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The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The
combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control
in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-
regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy
of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31%
for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and
95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of
primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions
for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter
organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our
method shows improved prediction capability.

Sequencing and annotation of a large number of
eukaryotic genomes has made available an enormous
amount of information regarding genetic coding se-
quences (CDS). These data can be effectively utilized
for studying and modifying the expression of genes if
the location and contribution of cis-regulatory regions,
which control spatial and temporal regulation of gene
expression, are available. However, the precise anno-
tation of regulatory regions is difficult as compared
with the identification of genes, primarily because
regulatory regions do not code for an identifiable prod-
uct. In fact, regulatory regions are bound by proteins
such as transcription factors, which bring about tran-
scription and its regulation. Determining transcription
factor-binding sites (TFBSs) from chromatin immuno-
precipitation methods has limitations and requires a
lot of downstream data processing (Farnham, 2009).
Moreover, the mere binding of a transcription factor
at a particular site does not warrant its involvement
in the regulation of a gene. Development of compu-
tational approaches that enable accurate prediction of

cis-regulatory sites could thus greatly aid in deci-
phering the regulatory mechanisms at the genome
level.

The preponderance of noncoding DNA in the eu-
karyotic genome makes it difficult to identify pro-
moter regions. Most efforts toward the prediction of
regulatory regions have traditionally focused on the
detection of consensus sequences for the TATA box,
Initiator elements, TFBSs, etc. Such sequence-based
prediction of short motifs might be inadequate be-
cause a large number of false hits are possible by
chance. Moreover, there is increasing evidence to
suggest that consensus sequences vary greatly and
are even absent in many cases. The TATA box, which is
considered as the signature sequence for promoters, is
not found in a majority of core promoters in eukary-
otes (Cooper et al., 2006; ENCODE Project Consor-
tium, 2007), and TATA-binding protein can recognize
the core promoter irrespective of the underlying se-
quence with the help of additional factors (Pugh,
2000). A recent study on nucleosomal positioning in
Schizosaccharomyces pombe shows that nucleosome-
depleted regions at promoters do not show the se-
quence characteristics (poly[A+T] tracts) that are
crucial for nucleosome depletion in Saccharomyces
cerevisiae, thus raising questions about sequence con-
servation at these sites (Lantermann et al., 2010).

The view that structural features of DNA (rather
than sequence) might be able to give a better under-
standing of the regulatory landscape was first sug-
gested by Pedersen et al. (1999) and is slowly gaining
ground. DNA at promoter sites may have special
features that play a major role in transcription by
allowing protein-DNA interactions and communica-
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tion between factors bound at distal promoters. Struc-
tural features of DNA, such as GC skew, bendability,
topography, free energy, curvature, nucleosome posi-
tioning, base stacking, relative entropy of nucleotides,
etc., have been shown to give characteristic patterns at
the transcription start site (TSS) and functional non-
coding regions such as promoters (Florquin et al., 2005;
Fujimori et al., 2005; Kanhere and Bansal, 2005a, 2005b;
Alexandrov et al., 2006; Lee et al., 2007; Abeel et al.,
2008a; Cao et al., 2009; Parker et al., 2009; Rangannan
and Bansal, 2009; Tanaka et al., 2009). Although these
properties are inherently sequence dependent, they
give additional insight into long-range interactions
that might not be evident from sequence alone. More-
over, the structural features found at promoter regions
are sometimes conserved across species (Fujimori
et al., 2005; Kanhere and Bansal, 2005a; Abeel et al.,
2008a). Thus, a prediction program that effectively
captures the structural patterns at promoters could
help in predicting regulatory regions across genomes
irrespective of the availability of training data.
The majority of the currently available promoter

prediction programs (PPPs) such as ARTS, Eponine,
and ProSOM focus on promoter prediction in the hu-
man genome or related genomes (Down andHubbard,

2002; Sonnenburg et al., 2006; Abeel et al., 2008b, 2009)
for which processed experimental data and detailed
annotation, such as from deepCAGE sequencing, are
already available. Since these programs require pre-
training on the genome, they cannot be readily applied
to other genomes, such as plants. CpG island predic-
tors cannot be used for plants, since a suitable predic-
tion criterion is unavailable (Rombauts et al., 2003) and
they are purported to be absent in plant genomes
(Yamamoto et al., 2007b). Sequence-based PPPs for
plants are either repositories of TFBSs and cis-regula-
tory elements reported in individual studies, such as
PLACE (Higo et al., 1999), Osiris (Morris et al., 2008),
and AGRIS (Davuluri et al., 2003), or in silico analysis
of overrepresented k-mers at promoters (Molina and
Grotewold, 2005; Yamamoto et al., 2007a; Lichtenberg
et al., 2009). EP3 (Abeel et al., 2008a) is the only PPP
available currently that predicts extended promoter
regions in plant genomes. However, the promoter
prediction property (base stacking) used in EP3 is
selected based on analysis in the human genome only.
Also, some minimal training is apparently involved in
the EP3 program as well, since different thresholds are
used for different organisms (Arabidopsis [Arabidopsis
thaliana], 0.0583; rice [Oryza sativa], 0.1394). Many

Table I. Comparison of Arabidopsis and rice genomes

The sequence data for five chromosomes of Arabidopsis (approximately 119 Mb) and 12 chromosomes
of rice (approximately 382 Mb) were analyzed for their genome characteristics.

Feature Arabidopsis Rice

Characteristica

Gene density (genes Mb21) Approximately 238.8 Approximately 63.4
Transcribed region (% of genome length) 40.0% 21.8%
Exon coverage 20.3% 6.3%
Protein-coding genes 27,169 (28,289b,c) 23,057
ncRNA genes 1,243 (1,263b) 1,527
ncRNA genes (median length in nucleotides) 82 74
Average GC content 36% 42.4%

Median length (nucleotides) of various regions
in protein-coding genes (% of primary
transcript length)
Primary transcript 2,095 3,163
Intergenic 924 5,300
5# UTR 105 (6.1%) 106 (9.1%)
3# UTR 208 (9.5%) 260 (13.5%)
Intron 100 (33.6%) 96 (47.8%)
CDS 129 (50.8%) 132 (29.7%)

Average GC percentage of various regions in
protein-coding genes
Primary transcript 39.2 6 3.0 47.5 6 8.3
Intergenic 31.9 6 4.9 41.9 6 5.6
5# UTR 37.7 6 8.0 55 6 15.5
3# UTR 31.7 6 4.8 40.6 6 7.2
Intron 32.6 6 4.2 38.6 6 7.9
CDS 44.9 6 3.2 51.1 6 11.3

aExcluding mitochondrial and chloroplast chromosomes, transposons, and pseudogenes. bGene
models from TAIR that were considered for analysis (see “Materials and Methods”). cProtein-coding
gene models with TSS information considered for analysis: 20,094; non-protein-coding transcripts in rice
were also considered for analysis: 1,152.
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plant genomes have been recently sequenced (Ming
et al., 2008; Rensing et al., 2008; International Brachy-
podium Initiative, 2010; Schmutz et al., 2010), and a
large number of genomes are in the sequencing pipe-
line, such as the multinational Brassica rapa sequencing
project (for a full list, see National Center for Biotech-
nology Information Genome Projects). A promoter
prediction tool suited for plant genomes could help
in the annotation of putative cis-regulatory regions as
well as in finding new genes for these newly se-
quenced genomes.

We present here a detailed analysis of the perfor-
mance of the program PromPredict, a simple program
that captures the free energy pattern at promoter
regions from DNA sequence information without re-
quiring any pretraining, for the model monocot and
eudicot plant genomes of rice (cv Nipponbare; Rice
Annotation Project, 2008) and Arabidopsis (Arabidop-
sis Genome Initiative, 2000). PromPredict was origi-
nally developed to predict putative promoters using
the whole-genome percentage GC of select bacterial
genomes to define the baseline cutoffs for relative free
energy of promoter regions (Rangannan and Bansal,
2009). It has now been generalized for genome pre-
diction using 1,000-nucleotide fragments with 20% to
80% GC (Rangannan and Bansal, 2010). It should be
noted that the promoters are not predicted on the basis
of motif composition or organization of cis-regulatory
modules but solely on the basis of relative free energy
of adjoining sequences. We compare and contrast the
genomic features and prediction characteristics in the
two plant genomes to highlight the similarities and
differences in their genome architecture. Such a com-
parison can shed light on the evolution of monocot
and dicot lineages of flowering plants. The predictions
are assigned to five different score classes to indicate
their relative strength (as discussed below). We also
compare the performance of PromPredict with the EP3
program.

RESULTS

A comparison of the annotated genomes (excluding
mitochondrial and chloroplast chromosomes) of rice
and Arabidopsis gave some interesting insights into
the genome composition of the two plants. Arabidop-
sis has a small and compact genome with gene density
1 order of magnitude higher than that for the rice
genome (Table I). The length of the Arabidopsis ge-
nome is less than half the length of the rice genome,
but it has 40% of its genome being transcribed as
compared with approximately 22% in rice at the
current state of annotation. However, the rice genome
has longer primary transcripts, and introns contribute
to a majority of the primary transcript length (Table I).
Moreover, the rice genome has a higher average GC
content and a greater GC variation, which is also
reflected in the various regions of the gene (Table I;
Supplemental Fig. S1).

Figure 1. A and B, AFE profiles in the vicinity of the TSS for all five
chromosomes of Arabidopsis (A) and six representative (even num-
bered) chromosomes of rice (B). The AFE values for upstream, down-
stream, and full-length shuffled sequences are shown as dashed lines.
C, Comparison of free energy profiles (shown in red) and percentage AT
occurrence (shown in green) over the region 2500 to +500 bp with
respect to (w.r.t.) TSS for chromosome 1 of Arabidopsis and rice.

Morey et al.
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Average Free Energy Profile

Distortion of the DNA double helix, such as sepa-
ration of strands and bending of DNA, is necessary for
binding of RNA polymerase and transcription factors
at the promoter site. The free energy of DNAmelting is
a dinucleotide sequence-dependent secondary struc-
ture property that comprises not only hydrogen bond-
ing energy but also base stacking energy and hence is
slightly different from mere ATor GC contents. Figure
1, A and B, shows the average free energy (AFE)
profiles for Arabidopsis and rice genomes in the
vicinity of the TSS. The details of calculating the AFE
profile are mentioned in “Materials and Methods.”
Both plants show similar free energy profiles with a
significant difference between upstream and down-
stream regions and a peak just upstream of the TSS.
Overall, the profiles show a less stable upstream
region followed by a relatively stable downstream
region. However, the difference in stability is much
greater for rice (approximately 3.5 kcal mol21) as
compared with Arabidopsis (approximately 1.5 kcal
mol21), as seen in Figure 1C. It should be noted here
that AT-rich sequences tend to be less stable, even
though the correlation is not exact and depends on
their dinucleotide frequencies as seen in the vicinity of
the TSS. The Arabidopsis profile has a higher free
energy (less stability) than rice owing to its AT-rich
genome. Similarly, the AFE profiles shift with varia-
tion in GC content of the sequences (Supplemental Fig.
S2). In conclusion, the promoter region is character-
ized by relative instability when compared with the
downstream stable region for both the plant genomes.
This characteristic can be used to identify promoter
regions, as shown by Rangannan and Bansal (2007,
2009) for prokaryotes and by Abeel et al. (2008a) for
eukaryotes.
The high stability trough in the profiles is found

around 100 to 200 nucleotides downstream of the TSS.

This region is beyond the 5# untranslated region (5#UTR)
of most genes in both Arabidopsis and rice (Table I)
and hence overlaps with the first CDS. Moreover, the
5# UTR and CDS in rice also have higher average GC
contents than those of the primary transcript (Table I).
The GC richness of the region immediately down-
stream of the TSS is more pronounced in rice than in
Arabidopsis (Supplemental Fig. S1). These observa-
tions could account for the presence of GC content
gradients previously reported in monocots (Wong
et al., 2002).

Performance of PromPredict on Plant Genomes

We tested the latest version of the program Prom-
Predict (Rangannan and Bansal, 2010) on rice and
Arabidopsis genomes in order to find cis-regulatory
sites (see “Web Resources” below). The program de-
tects relative differences in free energy and applies

Figure 2. Percentage frequency distribution plots showing the distance
of promoter predictions from TSS in 50-nucleotide bins for protein-
coding genes (A) and ncRNA genes (B). For protein-coding genes, the
predictions within2500 to +100 bp with respect to (w.r.t.) TSS, and for
ncRNA genes, predictions within 21,000 to 0 bp with respect to TSS,
are considered where position 0 corresponds to the TSS. [See online
article for color version of this figure.]

Table II. PromPredict performance on Arabidopsis and rice genomes

For protein-coding genes, the region considered for determining true
positives was 2500 to +100 bp in the vicinity of the TSS. For ncRNA
genes and protein-coding genes with only TLS information, the region
considered for determining true positives was 21,000 to 0 bp of the
start site.

Gene Type No. of Genes Recall Precision

Arabidopsis
Protein-coding genes 20,094 0.92 0.33
Protein-coding genes,

TLSa
8,195 0.96 0.51

ncRNA genes 1,263 0.93 0.76
Rice

Protein-coding genes 23,057 0.92 0.24
ncRNA genes 1,527 0.95 0.90
Non-protein-coding

transcripts
1,152 0.96 0.47

aProtein-coding genes with only TLS information.
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cutoffs based on the GC content of a sequence. It
compares the free energy of two adjacent sequences
and predicts a cis-regulatory region at the upstream
sequence if the two criteria, (1) free energy of the
upstream sequence (E1 value) and (2) the difference
in free energy between the two sequences (D value),
are greater than predetermined cutoff values (Sup-
plemental Protocol S1; Supplemental Fig. S3; Sup-
plemental Table S1; see “Materials and Methods”).
The predictions are directional, depending on the
orientation of the input sequence: forward or reverse
strand.

The whole-genome prediction performance of the
program is presented in Table II in terms of the recall
and precision values for the various gene data sets (for
precision and recall calculations, see “Materials and
Methods”). The region2500 to +100 bp with respect to
the TSS (true-positive region [TP region]) was consid-
ered for determining true positives in protein-coding
genes, as this covers the upstream region as well as
most 5# UTRs. The region 21,000 to 0 bp was consid-
ered for noncoding RNA (ncRNA) genes and for
protein-coding genes with only translation start site
(TLS) information. The predictions obtained within
the gene beyond the true-positive region are consid-
ered as false positives (FPpred.). Overall, more than 92%
of genes (henceforth referred to as TPgenes) have a true-

positive prediction (TPpred.) within 2500 to +100 bp.
Both the genomes have approximately 1.5 TPpred.
per TPgene on average. As expected, the longer protein-
coding genes have more FPpred., thus leading to lower
values of precision as compared with that for ncRNA
genes.

Although a gene might have more than one predic-
tion in the TP region, the prediction nearest to the TSS
will correspond to the core promoter. A frequency plot
for distance of the nearest prediction from the TSS (Fig.
2A) shows that the majority of the TPpred. obtained are
proximal to the TSS: 70% of predictions for Arabidop-
sis and 63% of predictions for rice are within 2200 to
+100 bp of the TSS. For ncRNA genes, the region2500
to 0 bp of the TSS contains 92% to 93% of the predic-
tions for both Arabidopsis and rice genomes (Fig. 2B).
However, a significant number of predictions are also
obtained farther away from the TSS, especially in rice.
Interestingly, Arabidopsis predictions are clustered
closer to the TSS (0 to 2100 bp of the TSS), while rice
predictions show an almost uniform distribution over
0 to2200 bp relative to the TSS in both protein-coding
and ncRNA genes.

If the closest prediction for a gene is found near the
TSS (2100 to +50 bp), it might correspond to the core
promoter and hence have a stronger signal. The free
energy difference with respect to the downstream

Figure 3. AFE plots for sequences from
each frequency class from Figure 2 for
Arabidopsis (A) and rice (B). It is seen
that the predictions occurring in each
frequency class correspond to peaks in
AFE profiles at a particular distance from
the TSS. The plots depict the AFE for se-
quences with the closest prediction pres-
ent at a given distance (2500 to +100 bp
with respect to [w.r.t.]). The color code
used to depict the AFE profile, for se-
quences with predictions in each 50-
nucleotide bin, is indicated in the box
at right.
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sequence would be greater for these predictions as
compared with those present distally. However, we
found that this is not true. We calculated the AFE
profiles for 1001-nucleotide sequences clustered ac-
cording to the proximity of the closest prediction to the
TSS (50-nucleotide bins from Fig. 2). The AFE plots in
Figure 3 have a broad low-stability region correspond-
ing to the 50-nucleotide bin where the closest predic-
tion lies and another peak at the 235 region. The first
peak is expected because the algorithm recognizes this
feature for prediction. The difference in AFE for up-
stream and downstream regions is almost constant for
all plots irrespective of the distance of the instability
peak from the TSS. The AFE for the peaks is less (by
1.5–2 kcal mol21) than the AFE observed at the same
position in Figure 1, but the peaks follow the general
trend of the overall profile. We propose that such a
profile might be a characteristic of cis-regulatory sites
spread over a longer region upstream of the TSS.
The second sharper peak found ubiquitously at the

235 position might indicate the presence of a TATA
box at this region. However, Web logos for this region
did not show any strong consensus TATA sequence
(data not shown). A comparison of tetramer frequen-
cies in the 250- to 220-bp region and the 2500- to
+500-bp region shows a relatively high occurrence of
TATA and AAAA tetramers in the core promoter
region for both Arabidopsis and rice (Supplemental
Fig. S5). Interestingly, while several AT-containing
tetramers are preferentially located at the upstream
235 region in Arabidopsis, some C-rich sequences
also show overrepresentation in this region for rice
promoters.
An analysis for the overlap of predictions with 92

TFBSs in rice as obtained from Osiris (Morris et al.,
2008) was carried out. Fifty-six percent of TPpred. con-
tained within them entire TFBS motifs, while 98% of

TPpred. overlapped with at least half of the TFBS
sequence. Ninety-one percent of the reported TFBSs
overlapped at least partially (half or more) with TPpred.,
out of which 58% were found to overlap completely.
Although a substantial number of TPpred. were found
to contain AT-rich TFBSs, a significant number of GC-
rich TFBSs were also found to occur within the pre-
dictions.

Prediction Score

We categorized the predictions on the basis of the
difference in free energy between a prediction and its
downstream region, denoted as the D value. The score
classes are formed on the basis of the maximum D
value (Dmax) of predictions and the GC content range
of the surrounding 1001-nucleotide sequence (for de-
tails of categorization, see “Materials and Methods”
and Supplemental Fig. S4). Table III shows that most
of the predictions in the higher score categories are
TPpred., whereas the FPpred. show a preponderance

Table III. Variable prediction cutoffs

If the cutoff values for prediction are increased to mean2 SD, mean, mean + SD, and mean + 2 SD, the precision and recall values change as shown
in the rows Medium to Highest from bottom to top. Hence, predictions can be chosen according to the precision and recall desired. The TPpred. and
FPpred. are categorized according to their Dmax scores. The highest Dmax score for TPpred. of a TPgene is considered as the score for that gene and is used
to categorize the TPgenes in the score classes.

Score Class TPpred. TPpred. FPpred. FPpred. TPgenes TPgenes Recall Precision F Value

% % %

Arabidopsis
Highest 1,100 3.98 772 1.38 1,076 5.84 0.05 0.59 0.09
Very high 3,738 13.53 2,974 5.32 3,497 18.99 0.23 0.56 0.33
High 8,723 31.57 13,160 23.52 7,073 38.4 0.58 0.45 0.51
Medium 12,075 43.7 31,944 57.09 6,168 33.49 0.89 0.34 0.49
Low 1,993 7.21 7,102 12.69 604 3.28 0.92 0.33 0.49
Total 27,629 100 55,952 100 18,418 100 0.92 0.33 0.49

Rice
Highest 3,651 11.18 2,846 2.75 3,482 16.57 0.15 0.56 0.24
Very high 6,439 19.72 7,202 6.96 5,609 26.69 0.39 0.5 0.44
High 10,491 32.13 25,350 24.5 7,379 35.11 0.71 0.37 0.48
Medium 9,872 30.23 54,706 52.87 4,125 19.63 0.89 0.25 0.39
Low 2,198 6.73 13,365 12.92 424 2.02 0.91 0.24 0.38

Total 32,651 100 103,469 100 21,019 100 0.91 0.24 0.38

Table IV. Percentage distribution of FPpred.

The location of FPpred. in coding and noncoding regions of primary
transcripts as a percentage of the total FPpred. is shown.

Region Arabidopsis Rice

5# UTR 7.3% 6.6%
3# UTR 14.3% 9.1%
Introns 71.7% 78.4%
First introna 20.4% 21%
CDS 6.7% 5.9%

aThe nearest intron from the TSS that has length greater than 50
nucleotides is considered as the first intron irrespective of its location
in the UTR or the coding region.
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toward the lower score categories. The D value cutoffs
used for relative score categorization of predictions are
similar to the cutoffs applied for promoter prediction.
Both are dependent on GC content of the flanking
1,001-nucleotide sequence and the frequency of ob-
taining a prediction in a particular GC range. If we
raise the cutoff for promoter prediction to the category
classification cutoffs, the precision can be improved.
However, the number of TPgenes is reduced as a con-
sequence and recall decreases. A segregation of the
predicted signals according to their score thus allows
user-defined stringency settings. We suggest that the
three highest classes should be considered where
multiple predictions are obtained.

Distribution of False-Positive Predictions in

Primary Transcript

The PromPredict program is able to predict cis-
regulatory elements for more than 90% of the anno-
tated genes (considering all score classes). However,
on applying the lowest cutoffs, the precision of pre-
diction is lower (i.e. a substantial number of predic-
tions are found in the primary transcript region [FP
region]). An analysis of the locations and relative
scores of FPpred. (Table IV) showed that the majority
of FPpred. were obtained in the noncoding regions of
the primary transcript (i.e. introns and UTRs). We
found that approximately 20% of FPpred. were found in
the first intron alone, which could be a putative cis-
regulatory region. If we consider the predictions in the
first intron as TPpred., the precision increases to 0.47 for
Arabidopsis and 0.40 for rice. Interestingly, the median
length for the first intron (177 nucleotides for Arabi-
dopsis and 1,176 nucleotides for rice) is greater than
that for all introns (100 nucleotides for Arabidopsis
and 96 nucleotides for rice). Only a few FPpred. were
found in the CDS region (approximately 6%), although
it constitutes a substantial length of the primary tran-
script (50.8% in Arabidopsis and 29.7% in rice). If these
predictions are considered as FPpred., the precision
increases to 0.96 for both Arabidopsis and rice.

We also categorized FPpred. in score classes and
according to their location in the primary transcript.
The distribution is presented in Figure 4 as a percent-
age of FPpred. for each score class. Although introns
dominate in all score classes, there is an increasing
trend of predictions toward higher score categories
(68% level of significance for the highest frequency).
The same trend is observed in 5# UTRs, although the
number of FPpred. is low. On the other hand, in exons
and 3#UTRs, there is an increasing trend toward lower
score categories (68% level of significance for the
highest frequency).

Analysis of False Negatives

There are very few genes (8%–9%) that do not have
any predictions between 2500 and +100 bp relative to
the TSS, termed as false-negative genes (FNgenes). A

comparison of the AFE profiles for these genes with
the profiles for all TSSs from a representative chromo-
some (Fig. 5) showed that the distinct difference be-
tween upstream and downstream regions is absent in
FNgenes. The immediate upstream region has higher
stability while the immediate downstream region has
lower stability in the FNgene profile than those ob-
served for the corresponding regions in the profile of
all TSSs. The Gene Ontology (GO) categorization of
Arabidopsis and rice genes (Supplemental Protocol S2;
Supplemental Table S3; Supplemental Fig. S6) does not
show a preponderance of FNgenes in any particular GO
category. However, slight differences are seen in the
various categories, especially the presence of a greater
percentage of FNgenes with unknown functions, pro-
cesses, and cellular locations as well as the absence of
FNgenes corresponding to vital processes such as DNA
integration and chromatin assembly.

Correlation of Prediction Score with Gene Expression

Interspecies homology is routinely used for the
characterization of gene functions. Thus, it would be
interesting to see if orthologous genes from rice and

Figure 4. FP prediction distribution. The frequency distribution of
FPpred. is shown from each score category found in various regions of
the primary transcript as a percentage of the total FPpred. in each
category for Arabidopsis (A) and rice (B) genomes. The majority of
predictions for each category lie in the intronic region.
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Arabidopsis show similarity in their promoter organi-
zation as well. An analysis of the prediction score
correlation in all orthologous gene pairs from rice and
Arabidopsis was carried out. A total of 12,780 Arab-
idopsis orthologs and 12,615 rice orthologs were
obtained (only protein-coding genes with TSS infor-
mation was considered) using the g:Orth program of
the g:profiler software (Reimand et al., 2007), which
uses the Plant Ensembl database (Kersey et al., 2010).
Of these, 11,941 (93.4%) and 11,554 (91.6%) genes were
TPgenes in Arabidopsis and rice, respectively, and the
remaining were FNgenes. Since there were multiple
Arabidopsis orthologs for certain rice genes and vice
versa, 12,359 pairs of orthologous genes were formed.
The Dmax prediction scores for the orthologous gene
pairs (see “Materials andMethods”) have been plotted
in Figure 7 and give a correlation coefficient of 0.23.
However, if only the ortholog pairs for which the
prediction scores from the two genomes are from the
same score class or differ by one level are considered
(81% of total pairs; shown as blue +), the correlation
coefficient is 0.51.
A comparison of the relative positions and scores of

predictions in the promoter regions of certain ortho-

logous gene pairs (gene IDs are given in Supplemental
Table S4) showed that predictions of comparable
strength and relative position are found in most cases
(Fig. 8). Arabidopsis genes FAD2 (Kim et al., 2006) and
PRF1 (Jeong et al., 2006), which have regulatory first
introns, were also studied along with their rice ortho-
logs. For FAD2 (Fig. 8E), intronic predictions were
observed in the first intron of both Arabidopsis and
rice. In addition, a ncRNA gene overlapping the first
intron was found in the rice genome. The first intron of
PRF1 (Fig. 8F) in Arabidopsis is long and covers the
same length as two short introns in the rice homolog.
The prediction for rice was found in the second short
intron but at the same position from the TSS as the
intronic prediction in Arabidopsis.

As mentioned earlier, the Dmax score of a prediction
gives the relative difference in free energy between
adjacent regions. The question then arises, can the
score give an idea of the “strength” of the predicted
promoter? For example, it has been shown that CpG
islands are generally found upstream of housekeeping
genes, whereas tissue-specific genes have strong pro-
moters usually containing a TATA box. It would be
interesting to see if the relative differences in DNA free

Figure 5. Genes without a prediction in the TP
region (FNgenes). AFE profile comparison is shown
between FNgenes and all genes of chromosome 1 with
respect to TSS for Arabidopsis (A) and rice (B). The
number of genes considered in each case is indicated
in parentheses. [See online article for color version of
this figure.]
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energy can capture the promoter strength. We catego-
rized the TPgenes from certain families, metabolic path-
ways (Mueller et al., 2003; Jaiswal et al., 2006), and GO
terms (Gene Ontology Consortium, 2000) according to
their score categories (Fig. 6). Most of the gene sets
studied showed similar score distributions in the two
genomes. For example, about 50% of genes involved in
inflorescence had “very high” and “highest” scores in
both genomes, which might indicate their tissue-specific
roles. Also, 60% to 80% of predictions for heat shock
proteins fall into the top three score categories. However,
constitutively expressed genes such as ubiquitin and
tubulin did not show such similarities, possibly owing to
different expression rates for the protein isoforms.

Comparison of PromPredict Performance with EP3

We compared the programs PromPredict and EP3
for whole-genome prediction in Arabidopsis and rice
(Table V). For both programs, we considered the
predictions within 2500 to +500 bp for determining
true positives, since that is the criterion used in EP3.
The F value (harmonic mean of the recall and preci-
sion) calculated shows that PromPredict gives better
prediction performance than EP3. However, the EP3
program gives slightly higher F values in the rice
genome for protein-coding genes. Interestingly, Prom-
Predict is able to predict cis-regulatory sites for ncRNA
genes with much higher sensitivity and precision than
EP3. It should be noted that all PromPredict predic-
tions within 2500 to +500 bp are considered irrespec-
tive of their score. If only the three higher score classes
are considered, the F value would improve, as seen in
Table III.

We believe that the recall and precision values do
not give a complete picture of the prediction quality. In
order to be useful in guiding experimental analysis
and annotation, it is important to have predictions of
appropriate length. One of themajor drawbacks of EP3
is that it uses nonoverlapping windows of fixed 400-
nucleotide length for prediction. As a result, large
chunks of the genome are predicted that might not be
amenable to experimental validation. PromPredict, on
the other hand, calculates free energy over overlap-
ping windows of 100-nucleotide length and assigns it
to the midpoint of the window. Thus, the prediction
length varies (maximum of 300 nucleotides) depend-
ing on the local free energy in adjacent windows. The
prediction coverage of the TP and FP regions indicates
the percentage length of the region that is predicted to
be “true.” The overall percentage of genome length
covered by TP and FP predictions is significantly
lower for PromPredict as compared with EP3. Overall,
PromPredict gives a better performance for promoter
prediction in plants than EP3.

DISCUSSION

The program PromPredict gives relatively good per-
formance for the plant genomes of Arabidopsis and
rice, although its cutoffs have been derived from pro-
karyotic analysis. The AFE profiles for plant genomes
(Fig. 1) and prokaryotes (Rangannan and Bansal,
2009) are not identical, but the difference in free en-
ergy between upstream and downstream sequences
is seen in both profiles, which is the prediction cri-
terion used by PromPredict. Interestingly, the cutoffs

Figure 6. Classification of gene families, metabolic pathway genes, and genes from specific GO terms for Arabidopsis (A) and
rice (B) according to the TP with the highest prediction score present within2500 to +100 bp of the TSS. The distribution of the
score categories is presented as a percentage of the TPgenes present in that category. The number adjacent to each bar indicates the
number of TPgenes. [See online article for color version of this figure.]
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derived by training on prokaryotes show good per-
formance for eukaryotes (as shown here for plant
genomes). However, slightly tweaking the cutoffs
might give better predictions for each genome, and the
prediction score classes outlined in Table III can serve
as alternative cutoffs for achieving the required per-
formance.
We compared the performance parameters of Prom-

Predict with EP3, which is the only other program that
predicts extended promoters in plant genomes (Table
V). PromPredict gave better F values than EP3 except
for protein-coding genes in rice. However, precision
and recall parameters take only the number of predic-
tions into consideration and ignore their length. Lon-
ger predictions could (wrongly) give better values for
these parameters but would, in turn, increase the
amount of experimental testing required. The EP3
algorithm gives longer and fixed length predictions
that contribute significantly to the TP and FP regions
as compared with PromPredict. PromPredict gives a
much better performance for ncRNA genes than EP3
for both plant genomes, even though EP3 is based on
similar parameters. Most motif searching and trained
algorithms such as ARTS, Eponine, and ProSOM that
look for consensus sequences or patterns are also
expected to give a poor performance for ncRNA genes,
because the organization of PolII promoters differs
from PolI (Russell and Zomerdijk, 2005) and PolIII
(Geiduschek and Kassavetis, 2001) promoters.
The two plant genomes were compared with respect

to genome characteristics as well as prediction char-

acteristics. The precision value obtained for rice was
lower than for Arabidopsis due to the presence of
higher FPpred.. However, this might be a result of
longer primary transcripts in the rice genome, which
have a preponderance of intronic regions. Predictions
obtained in the primary transcript, especially in non-
coding regions, cannot be ignored, as these might be
alternative promoters or promoters for downstream
genes. Yang (2009) has shown that broadly expressed
genes in Arabidopsis and rice have longer noncoding
regions, which might play a regulatory role. Carninci
et al. (2006) have shown that alternative promoters
present within primary transcripts are responsible
for tissue-specific expression in humans. Forty-eight
percent of oligo(dT)-primed CAGE libraries and 34%
of random-primed CAGE libraries have at least one
alternative promoter overlapping the sequence of
known or predicted transcripts. Also, TSSs have been
found in the 3# UTR of certain protein-coding genes,
which may code for transcripts that regulate down-
stream genes on the same or opposite strands. More-
over, regions located downstream of the TSS, such as
introns (Rose, 2008; Rose et al., 2008) and 5# UTRs (Lu
et al., 2008), have been shown to be involved in the
regulation of transcription by acting as enhancers or
through mechanisms such as intron-mediated en-
hancement. Noncoding regions might also be involved
in replication, transcription of regulatory ncRNAs,
and transposition. Zhu et al. (2010) have shown that
short conserved introns (50–150 nucleotides) in hu-
man and mouse show preferential location (3# UTRs

Table V. Comparison of PromPredict with EP3 (Abeel et al., 2008a)

In Arabidopsis, 20,094 (protein-coding) and 1,263 (RNA-coding) TSSs were considered for analysis. In
rice, 23,057 (protein-coding) and 1,527 (RNA-coding) TSSs were considered for analysis. For Arabidopsis,
PromPredict gave 386,264 predictions while EP3 gave 594,559 predictions. PromPredict predicted
1,284,547 signals and EP3 predicted 1,611,598 signals in the rice genome. The region considered for
determining true positives is 2500 to +500 bp of the TSS for protein-coding genes and 21,000 to 0 bp of
the TSS for ncRNA genes.

Feature
PromPredict EP3

Protein RNA Protein RNA

Arabidopsis
Recall 0.96 0.94 0.48 0.28
Precision 0.42 0.75 0.49 0.51
F value 0.58 0.83 0.48 0.37
TPpred. length (nucleotides)a 71.6 6 47.8 64.6 6 45 400 400
FPpred. length (nucleotides)a 53.9 6 38.9 61.6 6 41.9 400 400
TP coverage (%) 13.9 12.7 50.7 46
FP coverage (%) 7.5 7.6 13.2 24.5

Rice
Recall 0.97 0.95 0.77 0.15
Precision 0.31 0.9 0.62 0.86
F value 0.47 0.92 0.53 0.26
TPpred. length (nucleotides)a 94.6 6 60.1 66.2 6 48.8 400 400
FPpred. length (nucleotides)a 60.7 6 44.5 45.8 6 36.2 400 400
TP coverage (%) 17.9 14.2 51.8 7.6
FP coverage (%) 8.5 6 10.4 6.7

aIn PromPredict, the midpoint of a 100-nucleotide window is considered as a prediction if it satisfies the
cutoffs. In EP3, the entire 400-nucleotide window is considered as a prediction if it satisfies the cutoffs.
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of universally expressed housekeeping genes) and
nonrandom chromosomal distribution. They specu-
late that these introns might play regulatory roles in
gene expression and nucleocytoplasmic transcript
export.

Our analysis showed that about 95% to 96% of
predictions were found in the noncoding region of the
primary transcript, a majority of which were found in
the introns and may be valid TSSs or cis-regulatory
sites (Table IV). Also, we analyzed 24 introns that have
been experimentally shown to regulate expression in
Arabidopsis and rice (Table VI), out of which 21 were
detected by PromPredict to contain a promoter signal.
The introns closest to the TSS are suggested to be most
important for the regulation of transcription, and
interestingly, 20% of our FPpred. are found in the first
intron alone. The remaining intronic predictions (50%
of total FPpred.) might be signals for other processes,
such as splicing in RNAs.

In order to determine the core promoters, the pre-
dictions closest to the TSS were considered for both
protein-coding and ncRNA genes (Fig. 2). The predic-
tions in Arabidopsis are concentrated closer to the TSS
than in rice. However, the free energy of distal predic-
tions is comparable to that of proximal predictions
(Fig. 3), indicating that these might be putative core
promoters and not prediction artifacts. Thus, it seems
that free energy peaks might be present at different

positions relative to the TSS for eukaryotic genes, in
contrast to prokaryotic genes, where the peak is only
localized close to the TSS (Rangannan and Bansal,
2009).

A genome-wide analysis of prediction scores in
orthologous gene pairs gave a good correlation be-
tween the highest score TPpred. for each ortholog mem-
ber (Fig. 7). A finer analysis of promoter organization
in certain ortholog pairs further showed that the
predictions in the vicinity of the TSS not only have
comparable scores but also similar locations with re-
spect to TSS (Fig. 8). Hence, there seems to be a good
relationship between the promoter predictions in
orthologous genes, and we propose that our predic-
tions can also be used for studying promoter regions in
these genes.

The AFE for FNgenes showed a different profile than
that observed for all genes, especially in rice (Fig. 5).
The presence of alternative structural profiles for
bendability in human promoters has been reported
(Florquin et al., 2005; Zeng et al., 2009). The presence
of such alternative structural profiles might point
toward different regulatory architectures that enable
spatiotemporal expression specificity in eukaryotes.
Hence, alternative free energy profiles (and other
structural profiles) could be explored in plants to gain
a better understanding of the promoter region and
regulation.

Table VI. Regulatory introns and predictions

Some Arabidopsis and rice introns are known to regulate expression. The majority of these have an overlapping PromPredict prediction. The first
intron in all the genes was involved in regulation, except for TWN2, where the first two introns were involved.

Gene Prediction Strength Reference

Arabidopsis
RHD3 (At3g13870) No prediction Wang et al. (2002)
Histone H3 (At4g40040) Medium Chaubet-Gigot et al. (2001)
Histone H3 (At4g40030) Low Chaubet-Gigot et al. (2001)
EF-1a A1 (At1g07920) Very high/medium Curie et al. (1993)
EF-1a A3 (At1g07940) High/medium Chung et al. (2006)
eEF-1b (At2g18110) Medium Gidekel et al. (1996)
TWN2 intron 1 (At1g14610) No prediction Zhang and Somerville (1997)
TWN2 intron 2 (At1g14610) High Zhang and Somerville (1997)
Cox5c-1 (At2g47380) Medium Curi et al. (2005)
Cox5c-2 (At3g62400) High/medium Curi et al. (2005)
ACT1 (At2g37620) High/medium Vitale et al. (2003)
KC01 (At5g55630) Medium Czempinski et al. (2002)
PRF1 (At2g19760) High Jeong et al. (2006)
PRF2 (At4g29350) Medium Jeong et al. (2006)
ADF1 (At3g46010) High Jeong et al. (2006)
FAD2 (At3g12120) High/medium Kim et al. (2006)
SUVH3 (At1g73100) Medium Casas-Mollano et al. (2006)
ATMHX (At2g47600) No prediction David-Assael et al. (2006)
UBQ3 (At5g03240) Medium Norris et al. (1993)
UBQ10 (At4g05320) High Norris et al. (1993)
ATPK1 (At3g08730) High/medium Zhang et al. (1994)

Rice
TPI (Os01g0147900 Medium Xu et al. (1994), Snowden et al. (1996)
GAMyb (Os01g0812000) Medium Washio and Morikawa (2006)
RPBF (Os02g0252400) Highest/very high/medium Washio and Morikawa (2006)
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CONCLUSION

We show here that the program PromPredict per-
forms quite well in predicting cis-regulatory regions in
plant genomes. This is indeed surprising, since the
program has been trained on prokaryotes. It seems
that the relative free energy difference criterion used in
this program is a general property found in the vicinity
of the TSS, as shown in the human genome by Abeel
et al. (2008a). Hence, PromPredict might also be ex-
pected to perform well for other plants and eukary-
otes.
The program is based on simple prediction criteria

that are easy to program, and further enhancement of
the program with other features might give better
results. Since PromPredict predictions are biased to-
ward unstable and hence AT-rich regions, comple-
menting the programwith other motifs like the Ypatch
or GA motif (Yamamoto et al., 2009) could be benefi-
cial.
As our understanding of transcription develops, the

actual complexity of the processes involved in gene
regulation is revealed. Determination of putative reg-
ulatory sites where transcription factors could bind is
but a small step in trying to understand the huge
orchestra of regulatory mechanisms involved. It is
difficult to make a one-to-one correlation between the
cis-regulatory region and the corresponding regulated
gene. In eukaryotic genomes, the sites involved in the
regulation of a gene may vary in different tissues,
adding to the complexity of the problem. This is
further complicated by factors such as combinatorial
regulation, nucleosome binding, and epigenetic mod-
ifications. Yet, common themes and patterns of regu-
lation can be observed, as seen in this study. A

combinatorial approach involving sequence and struc-
tural studies, both theoretical and experimental,
would be most useful to further explore the mecha-
nisms of transcription regulation.

MATERIALS AND METHODS

Data Sets

The Arabidopsis (Arabidopsis thaliana) genome and annotation data were

extracted from the TAIR9 release of The Arabidopsis Information Resource

(TAIR; Arabidopsis Genome Initiative, 2000; Rhee et al., 2003). The TAIR9

release contains multiple gene models for certain genes. Since we are consid-

ering the TSS positions in our analysis, gene models with overlapping or

proximal TSSs will result in misrepresentation of the results. Hence, for TSSs

(of the same gene) within 100 nucleotides of each other, only the most

upstream TSS is considered. Applying this constraint, we have a data set of

20,094 protein-coding gene models with TSS information and 1,263 ncRNA

gene models. Also, gene models with only TLS information were sorted so

that gene models with TLSs at least 100 nucleotides apart are selected for a

particular gene, to give the TLS data set of 8,195 genes. The Web browser for

visualizing predictions shows all the gene models.

The rice (Oryza sativa ssp. japonica ‘Nipponbare’) genome was extracted

from the Rice Annotation Project Database (RAPDB) Build 4 (Rice Annotation

Project, 2007, 2008). The protein-coding genes with TSS information (23,057

genes) and ncRNA genes (1,527 genes) were considered for analysis. A total of

1,152 non-protein-coding primary transcripts were also considered for anal-

ysis. The latest build of RAPDB (Build 5) has 31,232 protein-coding genes and

1,515 noncoding primary transcripts.

AFE Profile

For calculating the AFE, dinucleotide parameters based on the model

proposed by Allawi and Santalucia (1997) and Santalucia (1998) were used.

Sequences of the same length were aligned with the TSS at the 0 position. An

average profile is obtained by calculating the mean value of free energy at each

position over all the sequences. The dinucleotide parameters averaged over a

moving window of 15 nucleotides (frameshift of one nucleotide) were

assigned to the midpoint of each window in order to reduce noise.

Figure 7. Correlation between prediction scores
for orthologous genes. The highest prediction
scores corresponding to 11,941 TPgenes in Arabi-
dopsis have been plotted against the scores for
their 10,275 TPgene orthologs in rice. Since there is
more than one Arabidopsis gene ortholog for
some rice genes, 12,359 pairs of orthologous
genes were formed. The 9,976 orthologous gene
pairs with scores in the same class or differing by
one level in the two genomes (crosses) give a
Pearson correlation coefficient of 0.51 (dotted-
dashed best fit line), while a value of 0.23 is
obtained for all gene pairs (crosses and dots; solid
best fit line). [See online article for color version
of this figure.]
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PromPredict Program

The PromPredict program was first written to predict promoter regions in

prokaryotes (Kanhere and Bansal, 2005b; Rangannan and Bansal, 2007, 2009).

The program is built to predict cis-regulatory regions in a given input

sequence on the basis of relative free energy of neighboring regions in a

1,001-nucleotide-long fragment and does not require any genome-specific

training. Hence, the program can be readily used for newly sequenced

genomes for which gene and promoter information is scarce. Supplemental

Figure S3A shows the AFE values in the 22,000 to +2,000 regions relative to

TSS in Arabidopsis and rice. Supplemental Figure S3B shows the AFE values

used as cutoffs to define the promoter regions in PromPredict and the AFE

values in upstream (2500 to 0) and downstream (0 to +500) regions of

Arabidopsis and rice. The values for Arabidopsis match well with the

PromPredict cutoffs. The proximal downstream regions in rice are unusually

GC rich, leading to lower AFE values, but in general, the AFE values for

nonpromoter regions (+500 to +1,000) farther away from TSSs are similar to

the cutoffs used in PromPredict.

PromPredict considers (1) the absolute free energy (E1) averaged over each

overlapping window of a 100-nucleotide sequence (frameshift of one nucle-

otide) and (2) the relative free energy difference (D) of E1with the free energy

(E2) averaged over a downstream 100-nucleotide sequence separated by 50

nucleotides in the 5#/3# direction. The free energy is calculated using the

dinucleotide parameters based on the model proposed by Allawi and

Santalucia (1997) and Santalucia (1998) as a sum over 15 nucleotides. The

parameters E1 and D are then compared with predefined cutoff values

(Supplemental Table S1). A sliding superwindow of 1,001 nucleotides (with a

frameshift of 750 nucleotides) is used to determine the average GC content

range used for cutoff values for each 100-nucleotide window within this

superwindow. Further details of the algorithm are given in Supplemental

Protocol S1. We have used the latest version of the program described by

Rangannan and Bansal (2010).

Performance Evaluation and Comparison

The performance of PromPredict on rice and Arabidopsis genomes was

evaluated using the distance-based cutoff as described by Bajic et al. (2004)

and Abeel et al. (2009). It is obvious that the performance of a program would

improve if the region considered for determining true positives was increased.

However, the cis-regulatory regions are generally found within a particular

distance upstream of the TSS/TLS and in some regions within the primary

transcript, such as the 5# UTR. The optimal length of this region largely

depends on the organism under study. Previous analyses have considered a

TP region of 2150 to +50 bp for prokaryotes (Rangannan and Bansal, 2009),

2500 to +500 bp for eukaryotes (Abeel et al., 2008a, 2009) with respect to TSS,

and2500 to 0 bp for prokaryotes with respect to TLS (Rangannan and Bansal,

2009), where the 0 position corresponds to the TSS/TLS. For rice and

Arabidopsis, we found that approximately 50% of the genes have a 5# UTR

length of 100 nucleotides or less (Table I). Hence, in our analysis, we

considered the region2500 to +100 bp with respect to the TSS for determining

true positives in protein-coding genes while the region 21,000 to 0 bp of the

TSS/TLS was considered for ncRNA genes and for genes with only TLS

information. For comparison of our results with EP3, we considered the region

2500 to +500 bp with respect to the TSS for protein-coding genes and 21,000

to 0 bp of the TSS for ncRNA genes.

The least stable position of a prediction was considered as a single-

nucleotide metric for defining true and false predictions to avoid ambiguity

due to overlapping with the TP region. Therefore, any prediction with its least

stable position lying within the TP region was considered as a TPpred., while

any prediction (least stable position) lying within the transcribing region of a

gene but not within the TP region (FP region) was considered as a FPpred.. The

genes that have at least one TPpred. within the TP region of its TSS were

considered as TPgenes. The genes that did not have any predictions within the

TP region were considered as FNgenes. The performance parameters were

defined as follows:

Figure 8. Promoter predictions for six orthologous genes are shown for Arabidopsis (blue) and rice (red). The TSSs of the
orthologs are aligned and correspond to nucleotide position 0 on the x axis. The orthologous genes are shown schematically at
the bottom. Gray bars represent UTRs, thin black bars correspond to introns, and brown bars represent exons. The y axis indicates
the Dmax score of the prediction. Only predictions within 2500 to +100 bp of the TSS are true positives in each case. The six
representative genes shown are Asp aminotransferase (A), copper/zinc (Cu/Zn) superoxide dismutase (B), Dof gene family (C),
P-type ATPase (D), FAD2 (E), and PRF1 (F). The first intron for Arabidopsis genes in E and F has been shown to have regulatory
functions. A ncRNA gene coincides with the first intron of the rice FAD2 gene as shown in E.

Morey et al.
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Precision ¼ TPpred:

TPpred: þ FPpred:

Recall ¼ TPgenes

TPgenes þ FNgenes

F value ¼ 23Precision3Recall

Precision þ Recall

We also mention the average prediction length and the percentage pre-

diction coverage of the TP region and FP region when comparing programs.

The latter statistic indicates the percentage length of the TP or FP region that a

program predicts to be true.

Prediction Score Categorization

The D value of a prediction reflects the difference in free energy of a

prediction from its downstream region. Since an unstable region in a com-

paratively stable environment in DNA is a characteristic of promoter regions,

we used the D value to determine the relative score of predictions. The Dmax

for all predictions in Arabidopsis and rice were pooled, and the mean and SD

for these data were calculated. Dmax cutoffs for categorizing predictions

(Supplemental Table S2) were calculated on the basis of the GC content of a

1,001-nucleotide fragment (superwindow) containing the prediction. One of

the following five score classes was assigned to each prediction depending on

the score of theDmax value of a prediction: (1) highest (Dmax .mean + 2 SD); (2)

very high (mean + SD ,Dmax ,mean + 2 SD); (3) high (mean, Dmax ,mean +

SD); (4) medium (mean2 SD ,Dmax ,mean); (5) low (cutoff,Dmax ,mean2
SD). Also, the genes were categorized according to the score class of the

prediction with the highest score present within2500 to +100 bp of its TSS. All

the predictions thus categorized according to their scores can be browsed

online in the genome browser PlantcisProm constructed using Bioperl (Stein

et al., 2002) along with annotated genes (see below).

Web Resources

The PlantcisProm genome browser (http://nucleix.mbu.iisc.ernet.in/

plantcisprom) can be used to browse the whole-genome promoter predictions

along with gene annotations for Arabidopsis and rice genomes. The Prom-

Predict Web server (http://nucleix.mbu.iisc.ernet.in/prompredict/prompredict.

html) can be used to predict promoter regions in the input sequence. Down-

loadable versions of the program are available for short (less than 10 Mb) and

long (more than 10 Mb) genomic sequences.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. GC content distribution for Arabidopsis and rice

sequences in the vicinity of the TSS.

Supplemental Figure S2. AFE profile variation with GC content for

sequences in the vicinity of the TSS.

Supplemental Figure S3. Comparison of AFE values in the vicinity of the

TSS with cutoff values used in PromPredict.

Supplemental Figure S4. Derivation of cutoff values for prediction score

categories of Arabidopsis and rice predictions.

Supplemental Figure S5. Percentage frequency distribution of tetramers

in the core promoter and the 1,001-nucleotide region surrounding the

TSS.

Supplemental Figure S6. GO categorization of all genes and TPgenes from

rice chromosome 1.

Supplemental Table S1. Cutoff values for PromPredict.

Supplemental Table S2. Cutoff values for prediction score categories.

Supplemental Table S3. GO categorization of TPgenes and FNgenes from

Arabidopsis.

Supplemental Table S4. Gene IDs for orthologous genes.

Supplemental Protocol S1. Details of the PromPredict algorithm.

Supplemental Protocol S2. GO SLIM categories
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