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ABSTRACT
L-Glutamate elicits the umami taste sensation, now recognized as
a fifth distinct taste quality. A characteristic feature of umami taste
is its potentiation by 5#-ribonucleotides such as guanosine-5’-
monophosphate and inosine 5#-monophosphate, which also elicit
the umami taste on their own. Recent data suggest that multiple
G protein–coupled receptors contribute to umami taste. This review
will focus on events downstream of the umami taste receptors.
Ligand binding leads to Gbc activation of phospholipase C b2,
which produces the second messengers inositol trisphosphate and
diacylglycerol. Inositol trisphosphate binds to the type III inositol
trisphosphate receptor, which causes the release of Ca2+ from in-
tracellular stores and Ca2+-dependent activation of a monovalent-
selective cation channel, TRPM5. TRPM5 is believed to depolarize
taste cells, which leads to the release of ATP, which activates ion-
otropic purinergic receptors on gustatory afferent nerve fibers. This
model is supported by knockout of the relevant signaling effectors
as well as physiologic studies of isolated taste cells. Concomitant with
the molecular studies, physiologic studies show that L-glutamate
elicits increases in intracellular Ca2+ in isolated taste cells and that
the source of the Ca2+ is release from intracellular stores. Both Ga
gustducin and Ga transducin are involved in umami signaling, be-
cause the knockout of either subunit compromises responses to
umami stimuli. Both a-gustducin and a-transducin activate phos-
phodiesterases to decrease intracellular cAMP. The target of cAMP
in umami transduction is not known, but membrane-permeant ana-
logs of cAMP antagonize electrophysiologic responses to umami
stimuli in isolated taste cells, which suggests that cAMP may have
a modulatory role in umami signaling. Am J Clin Nutr 2009;90
(suppl):753S–5S.

INTRODUCTION

One hundred years ago, Kikunae Ikeda isolated L-glutamate
from dried konbu and identified it as a unique taste, different
from the tastes of bitter, sweet, salty, and sour. Ikeda called this
taste “umami,” from the Japanese word umai, meaning de-
licious. A characteristic feature of umami taste is its potentiation
by ribonucleotides such as inosine 5#-monophosphate (IMP) and
guanosine-5’-monophosphate (GMP), which also elicit umami
taste on their own. Despite Ikeda’s seminal discovery, umami
taste was not completely accepted as a unique taste quality until
the recent molecular identification of specific G protein–coupled
receptors for glutamate taste that exhibited nucleotide potenti-
ation when expressed in heterologous cells. In this review, I will
briefly describe the receptors that have been identified, although
these will be covered in more detail in other chapters of this
volume (1, 2). This review will focus instead on physiologic

responses of taste cells to umami stimuli and describe the
intracellular signaling events downstream of the umami taste
receptors.

UMAMI TASTE RECEPTORS

Several receptors that bind glutamate and/or nucleotides have
been identified in taste cells, including the heterodimer T1R1/
T1R3 (3, 4), the taste-specific isoforms of metabotropic gluta-
mate receptors mGluR4 (5) and mGluR1 (2, 6), and mGluR2 and
mGluR3 (7), and several ionotropic glutamate receptors, in-
cluding both NMDA and kainate receptors (8). One problem with
identifying the potential role of these receptors in taste trans-
duction is that glutamate also serves as a neurotransmitter, and for
receptors to be considered taste receptors they must be expressed
on the apical membrane of taste cells where they will encounter
glutamate in the oral cavity. In this regard, both NMDA and
kainate receptors have been identified on basolateral membranes
of taste cells, where they likely respond to glutamate as a neu-
rotransmitter (9). The definitive role of a particular receptor in
umami transduction requires that the taste is modified when the
receptor is genetically ablated. In this regard, the only receptor
for which there is genetic data is the T1R1/T1R3 heterodimer. In
one study, knockout of either T1R1 or T1R3 completely elim-
inated the responses to oral glutamate, which suggests that the
heterodimer is the only umami receptor (10). However, in another
study, knockout of T1R3 only eliminated nucleotide potentiation
of glutamate taste responses, with little effect on responses to
glutamate alone (11). Although the reason for these discrepancies
is not known, the latter data strongly suggest the existence of
multiple receptors for umami taste. The metabotropic glutamate
receptors are the likely candidates, but knockout will be nec-
essary to confirm a role in taste transduction.
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DOWNSTREAM SIGNALING EFFECTORS

The T1R1/T1R3 heterodimer is coupled to a heteromeric G
protein, where the Gbc subunit appears to mediate the pre-
dominant leg of the signaling pathway. Ligand-binding activates
Gb3c13, which results in activation of phospholipase C b2
(PLCb2) (12, 13), which produces inositol trisphosphate (IP3)
and diacylglycerol. IP3 activates the type III IP3 receptor (IP3R3)
(14, 15),which results in the release of Ca2+ from intracellular
stores and Ca2+-dependent activation of a monovalent-selective
cation channel, TRPM5 (16–18). TRPM5 is expected to de-
polarize taste cells, which results in action potential generation
and release of ATP, which activates ionotropic purinergic re-
ceptors on gustatory afferent nerve fibers (19–21) (Figure 1).
Evidence of involvement of this pathway in umami taste trans-
duction comes from several studies. First, all of these signaling
effectors are co-localized with the T1R1/T1R3 heterodimer in
the type II (receptor) taste cells (17). Second, knockout of
PLCb2 (17), IP3R3 (22), and TRPM5 (23) all reduce umami
taste responses in a manner similar to that of the knockout of
T1R3 (11). Third, pharmacologic inhibitors of PLCb2 and Ca2+

ATPase, which maintain intracellular Ca2+ stores, virtually
eliminate responses to glutamate and nucleotides applied se-
lectively to the taste pore in Ca2+ imaging studies of a lingual
slice preparation (24).

The Ga subunit that mediates umami transduction varies ac-
cording to taste field. In fungiform and palatal taste buds, T1R1/
T1R3 is almost completely co-localized with a-gustducin,
whereas T1R1/T1R3 in circumvallate and foliate taste buds is
expressed with a different and as yet unidentified Ga (25, 26).
Ga-gustducin is related to Ga-transducin, which is also ex-
pressed in taste buds. Both a-gustducin and a-transducin activate
phosphodiesterases (PDEs), which results in decreases in in-
tracellular cAMP concentrations (Figure 1). Knockout of either
a-gustducin or a-transducin compromises umami taste, which
suggests that both Ga-gustducin and Ga-transducin participate
in umami transduction (27). Physiologic studies also support
a role of cAMP in umami taste. Because the activation of PDEs
suppresses cAMP concentrations, cAMP should antagonize re-
sponses to umami stimuli. This has been shown in whole-cell
patch clamp studies of rat fungiform taste cells, where responses
to glutamate, GMP, and the synergistic response to glutamate
and GMP were suppressed by membrane-permeant cAMP (28).

Furthermore, biochemical studies have shown that glutamate
decreases cAMP concentrations in taste buds, and the response
is potentiated by 5#-nucleotides (29, 30). These latter experi-
ments were performed on rat circumvallate taste buds, which
suggests that cAMP modulates umami signaling in posterior
taste fields as well, likely mediated by a Ga subunit other than a
gustducin. Gai-2 is abundantly expressed in taste buds, so this
Ga may couple to T1R1/T1R3 in circumvallate and foliate taste
buds (31, 32). Alternatively, a different umami receptor, such as
taste-mGluR4, may mediate the responses to umami stimuli in
posterior taste buds.

The role of cAMP in umami signaling is unclear. Cyclic
nucleotide-gated cation channels have been identified in mam-
malian taste buds (33), but physiologic studies have failed to
show conductance changes in response to membrane permeant
cAMP analogs in taste cells. It is more likely that cAMP mod-
ulates the efficacy of Ca2+ signaling. Both IP3R3 (34) and PLCb2
(35) are modulated in other tissues by cAMP-dependent phos-
phorylation, and, in both cases, phosphorylation decreases the
Ca2+ released from intracellular stores. Additional studies will
be required to determine whether decreases in cAMP mediated
by a-gustducin, a-transducin, or ai-2 modulate Ca2+ signaling in
taste buds. (Other articles in this supplement to the Journal in-
clude references 1, 2, and 36–62.)
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