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One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic
and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes
a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of
2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35
cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along
with genes of known function. A global network alignment was made between this maize network and a previously described
rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network
topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into
154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study
provides an early view into maize coexpression space and provides an initial network-based framework for the translation of
functional genomic and genetic information between these two vital agricultural species.

The combination of genomics, genetics, and systems-
level computational methods provides a powerful ap-
proach toward insight into complex biological systems.
Of particular significance is the discovery of genetic
interactions that lead to desirable agricultural and eco-
nomic traits in the Poaceae family (grasses). The Poa-
ceae includes valuable crops such as rice (Oryza sativa),
maize (Zea mays), wheat (Triticum spp.), and sugarcane
(Saccharum officinarum), which are globally some of the
most agriculturally and economically important crops
(FAOSTAT, 2007). Understanding complex interactions
underlying agronomic traits within these species, there-
fore, is of great significance, in particular to help with
crop improvements to meet the challenges of plant and
human health but also for basic understanding of
complex biological systems.

In addition to their pivotal role in agriculture, gras-
ses offer a powerful model system in that their ge-
nomes are closely conserved and functional genomic
knowledge gained in one species can be hypothesized
to occur in another syntenic region (translational func-

tional genomics; Paterson et al., 2009). In cases of grass
species with poorly resolved, polyploid genomes such
as sugarcane, where genomic resources are not as far
progressed as in other grasses (e.g. rice, sorghum
[Sorghum bicolor], maize, etc.), translational functional
genomics methods may be the most cost-effective
strategy for crop improvement as well as for unravel-
ing the functional consequences of polyploidy. Ad-
ditionally, crops rich in genetically mapped loci
deposited in sites like Gramene (Jaiswal, 2011) provide
a rich source of systems genetic hypotheses that could
in principle accelerate the translation of interacting
gene sets associated with complex traits into grasses
with poor genetic resources (Ayroles et al., 2009; Wang
et al., 2010).

One method of identifying interacting gene sets is
through the construction of a gene coexpression net-
work, which is constructed through the discovery of
nonrandom gene-gene expression dependencies mea-
sured across multiple transcriptome perturbations,
often derived from a collection of microarray data
sets. During coexpression network construction, the ten-
dency of m transcripts to exhibit similar (or not) expres-
sion patterns across a set of nmicroarrays is determined.
In the case where dependency is determined via a
correlation metric (e.g. Pearson’s r), a comprehensive
m 3 m matrix of correlation values is generated, which
represents expression similarity. The “similarity matrix”
is then thresholded to form an “adjacency matrix,”
which represents an undirected graph where edges
(coexpression) exist between two nodes (transcripts)
when a correlation value in the matrix is above the
significance threshold. Computational methods are then
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applied to circumscribe groups of network nodes that are
highly connected (coexpressed gene “modules”; Langfelder
and Horvath, 2008; Li and Horvath, 2009; Chang et al.,
2010; Rivera et al., 2010; Xu et al., 2010). It has been
shown that genes in these modules participate in sim-
ilar biological processes; therefore, guilt-by-association
inferences can be applied to module genes with no
known function that are connected to module genes of
known function (Wolfe et al., 2005; Aoki et al., 2007).
Global coexpression networks are those that incor-

porate expression data from a variety of tissues, devel-
opmental stages, and environmental conditions into a
single network, the goal being to capture stable coex-
pression relationships across a diverse collection of
experimental perturbations. Global gene coexpression
networks maintain similar properties as other naturally
occurring networks, such as human social networks
and protein-protein interaction networks. These net-
works tend to be scale free, small world, modular, and
hierarchical (Ravasz et al., 2002; Barabási and Oltvai,
2004). Detailed descriptions of these properties can be
found in the report by Barabási and Oltvai (2004).
Plant coexpression networks have previously been

constructed forArabidopsis (Arabidopsis thaliana; Persson
et al., 2005; Wei et al., 2006; Mentzen et al., 2008;
Atias et al., 2009; Mao et al., 2009; Wang et al., 2009; Lee
et al., 2010; Mutwil et al., 2010), barley (Hordeum
vulgare; Faccioli et al., 2005), rice (Lee et al., 2009;
Ficklin et al., 2010), poplar (Populus spp.; Ogata et al.,
2009), and tobacco (Nicotiana tabacum; Edwards et al.,
2010). Several online plant resources also exist for
searching coexpression relationships within and
sometimes between these species as well as incorpo-
rating functional and other data types. These include
the Arabidopsis Coexpression Toolkit (Manfield et al.,
2006), STARNET 2 (Jupiter et al., 2009), RiceArrayNet
(PlantArrayNet; Lee et al., 2009), ATTED-II (Obayashi
et al., 2009), the Coexpressed Biological Processes
database (Ogata et al., 2010), AtCOECiS (Vandepoele
et al., 2009), The Gene Coexpression Network Browser
(Ficklin et al., 2010), AraNet (Lee et al., 2010), and a
second AraNet (Mutwil et al., 2010). Clearly, there is a
burgeoning interest in using a network approach to
discover gene-gene dependencies across the field of
plant biology.
Given the recent and rapid increase of available

biological networks, an important method is the iden-
tification of common patterns of connectivity between
two networks. Internetwork comparisons are used for
several purposes, including improved identification of
functional orthologs between species (Bandyopadhyay
et al., 2006) and identification of evolutionarily con-
served subgraphs, or sets of highly connected genes
that demonstrate conserved function (Stuart et al.,
2003). Several different network comparison methods
exist that perform either local or global comparisons.
Local network alignments attempt to align small sub-
sets of nodes between multiple networks, whereas
global network alignments attempt to find the best
alignment of all nodes in one network with another

(Singh et al., 2008). Various heuristics exist for global
alignment of two or more networks, and typically these
methods first use homology to prioritize the alignment
of nodes and then incorporate a measure of topology to
refine alignments (Hu et al., 2005; Flannick et al., 2009;
Kalaev et al., 2009; Liao et al., 2009; Zaslavskiy et al.,
2009; Chindelevitch et al., 2010). Some methods strictly
use topology to guide alignments (Kuchaiev et al.,
2010), given that network motifs are often conserved in
functionally related systems (Milo et al., 2002; Shen-Orr
et al., 2002). The majority of network alignment meth-
ods have been used to align protein-protein interaction
networks, whereas one method has recently been pub-
lished for the alignment of gene coexpression networks
(Zarrineh et al., 2011).

This study adds to the growing compendium of
systems-level knowledge for plants by first describing
a maize gene coexpression network, and then through
a global network alignment with a rice coexpression
network (Ficklin et al., 2010) we identified common
subgraphs of coexpressed gene sets between the two
grass species. For network alignment, we applied a
tool, IsoRankN (Liao et al., 2009), which incorporates
both gene homology and network topology in its
alignment algorithm. The use of homology contributes
conservation of sequence, and topology contributes
conservation of coexpression—both of which are as-
sociated with functional relatedness. We describe the
discovery of multiple sets of modules between rice
and maize that are both enriched for similar functional
terms and that are potentially evolutionarily con-
served between the two grasses. This functional sim-
ilarity between modules in maize and rice seems to
agree with the idea that function may be translated
through the aligned nodes of two networks. This may
serve as a method for identifying functional modules
in other grass species. Phenotypic associations avail-
able in the rice network may also provide an initial
glimpse at the possibilities of translational systems
genetics from rice to maize and other cereals. In prac-
tice, this method may assist with the prioritization of
genes for future mutational studies.

RESULTS

Maize Coexpression Network Construction

The maize coexpression network was constructed
using 253 Affymetrix Maize GeneChip Genome Array
microarray samples obtained from the National Cen-
ter for Biotechnology Information (NCBI) Gene Ex-
pression Omnibus (GEO) repository. A listing of these
array accessions and the experimental conditions
under which the transcriptome was measured can be
found in Supplemental Table S1. Construction of the
maize network was performed using the same method
as published previously for rice (Ficklin et al., 2010).
Maize microarray data sets were Robust Multichip
Average (RMA) normalized (Irizarry et al., 2003), and
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40 outlier arrays were removed using the R/array-
QualityMetrics package (Kauffmann et al., 2009).
Upon inspection, these outliers seemed to be a result
of low-quality hybridizations or nonstandard experi-
mental conditions and did not appear to derive from a
common biological system. Next, all pairwise gene
expression correlations were determined (Pearson’s r).
The resulting correlation (similarity) matrix was used
as input into both the Weighted Correlation Network
Analysis (WGCNA) soft-threshold (Langfelder and
Horvath, 2008) and Random Matrix Theory (RMT)
hard-threshold (Luo et al., 2007) methods for network
construction. The WGCNAmethod identified a power
of 6 to power raise the similarity matrix and later
divided the network into 34 distinct gene modules,
whereas 45 modules were detected for rice (Table I).
The relationship between maize modules in terms of
similarity of expression is shown in Supplemental
Figure S1. The RMTmethod provided a hard-threshold
cutoff value of 0.5781 for the WGCNA power-raised
matrix. This is the point where the nearest-neighbor
spacing distribution within the network transitions
from what would appear as random noise to nonran-
dom signal (x2; P . 0.001). The final maize network
consisted of 31,983 edges between 2,708 probe sets
(2,071 gene models), which corresponds to 15.4% of the
original probe sets on the array (Table I). A global view
of the maize coexpression network can be seen in
Figure 1, where individual modules are distinctly col-
ored. A detailed list of edges for the maize network can
be found in Supplemental Table S2. The maize network
is available online, along with the previously described
rice network, for browsing and searching at http://
www.clemson.edu/genenetwork. Network properties,
such as node degree and clustering coefficient distri-
butions, can be found in Supplemental Figure S2.

Functional Enrichment and Clustering of Coexpressed

Maize Gene Modules

Functional enrichment was performed for each of the
34 modules identified by WGCNA using annotation
terms fromGeneOntology (GO; Ashburner et al., 2000),
InterPro (Apweiler et al., 2001), and Kyoto Encyclope-
dia of Genes and Genomes (KEGG; Kanehisa et al.,
2008) using an in-house method similar to the tool
DAVID (for Database for Annotation, Visualization,
and Integrated Discovery; Dennis et al., 2003; Huang
et al., 2009). A total of 1,928 unique annotation terms
were found to be enriched in the maize modules
(Fisher’s exact test; P , 0.1). Cofunctional clusters, or
subsets of nodes within a module that share enriched
functional annotation, were identified using the DAVID
approach. The identified clusters were sorted first by
average connectivity (,k.) and second by enrichment
score (e-score), the geometric mean of enrichment P
value. A total of 35 cofunctional gene clusters identified
from 596 enriched terms were found within 10 mod-
ules. Detailed lists of probe sets and genomic loci within
modules and cofunctional clusters, as well as enriched
annotation terms, can be found in Supplemental Tables
S3 to S6. A total of 383 maize loci are represented in the
network with no known functional annotation (Sup-
plemental Table S7). Of these, approximately 50%, or
193 of the 391 genes of unknown function, have 3,092
coexpressed edges with genes in cofunctional clusters
(Supplemental Table S8). Therefore, it may be possible
to infer function for these loci using the principle of
guilt by association.

Interestingly, cofunctional clusters ordered first by
,k. in both the maize and rice networks seem quite
similar. A list of the top-10 ordered clusters in both
networks can be seen in Table II. For example, the
highest ordered maize cluster by ,k. was enriched

Table I. Characteristics of the rice and maize networks

Characteristic Rice Network Maize Network

Array Affymetrix Rice GeneChip Affymetrix Maize Gene Chip
NCBI GEO accession for array GPL2025 GPL4032
Probe sets on array 54,168 17,555
Genomic loci mapped to probe sets 46,499 14,792
Microarray samplesa 508 253
WGCNA selected power threshold 4 6
WGCNA module dendrogram cutoff 0.20 0.20
RMT hard threshold 0.7101 0.5781
Probe sets in network 4,528 2,708
Edges in probe set network 43,144 31,983
Loci in network 2,257 2,071
Edges in loci network 32,820 33,397
Modules 45 34
Enriched terms 2,373 1,928
Functional clusters 76 35
Clustered terms 960 596
Enriched phenotypic terms 17 N/Ab

aNumber of samples remaining after outlier detection and removal. bN/A, Not applicable.
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for functional terms related to the ribosome and trans-
lation (module ZmM6C25:,k. = 20.2, e-score = 2.62).
Similarly, the corresponding rice cluster was also
enriched for terms related to the ribosome and trans-
lation (module OsM6C25: ,k. = 17.0, e-score = 1.98).
The second highest maize cluster was enriched for
seed storage activity (ZmM5C1: ,k. = 10.0, e-score =
3.38), as was the third highest rice cluster (OsM13C1:
,k. = 12.9, e-score = 12.22). Additional top-10 or-
dered clusters with similar annotation terms in both
maize and rice, although not in the same order, include
clusters enriched for photosynthesis, glycolysis, and
microtubule activity.

Rice and Maize Coexpression Network Alignment

Using the constructed maize network, a comparison
with the existing rice network was performed with the
goal of identifying evolutionarily conserved coexpres-
sion patterns. A comparative summary of the statistics
for both the rice and maize networks can be seen in
Table I. To allow for direct comparison of various
network alignment methods, the probe set-based net-
works were first condensed into a locus-based network
that contained 2,071 loci for maize and 2,257 loci for rice
(Supplemental Tables S9 and S10). IsoRankN (Liao
et al., 2009) was used to perform global alignments be-
tween the maize and rice networks. To help clarify the
meaning of the various modules, clusters, and sub-
graphs constructed with this analysis, we provide def-
initions as well as naming conventions (Table III).

IsoRankN provides three input parameters that affect
the results of the network alignments. These parameters
include an iteration parameter, a threshold parameter,
and an a value. Documentation for IsoRankN indicates
that the iteration parameter should vary between 10
and 30, the threshold between 1e-3 and 1e-5, and the
a value between 0 and 1. The a value controls the
contribution of homology and topology; a value of 0
would strictly use homology for alignments, whereas
1 would strictly use topology. A value of 0.5 would
weight equally the contributions of both homology
and topology. Therefore, to identify an adequate set of
parameters for IsoRankN for alignment of the rice and
maize networks, these parameters were varied from
one extreme to the other within the suggested docu-
mented ranges. In total, 189 tests were performed. To
measure the change of the biological signal caused
by varying these parameters, we used k statistics to
provide a measure of functional similarity between
conserved subgraphs. Functional enrichment was per-
formed for each conserved subgraph in both maize and
rice. The similarity of terms enriched in corresponding
conserved subgraphs of maize and rice is measured
by the k score, where a value greater than 0 indicates
that the conserved subgraph in rice is similar, more
than could be expected by chance, to the corresponding
subgraph in maize. A value of 1 indicates that the
two are identical in terms of enriched terms. A plot
of average k scores and subgraph counts across 20
a values, for an iteration value of 30 and threshold
value of 1e-4, is shown in Figure 2. Aside from the

Figure 1. Maize coexpression network. Nodes
are probe sets from the Affymetrix GeneChip
Maize Genome Array. Edges indicate significant
coexpression between probe sets above a hard
threshold. The various colors indicate the differ-
ent modules of the network.

Maize-Rice Coexpressed Gene Modules

Plant Physiol. Vol. 156, 2011 1247



extreme a values near 0 and 1, the functional similarity
of conserved subgraphs is relatively consistent across
the a values. The graph in Figure 2 was effectively
identical for each combination of iteration and thresh-
oldwe tested. This similarity indicates that convergence
of the alignment occurs at low stringency and that
selection of almost any parameter blend for those we
selected for testing would be effective. The k score (or
functional similarity) of the subgraphs in rice andmaize
at an a value of 0 is very high; however, the number of
conserved subgraphs at that value is very low. The
opposite is true for an a value of 1. It seemed that most
parameter sets, aside from the extreme a values, would
generate an adequate set of subgraphs with a reason-
ably high average similarity (average k), so we selected
conserved subgraphs derived from alignments from
IsoRankN using an a value of 0.8, an iteration value of
30, and a threshold of 1e-4, because this particular com-
bination of parameters seemed to provide the highest
average k. Because average k score and subgraph count

were very similar across all parameter variations, we
only present here a single representative result set.
Using these parameters, we detected 1,173 aligned loci,
which were later connected into 154 conserved sub-
graphs. These subgraphs preserved 4,758 edges in rice
and 6,105 edges in maize (Supplemental Tables S11 and
S12). Functional enrichment and clustering, identical to
that performed for the network modules, was per-
formed for these subgraphs as well. The cofunctional
clusters of these conserved subgraphs can be found in
Supplemental Tables S13 and S14.

Common Function in Conserved Maize-Rice Subgraphs

For the IsoRankN alignments, functional enrich-
ment and k analysis of the conserved subgraphs
yielded nine subgraphs with a perfect k score of 1,
indicating an identical set of enriched terms. These
include subgraphs enriched for early nodulin 93 pro-
teins, hydrolase activities, DNA binding, peptidase,

Table II. Side-by-side functional comparison of top-10 maize and rice cofunctional clusters, ordered by average connectivity

Maize

Clustera
,k.b E-Scorec Summarized Function

Rice

Clustera
,k.b E-Scorec Summarized Function

ZmM2C1 20.2 2.62 Ribosome/translation OsM6C25 17.0 1.98 Ribosome/translation
ZmM5C1 10.0 3.38 Seed storage OsM6C4 14.1 4.13 Photosynthesis/light harvesting
ZmM9C1 10.0 7.25 Histone/DNA binding OsM13C1 12.9 12.22 Seed storage
ZmM1C1 10.0 1.87 Photosynthesis/light harvesting OsM6C23 10.5 2.04 Carbon fixation/carotenoid biosynthesis
ZmM4C1 8.8 4.07 Ribosome/translation OsM6C16 9.2 3.14 Photosynthesis
ZmM2C2 5.7 2.43 Translation elongation OsM2C2 7.4 5.13 Kinesin/microtubule motor activity
ZmM9C2 5.4 4.31 Histone/DNA binding OsM6C14 5.4 3.19 Glycolysis
ZmM11C1 5.3 3.05 Kinesin/microtubule motor activity OsM13C5 5.0 11.24 Transcription factor activity
ZmM1C3 4.0 2.89 Glycolysis OsM13C2 4.6 3.57 Nutrient reservoir activity
ZmM19C1 3.9 5.38 Transcription factor activity OsM6C11 3.7 4.08 Ribosome binding/protein folding

aModules are numbered sequentially starting from zero and are prefixed with the letter M. Clusters within a module are numbered sequentially and
are prefixed with the letter C. Modules and clusters are prefixed with a species abbreviation: Os for rice and Zm for maize. Thus, cluster 1 from
module 8 in rice is named OsM8C1. b,k. is the average connectivity of the nodes in the cluster. cE-score is the enrichment score, or
geometric mean of the Fisher’s test enrichment P values of the cluster.

Table III. Synopsis of subgraph definition and naming conventions

Term Definition Naming Schemaa

Subgraph Any collection of nodes and edges that form a subset of
the global network

Module A subgraph within the global network that consists of
highly connected groups of nodes; for this study,
modules are determined using the WGCNA method
that groups nodes by measures of similarity (Supple
mental Fig. S1)

SpMx

Functional cluster A functional cluster is a subgraph within a module
where the nodes have a high degree of similarity in
functional terms (e.g. GO, InterPro, and KEGG terms)

SpMxCy

Conserved subgraph A subgraph that is present in one network and has a
corresponding subgraph in another network; these
subgraphs share nodes that have been locally aligned
using a network alignment tool

subgraph_z

aFor naming, Sp indicates a two-letter species abbreviation; the M in Mx indicates the subgraph is a
module where x is the module number; C indicates a cluster followed by the cluster number, y; and z is a
four-digit number given to uniquely identify conserved subgraphs.

Ficklin and Feltus

1248 Plant Physiol. Vol. 156, 2011



nucleosome assembly, transcription factor activity, and
others (Supplemental Table S15). However, these sub-
graphs are relatively small, with two to five edges.
The four largest conserved subgraphs are enriched
for terms involved in photosynthesis, DNA replica-
tion, the ribosome, and starch synthase (Table IV), all
of which have a k score greater than 0.5. Incidentally,
these four classes of enriched terms are also present
in the top-10 list of enriched clusters as seen in
Table II.
For the rice network, phenotypic terms derived from

the Tos17 retrotransposon insertion mutation stud-
ies (Hirochika et al., 1996; Miyao et al., 2003) were
mapped to loci and included in the functional enrich-
ment and clustering of network modules (Ficklin et al.,
2010). Of the 154 conserved subgraphs, 20 conserved
subgraphs from rice are enriched for Tos17 phenotypic
terms, which include phenotypes such as “sterile,”
“pale yellow leaf,” “high tillering,” “vivipary,” and
more. A listing of these 20 conserved subgraphs can be
seen in Table V. The subgraphs are ranked by de-
scending order of k score, which indicates the similar-
ity of functional annotations between the rice and
maize conserved subgraphs. Several subgraphs have a
k score of 1.0, indicating identical functional similarity,

but overall, a high degree of similarity between most
of the subgraphs is evident. Figure 3 shows the rela-
tionship between the global rice and maize networks
(Fig. 3, A and C, respectively) with the conserved
subgraphs of each (Fig. 3, B and D, respectively) as
constructed using IsoRankN node alignments. Light
gray lines between the global rice and maize networks
simply map the location of nodes with their conserved
counterparts. Light gray lines between the two con-
served subgraph networks show node alignments
provided by IsoRankN. Light red lines indicate node
alignments with phenotypic associations in rice. Fig-
ure 4 shows a close-up view of conserved subgraph
“subgraph_0107.”

DISCUSSION

The purpose of this study was to identify conserved,
coexpressed gene sets between two vital agricultural
species: rice and maize. To identify these gene sets, we
first constructed a maize coexpression network, de
novo, and aligned it to a previously described rice
coexpression network (Ficklin et al., 2010). Our hypoth-
esis was that the discovery of conserved network nodes
(genes) and edges would provide an initial framework

Figure 2. Varying the homology-to-topology ratio
has little effect on conserved maize-rice subgraph
discovery. This graph shows the distribution of the
average k scores (blue line) and the number of
conserved subgraphs (red line) across 20 a values
for IsoRankN at an iteration setting of 30 and a
threshold value of 1e-4. This graph is a represen-
tative plot for 189 trials of IsoRankN where the
iteration parameters varied at 10, 20, and 30 and
the threshold parameter varied at 1e-3, 1e-4, and
1e-5. Other combinations yielded almost identi-
cal graphs. [See online article for color version of
this figure.]

Table IV. Top 10 largest conserved subgraphs by size

Subgraph k Score
Maize

Nodes

Rice

Nodes

Top Enriched KEGG/GO Term

for Maize Conserved Subgraph

Top Enriched KEGG/GO Term

For Rice Conserved Subgraph

subgraph_0107 0.64 323 278 GO:0009765 photosynthesis, light harvesting GO:0015979 photosynthesis
subgraph_0067 0.59 120 95 GO:0000786 nucleosome GO:0003777 microtubule motor activity
subgraph_0034 0.73 57 35 GO:0005840 ribosome GO:0005840 ribosome
subgraph_0282 0.51 49 45 K13679 granule-bound starch synthase K00703 glgA; starch synthase
subgraph_0624 0.15 11 2 GO:0015934 large ribosomal subunit GO:0005840 ribosome
subgraph_0341 0.09 11 3 K02634 petA; apocytochrome f K02709 psbH; PSII PsbH protein
subgraph_0046 0.87 9 3 GO:0005840 ribosome GO:0005840 ribosome
subgraph_0031 0.72 9 7 K10999 CESA; cellulose synthase A K10999 CESA; cellulose synthase A
subgraph_0033 0.10 9 4 GO:0005773 vacuole GO:0003676 nucleic acid binding
subgraph_0035 0.91 8 2 GO:0015934 large ribosomal subunit GO:0015934 large ribosomal subunit
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for the translation of complex functional genomic and
genetic knowledge from one species to another. This
strategy is complementary to traditional comparative
genomic approaches where known function is trans-
lated between taxa via homology and/or synteny.
Additionally, the WGCNA and RMT tools were se-
lected to preserve a knowledge-independent approach.
The networks were thresholded (using RMT) and

modules were constructed (using WGCNA) without
prior knowledge of the underlying gene functions.

The Global Maize Gene Coexpression Network

Here, we provide, to our knowledge, the first known
maize gene coexpression network. This network facili-
tates research in maize by providing lists of interacting

Table V. Top functional terms for conserved subgraphs derived from IsoRankN in maize and rice with phenotypic associations in rice

Subgraph k
Maize

Genes

Rice

Genes

Rice

Phenotypes

Maize Top Enriched

GO/IPRa Term

Rice Top Enriched

GO/IPR Term

subgraph_0065 1.00 4 5 Pale green leaf, long
culm, albino,
drooping leaf,
yellow, low
tillering

IPR005050 early
nodulin 93
ENOD93 protein

IPR005050 early nodulin
93 ENOD93 protein

subgraph_0908 1.00 2 2 Pale green leaf GO:0016787 hydrolase
activity

GO:0016787 hydrolase
activity

subgraph_0060 1.00 5 4 Late heading GO:0043565
sequence-specific
DNA binding

GO:0043565
sequence-specific
DNA binding

subgraph_0005 0.89 2 2 Germination rate GO:0016788 hydrolase
activity, acting on ester
bonds

GO:0016788 hydrolase
activity, acting
on ester bonds

subgraph_0046 0.87 9 3 Spl/lesion mimic GO:0005840 ribosome GO:0005840 ribosome
subgraph_0907 0.67 2 2 Others IPR005516 remorin,

C-terminal region
IPR005516 remorin,
C-terminal region

subgraph_0107 0.64 323 278 Pale green leaf GO:0009765 photosynthesis GO:0015979
photosynthesis

subgraph_0777 0.62 2 2 Long culm IPR010525 auxin response
factor

IPR010525 auxin
response factor

subgraph_0067 0.59 120 95 Lamina joint, thick
culm, lax panicle,
high tillering

GO:0000786 nucleosome GO:0003777 microtubule
motor activity

subgraph_0649 0.57 5 2 Vivipary GO:0005783 endoplasmic
reticulum

GO:0005783 endoplasmic
reticulum

subgraph_0727 0.56 2 2 Yellow, narrow leaf GO:0003899 DNA-directed
RNA polymerase activity

GO:0004197 Cys-type
endopeptidase activity

subgraph_0092 0.47 2 2 Vivipary, yellow IPR001944 glycoside
hydrolase, family 35

IPR000922
D-galactoside/L-Rha-
binding
SUEL lectin

subgraph_0029 0.44 8 4 Short panicle,
dense panicle

GO:0043687
posttranslational
protein modification

GO:0005840 ribosome

subgraph_0218 0.20 2 2 Virescent GO:0006754 ATP
biosynthetic process

GO:0005524 ATP binding

subgraph_0621 0.18 4 3 Abnormal shoot GO:0045735 nutrient
reservoir activity

GO:0005215 transporter
activity

subgraph_0893 0.17 2 3 Sterile, stripe GO:0006464 protein
modification process

GO:0004197 Cys-type
endopeptidase activity

subgraph_0006 0.17 2 2 Vivipary GO:0009289 fimbrium GO:0015079 potassium ion
transmembrane
transporter activity

subgraph_0624 0.15 11 2 Short panicle,
abnormal panicle
shape, small grain

GO:0015934 large
ribosomal subunit

GO:0005840 ribosome

subgraph_0105 0.12 4 3 Rolled leaf GO:0016857 racemase
and epimerase activity

GO:0016020 membrane

subgraph_0599 0.11 3 3 Rolled leaf, pale
green leaf

GO:0004871 signal
transducer activity

GO:0007155 cell adhesion

aIPR, InterPro records.
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genes annotated for specific biological processes that
provide clues to candidate gene (known and novel)
involved in those processes. Additionally, 391 geneswith
unknown function (Supplemental Tables S7 and S8) are
coexpressed within modules, and 194 of those unanno-
tated genes are interconnected within 32 different co-
functional modules. For example, cluster ZmM5C1 is the
fourth highest ordered cofunctional cluster by ,k. and
contains nine loci. However, there are 24 directly con-
nected neighboring genes that have no ascribed GO,
KEGG, or InterPro function. The enriched functional
terms for this cluster include seed storage activities.
Guilt-by-association inferences would suggest that the
24 genes of unknown function in ZmM5C1 may be
involved in seed storage or related processes. Therefore,
these genes make interesting, perhaps novel, candidates
for understanding the biological process associated with
seed storage. In total, 194 genes of unknown function,
through 3,092 edges, now suggest inferences for the
biological processes summarized by 33 different cofunc-
tional clusters (Supplemental Table S8).

The Small Size of Global Coexpression Networks

The maize network is small in comparison with the
number of loci mapped to the probe sets present on the
microarray. Using 32,540 gene models from the ZmB73
4a.53 release of the maize genome (Schnable et al.,
2009), 14,792 (45%) of the known maize loci were mea-
sured on the microarray platform. Of those, only 2,071
loci (14%) were present in the global maize network. We

observed a similar phenomenon in rice, where almost
86% of known rice transcripts mapped to the probe sets
on the microarray platform; similarly, a low fraction of
the measured loci (10%) were present in the final net-
work. Therefore, with regard to the number of potential
coexpression relationships, both networks are relatively
smaller than what we would expect across the orga-
nism’s life cycle. The RMTmethod (Luo et al., 2007) was
specifically used to define the threshold to reduce ran-
dom noise from the final network to ensure that the
detected coexpression relationships were strong. There-
fore, the small size of the network is most likely caused
by relationships lost within the “noise” of the data set,
combined with the fact that not all coexpression relation-
ships from all conditions are represented by the data set.

Is it possible to boost the biological signal and in-
crease the gene space fraction captured in coexpression
networks? Lowering the significance threshold, even
using reasonable methods designed to limit the number
of false positives, would increase the number of loci in
the network but could reduce the overall quality of the
biological signal and possibly confound the interpreta-
tion of modules (Perkins and Langston, 2009). Usadel
et al. (2009) discuss several reasons that significant
coexpression correlations can be lost. These include
sample selection, complex interaction types, and selec-
tion of normalization and correlation methods. Our
data suggest that the rice and maize networks consist
primarily of coexpression relationships derived from
basal biological processes whose expression is most
common across the samples used to build the network.

Figure 3. Conserved subgraphs between rice and
maize. A, The global locus-based network for
rice. B, The conserved network for rice with
colored subgraphs. C, The global locus-based
network for maize. D, The conserved network
for maize with colored subgraphs. Nodes in B and
D are color coded according to the conserved
subgraphs to which they belong. The same col-
ored nodes in B belong to the same conserved
subgraph in D. These same nodes are colored
identically in the global networks to show global
placement. Nodes colored gray in the global
networks are not assigned to a conserved sub-
graph. Dark-colored edges in the global and
conserved subgraphs represent coexpression
edges. Lightly colored lines between the global
networks in A and C and the conserved subgraphs
in B and D simply indicate the positions of the
same nodes in both types of networks. Lightly
colored gray lines between the conserved sub-
graphs of rice and maize in B and D show the
locations of aligned nodes as indicated by Iso-
RankN. Lightly colored red lines between B and
D originate from the rice conserved subgraph in B
and indicate known phenotypic associations in
rice with possible translation to maize.
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It would seem that the global coexpression networks
currently available for plants, including the rice and
maize networks we have generated, are immediately
useful for these common processes but lack represen-
tation of less frequent processes and other subtle in-
teractions. For maize and rice, it may be that more
significant coexpression relationships would be de-
tected if (1) additional transcriptome measurements
are made from tissue systems not present in the current
network, whichwould increase the sampling frequency
and the probability of detecting rarer coexpression
relationships; (2) overlap from multiple tissue-specific
transcriptomes on a single sample are reduced by
segregating data sets to be tissue/condition specific;
and (3) additional statistical methods are employed to
identify coexpression relationships specific to unique
tissues, conditions, or developmental stages, essentially
dissecting the input data into subsystems. It should be
noted that the detection of coexpression relationships
between highly homologous transcripts including gene
variants may require extensive transcriptome measure-
ments from a non-hybridization-based platform (e.g.
RNAseq) before the full potential of global coexpression
networks, measured in the observed number of coex-
pression relationships, can be realized.

Conservation between Rice and Maize
Coexpression Networks

From a qualitative perspective, the apparent collec-
tive role of genes in cofunctional clusters from both

rice and maize networks, when ordered by average
connectivity, were quite similar (Table II). Cofunc-
tional clusters were ordered by connectivity under the
premise that highly coexpressed genes are more likely
involved in similar biological processes. As mentioned
previously, functional terms from processes such as
translation, seed storage, glycolysis, photosynthesis,
and the cell cycle are all enriched in the top-10 func-
tional clusters of both networks and provide good
indication that the two coexpression networks, de-
rived from independent microarray samples for two
different species, demonstrate conservation in terms of
the connectivity of coexpressed genes for common
biological processes.

The apparent conservation of coexpression patterns
between rice and maize is further bolstered through a
formal global alignment of the two networks via
IsoRankN and identification of conserved subgraphs.
Many of the conserved subgraphs between rice and
maize show a high degree of similarity of enriched
functional terms, indicating a high level of conserva-
tion, which we quantified using k statistics (Table IV;
Supplemental Table S15). For example, the function of
the top-10 conserved subgraphs by size is shown in
Table IV. Many of these share similar function, espe-
cially when k scores are closest to 1. This is notable
because the likelihood that nodes in the conserved
subgraph would be significantly coexpressed, aligned
together based on topology and homology, and have
nonrandom chance of similarity between their respec-
tive enriched function is low. Moreover, modules and
cofunctional clusters inmaize also align tomodules and
cofunctional clusters in rice that have similar functional
annotations. For example, Figure 5 shows the fourth
largest conserved subgraph, “subgraph_0282,” with 49
nodes from maize (bottom left) and 45 from rice (top
right). Both the maize and rice loci from this subgraph
are enriched for terms involved in seed storage, nutri-
ent reservoir activity, and starch synthase, with a k score
of 0.51. Not only are the functional enrichments similar
between aligned nodes, but module coexpression rela-
tionships are also maintained. The majority of maize
genes in subgraph_0282 belong to module ZmM5 (with
only three from ZmM19), and all of the genes from rice
belong to module OsM13. Also, cofunctional clusters
show evidence of alignment as well. Within this same
conserved subgraph, the orange nodes from rice in
Figure 5 and the purple nodes from maize are from
cofunctional clusters OsM13C1 and ZmM5C1, respec-
tively. Both of these clusters are enriched for seed stor-
age activities, and the nodes from these two clusters
have direct alignments with the other.

It should be noted that low k scores between enriched
terms of the rice and maize networks do not indicate
that the node alignments are weak. k scores are based
on functional similarity and are dependent on the
underlying functional annotation of the loci. For in-
stance, conserved orthologous loci in two genomes
may not have been annotated identically yet are
aligned due to sequence homology and network to-

Figure 4. Largest conserved subgraph with implied phenotypic asso-
ciations. Shown is the largest conserved subgraph, subgraph_0107,
between rice (blue nodes) and maize (green nodes). Dark edges in the
subgraph are coexpression relationships. Light edges indicate align-
ments between the two subgraphs determined using IsoRankN. Light
red edges indicate phenotypic associations with nodes in rice that are
aligned to nodes in maize.
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pology. Also, similar functions may be annotated in
somewhat equivalent yet different functional terms.
Therefore, a high functional similarity between con-
served subgraphs was used to help validate the net-
work alignments, but a lack of functional similarity
does not indicate a poor alignment.

Translation of Function and Phenotype

As mentioned previously, conservation between co-
expression networks is a powerful tool for validating
the correctness of each aligned pair of networks. In
essence, conservation reduces the noise within the
network because it provides another layer of evidence
for coexpression (Obayashi and Kinoshita, 2011). More-
over, the alignment between species strengthens the
guilt-by-association inferences made for genes of un-
known function. For example, cluster ZmM5C1 was
described previously as containing coexpression with
24 genes of unknown function. Seven of the loci from
ZmM5C1 appear in conserved subgraph_0282 (purple
nodes in Fig. 5). Guilt-by-association inferences may be
applied to these genes of unknown function; however,
the inference is made stronger because the coexpression
relationships are conserved.

A powerful application of alignments between rice
and maize networks is the potential to translate gene
sets with enriched phenotypes from rice to maize
through conserved subgraphs. For instance, Table V
provides a list of conserved subgraphs that have
enriched phenotypes in rice. These terms are not
only present in annotations of genes in the subgraph
but enriched. Of particular note is subgraph_0065,
with five genes in rice, four genes in maize, and six
phenotypic terms: pale green leaf, long culm, albino,
drooping leaf, yellow, and low tillering. This subgraph
has a k score of 1, indicating perfect similarity between
annotated terms, and is annotated as early nodulin 93
protein. It may be that this high level of similarity is
due in part to the fact that sequence homology was
employed in network alignment, and sequence ho-
mology is often used to transfer functional annotation
from one species to another. However, network topol-
ogy based on coexpression edges was weighted more
strongly in the IsoRankN alignment, indicating that
coexpression relationships are also maintained be-
tween rice and maize alignments. Therefore, it seems
appropriate that these phenotypic associations from
rice can be inferred to the four maize genes as well as
connected neighbors in the subgraph.

Figure 5. Subgraph_0282 from rice and maize. This subnetwork shows the coexpression edges and conserved alignments for all
nodes of subgraph_0282 between maize and rice. Coexpression edges are gray lines, and network alignments are light blue
lines. Nodes below the heavy diagonal line are from the maize network, and nodes above it are from rice. All of the rice nodes
belong to moduleOsM13, and the majority of the maize nodes are frommodule ZmM5, with the exception of the three rightmost
nodes in the bottom half, which belong to module Zm19. Yellow nodes in maize are for loci of unknown function. Purple nodes
in maize are from cluster ZmM5C1, annotated for nutrient reservoir/seed storage activity. Orange nodes in rice are from cluster
OsM13C1, also annotated for nutrient reservoir/seed storage activity. Nodes of other colors belong to the other functional
clusters within the module. Gray nodes belong within the subgraph but are not part of a cofunctional cluster.
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CONCLUSION

Gene coexpression network alignments coupled
with genetic and functional genomic data provide a
method for translation of gene function and genotype-
phenotype associations between species, and they are
especially useful for species with limited genetic re-
sources. Experimental evidence will be needed to
determine the true predictive power of coexpression
relationships (intranetwork and internetwork), but the
functional similarity we observed in conserved sub-
graphs seems quite promising. Still, better quantitative
measures of biological signal are needed to validate
the coexpression relationships. If an in silico metric for
biological signal can be identified, it would provide a
means to calculate type I and type II errors under
alternate network construction protocols. However,
given that gene coexpression networks have already
been used to successfully identify candidate genes for
specific traits (Lee et al., 2010; Mutwil et al., 2010), it is
natural to conclude that function and phenotype can
also be transferred across species to help identify
genes involved in complex traits. The power of this
translational systems genetics approach will be in-
creasingly more useful as more genetic data are made
available for grasses, especially in the form of genome-
wide association studies. In particular, the translation
of function and phenotype into large polyploid spe-
cies, such as sugarcane, would be especially powerful
because the capture of genetic associations can be
difficult and expensive and genome resources tend to
lag behind those of less complex species.

MATERIALS AND METHODS

Maize Network Construction

The method used for construction of the maize (Zea mays) gene coex-

pression network was identical to that previously described for the rice (Oryza

sativa) gene coexpression network (Ficklin et al., 2010). A total of 293 samples

from the Affymetrix Maize GeneChip Genome Array microarray were

obtained from NCBI’s GEO repository. RMA normalization (Irizarry et al.,

2003) using the software package RMAExpress (Bolstad, 2010) and outlier

detection using the arrayQualityMetrics (Kauffmann et al., 2009) tool for

Bioconductor (Gentleman et al., 2004) were used to remove outlier samples.

Arrays that failed all three outlier tests were excluded from further analysis.

Then, a similarity matrix was constructed by performing pairwise Pearson

correlations for every probe set across all samples. We selected Pearson

correlation because it was commonly supported by both the WGCNA and

RMT tools. Next, the WGCNA package (Langfelder and Horvath, 2008) was

used to convert the similarity matrix into an adjacency matrix by raising the

similarity matrix to a power of 6. The power chosen is one that best

approximates scale-free behavior in the resulting network and is selected by

the software. Finally, the RMTalgorithm (Luo et al., 2007) was used to select a

hard threshold that limits the noise in the resulting network.

Functional Enrichment and Clustering

The gene models used for this study were from the maize B73 genome

(Schnable et al., 2009) version 4.53a obtained from the maizesequence.orgWeb

site. GO (Ashburner et al., 2000), InterPro (Apweiler et al., 2001), and KEGG

(Kanehisa et al., 2008) terms were used for functional annotation of these

gene models. In the case of GO and InterPro terms, these were obtained

directly from the maizesequence.org Web site. KEGG terms were obtained by

uploading maize coding sequences to the KEGG/KAAS server, which maps

KEGG terms using a homology-based method (Moriya et al., 2007). An in-

house tool similar to the online DAVID tool (Dennis et al., 2003; Huang et al.,

2009) was used to perform functional enrichment using a Fisher’s exact test

against each network module and the genome background. Modules were

further subdivided into functional clusters using pairwise k statistics between

all genes. Functional clusters were ordered by the geometric mean of the

Fisher’s P values, the e-score, or the ,k., which provides a measure of

interconnectedness of the nodes in the functional cluster.

Maize-Rice Network Comparison

The maize network was compared with the previously described rice

network (Ficklin et al., 2010). The maize and rice networks, as well as functional

enrichment and cluster discovery, were constructed with an identical protocol.

However, as a result of improvements to the in-house scripts that perform

functional enrichment, the functional enrichment and clustering were per-

formed again for the rice network before comparison. The maize and rice

networks, including both the original and updated functional enrichment results

for rice, are available online at http://www.clemson.edu/genenetwork.

Before network comparisons were performed, nodes in both the rice and

maize networks were converted from microarray probe sets to genomic loci.

In some cases, these were one-to-one mappings between probe sets and genes.

However, some microarray probe sets map to more than one genomic locus

and vice versa. These mappings are ambiguous but were retained with the

assumption that a significant edge to these nodes could be informative

because one or more mapped genes would be producing the correlated

transcript. During conversion from a probe set to a loci-based network, edges

were placed between two loci whenever theymapped to connected probe sets.

Edges were also preserved in cases where a single locus mapped to more than

one probe set in a different module.

Network comparisons between the rice and maize gene coexpression

networks were performed using IsoRankN (Liao et al., 2009), which provided

a mixed topology and homology-based global alignment methodology. First,

the maize and rice protein sequence data sets were obtained from the

Michigan State University version 6.0 assembly for rice (Ouyang et al., 2007)

and the maize B73 genome (Schnable et al., 2009) version 4.53a and were

aligned against one another using BLASTP (with expectation value [-e]: 1e-6;

filtering options [-F]: ’m S’; local Smith-Waterman alignments [-s]: T; single

result per query [-b]: 1; and in tabular output [-m]: 8) following the recom-

mendations given by Moreno-Hagelsieb and Latimer (2008) for selecting

BLAST parameters for reciprocal best hits. The homolog scores derived from

BLAST and the network edges list were used as input to IsoRankN. Several

iterations were performed by varying the parameters for the software.

IsoRankN’s own iteration parameter was adjusted at values of 10, 20, and

30. The threshold parameter was adjusted at values of 1e-3, 1e-4, and 1e-5, and

the a value, which controls the contribution of topology versus homology in

aligning the networks, was varied from 0.0 to 1.0 in 0.1 increments. In total, 189

iterations were performed for IsoRankN. IsoRankN generates sets of one-to-

many mappings, where in some cases multiple aligned loci are in a single set.

Each pair or group was referred to as an alignment set. Conserved subgraphs

were generated using these output files with an in-house Perl script. Con-

served subgraphs were constructed in a two-step method. The first step

selected edges that were conserved between the two networks, and the second

step identified subgraphs of interconnected loci.

The process for selecting preserved edges was performed by comparing

two loci from two different alignment sets in one network with two loci from

the same alignment sets from the other network. If an edge existed in both

networks using the four selected loci, then both edges were marked as

conserved. The following pseudocode describes the process:

S = the array of aligned sets of loci for each set in S as si
for each set in S as sj where si is not sj

for each locus li in si
for each locus lj in sj
for each locus ki in si where ki is not li
for each locus kj in si where ki is not kj

if li and lj are in the same network and connected and

if ki and kj are in the same network and connected

then mark both edges as conserved.

Edges and nodes that were not marked as conserved were discarded, and

the remaining networks, one for rice and the other for maize, became the

“conserved” subnetworks.
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Finally, conserved subgraphs within the conserved networks were iden-

tified by first selecting an edge from one conserved network to serve as a seed

for the subgraph. The aligned loci in the other conserved network were also

used as a seed. Thus, the process of defining subgraphs was performed in

parallel in both networks. Next, the edges of all of the connected neighbors of

the seed were added to the subgraph. The process was continued by iterating

recursively through the neighbors and adding their edges until all possible

edges were exhausted. Then, a new edge, which had not yet been added to a

subgraph, was selected to act as the next seed until all edges in the conserved

networks were placed in subgraphs. These subgraphs were labeled numer-

ically, and a label for a subgraph in rice was the same for the corresponding

conserved subgraph in maize and vice versa.

Functional enrichment was then performed for each subgraph using the

same method described previously for modules in the global network.

Subgraphs were then compared using k statistics. As described previously,

k statistics were used to provide a measure of similarity between the

functionally enriched terms of genes in a network module. Here, k statistics

are used to provide a measure of similarity between the two conserved

subgraphs of maize and rice that have the same label. Subgraphs are then

ranked by k score from greatest to smallest. Conserved subgraphs are given a

four-digit unique number prefixed with the word “subgraph.”
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