
ment in P-rich nucleic acids (e.g. rRNA) explain a high
PPUE? The “growth-rate hypothesis,” which is based
on data for nonphotosynthetic microbes and metazoa
(Elser et al., 1996; Acharya et al., 2004), predicts a direct
proportionality of growth rate with rRNA content and
a declining protein-rRNA ratio with increasing growth
rate. Thus, the low leaf [P] among some Proteaceae is
predicted to reflect low rRNA amounts, and thus a
limit on the rate of protein synthesis. Although the
predictions of the growth-rate hypothesis do not agree
as well with data from photosynthetic organisms as
with those from nonphotosynthetic organisms (Sterner
and Elser, 2002; Matzek and Vitousek, 2009; Flynn
et al., 2010), a very low [P] in biomass necessarily im-
plies a low rRNA content and, hence, even with the
maximum known catalytic activity of ribosomes, a low
rate of protein synthesis. Is this a trait worth pursuing
in crop plants, or would it jeopardize a plant’s accli-
mation potential if such acclimation requires rapid
protein synthesis?

Given the high LMA of Banksia species, their high
rates of photosynthesis are remarkable, because high-
LMA leaves tend to have low area-based rates of
photosynthesis (Galmés et al., 2005). High-LMA leaves
also tend to have a Rubisco with greater specificity to
compensate for this (Galmés et al., 2005). Thick Banksia
leaves, on the other hand, have stomatal crypts (Fig.
3A; Hassiotou et al., 2009a). Since Rubisco enzymes
with greater specificity tend to have a lower catalytic
capacity (Tcherkez et al., 2006), the strategy of stomatal
crypts in thick leaves might allow a Rubisco with
“normal” catalytic properties, thus increasing PPUE
by allowing photosynthesis at lower levels of protein
and rRNA. It is likely that low-LMA crop plants
already have a Rubisco with high catalytic capacity
and that little can be gained by changing its kinetic
properties.

In summary, the adaptive physiology underpinning
a high PPUE among some Australian Proteaceae re-
mains unknown. It will require considerable investi-

Figure 4. P fractions in barley leaves as dependent on P supply, both in
absolute (A) and in relative (B) terms. DW, Dry weight. (Based on data
from Chapin and Bieleski [1982].)
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gation before we can assess the significance of this
knowledge for improving the PPUE of crops.
An additional consideration is that leaf [P] can

become very high in many Proteaceae when fertilized
with a readily available source of P (Handreck, 1991,
1997; Parks et al., 2000; Lambers et al., 2002; Shane
et al., 2004c). This is accounted for by their low ca-
pacity to down-regulate their P uptake (Shane et al.,
2004a, 2008; Shane and Lambers, 2006). It highlights
that it is the down-regulation of the expression of P
transporters that is of ecological significance (to avoid
P toxicity), rather than their up-regulation at low P
(which would do little to acquire more P when soil
processes, rather than kinetic properties of the roots’ P
transporters, are major limiting factors; Shane et al.,
2004a; Lambers et al., 2006). A low capacity to down-
regulate P uptake at elevated soil P availability would
appear to be a highly undesirable trait in crop and
pasture plants, but this requires further investigation.
For example, the Australian native herb Ptilotus poly-
stachyus (Amaranthaceae), a fast-growing plant with
an apparent low capacity to down-regulate its P up-
take, accumulates P to very high concentrations, ap-
proximately 40mg g21 shoot dry weight, without signs
of P toxicity (Ryan et al., 2009).

P REMOBILIZATION DURING TISSUE
SENESCENCE: P-REMOBILIZATION EFFICIENCY
AND PROFICIENCY

Some of the species that exhibit high rates of pho-
tosynthesis at low leaf [P] are also extremely efficient
at remobilizing P from senescing leaves. In particular,
some Banksia species can remobilize over 80% of their
leaf P (Denton et al., 2007a), whereas global average
values are about 50% (Lambers et al., 2008a). Consid-
ering that Banksia leaves have very low leaf [P] when
mature, their P proficiency is extremely high (i.e. the
level to which P is depleted is very low). That high
proficiency is, to some extent, explained by high
LMA values, as discussed above for leaf [P]. Even so,
the P-remobilization proficiency values are much
higher than values reported before in the literature
(Killingbeck, 1996; Lambers et al., 2008a). Remobiliza-
tion from cluster roots of H. prostrata (Proteaceae) is
equally efficient and proficient (Shane et al., 2004b). A
high P-resorption proficiency from senescing clusters
is thought to be important, because these structures
represent significant P sinks but live for only about
21 d in Proteaceae (Shane et al., 2004b, 2006; Playsted
et al., 2006).
Proficient and efficient P remobilization from senes-

cent leaves would be a desirable trait for the P econ-
omy of crops and pastures for several reasons. First, it
would enable better use of P during plant develop-
ment (e.g. through allocation of P to younger leaves
with higher PPUE). Second, remobilization into stems
or root systems conserves P for future use in the plant
through further internal cycling, especially in peren-

nial crops, or through mineralization of crop residues.
Third, remobilization from senescing plant parts into
seeds could enhance seed production or seed P con-
tent. High seed P content, however, is not always a
positive outcome, as discussed below.

P STORAGE IN SEEDS

Contrary to the very low [P] in leaves, seed [P] is
often very high in species naturally occurring on
severely P-impoverished soils (Groom and Lamont,
2010). Seed P represents up to half of the total above-
ground P in Banksia hookeriana (Proteaceae), which
grows on severely P-impoverished sands in southwest-
ern Australia (Witkowski and Lamont, 1996). While
high seed P is advantageous to plants that need to
establish offspring in a P-impoverished environment,
this is not necessarily desirable within the context of a
cropping system, where removal of P in grain must
be matched with inputs of fertilizer P. Avery important
P-storage compound in seeds is a mixed cation salt
of myoinositol hexakis-phosphoric acid (phytate; Lott
et al., 2000). It is the major source of P during early
seedling growth in maize (Nadeem et al., 2011). A high
phytate concentration in grains may render micronu-
trients such as iron and zinc less available, leading
to micronutrient disorders in humans (Welch and
Graham, 2004). Most of the P in the human diet is
excreted again, so is not required for human health
(Cordell et al., 2009). Breeding for low-phytate content
in grain is an option (Raboy et al., 2000; Raboy, 2001),
but at least in rice (Oryza sativa), low phytic acid content
is associatedwith reduced grain yield and seed viability
(Zhao et al., 2008), suggesting a tradeoff between hu-
man health benefits and crop performance. In sum-
mary, the high seed [P] often found in species native to
P-impoverished soils is not a desirable trait in crop
plants, where low seed [P] may contribute to more
efficient use of P fertilizer and better nutritional value.
Instead, the challenge is to ensure that more seeds are
produced at the expense of seed P content.

CONCLUDING REMARKS

Most species in the Proteaceae are nonmycorrhizal and
extremely efficient at acquiring P from P-impoverished
soils. Their P-mobilizing cluster roots are a P-mining
strategy, as opposed to the scavenging strategy of my-
corrhizal plants (Lambers et al., 2008b). Some of these
species are also very efficient at photosynthesizing at
very low leaf [P], but the current lack of knowledge
of P pools in their leaves and their involvement in
the photosynthetic process limit our understanding
of their very high photosynthetic P-use efficiency.
P remobilization from senescing tissues is among the
highest recorded, and again, a biochemical explana-
tion is currently not available. Seed [P] in Proteaceae is
very high, allowing seedlings to grow independent of
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soil P for a long time, but high seed [P] may not be a
desirable trait for crop plants, due to negative impacts
on human health from high phytate and the need to
replace P removed in grain with fertilizer P. Under-
standing the functioning of Proteaceae adapted to
P-impoverished landscapes, particularly their desir-
able traits for P-utilization or -acquisition efficiency
such as photosynthesizing at low leaf [P] and cluster-
root development, will provide knowledge that can be
used toward the development of more P-efficient
crops.

Several strategies are available to us for improving P
efficiency in cropping systems. First, we can make
greater use of crop species with cluster roots in envi-
ronments with large amounts of total P but low P
availability (e.g. young volcanic soils in Chile, where L.
albus is a profitable crop with minimal fertilizer input;
Huyghe, 1997; Von Baer, 2006). Second, we should also
further explore the potential of native species with
P-efficient traits for use as crops or pastures. Third,
at least in some of our present crop species, there
is substantial variation in P-acquisition or P-use effi-
ciency; that variation could be exploited through
marker-assisted breeding. Fourth, there is the option
of intercropping and crop rotation to provide benefits
of P-efficient crops to less efficient ones. Finally, a
better understanding of the molecular basis of the
P-efficient traits may, in the long term, allow us to
engineer plants that are more P efficient. A molecular
approach will be challenging, but the possible benefits
in the long term are enormous. Pursuing a combina-
tion of the above approaches is critical to improving
the productivity of crop production in an era of rapid
population growth where P fertilizers are becoming
scarcer and more costly.
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