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ABSTRACT
The unique taste induced by monosodium glutamate is referred to as
umami taste. The umami taste is also elicited by the purine nucleo-
tides inosine 5#-monophosphate and guanosine 5#-monophosphate.
There is evidence that a heterodimeric G protein–coupled receptor,
which consists of the T1R1 (taste receptor type 1, member 1,
Tas1r1) and the T1R3 (taste receptor type 1, member 3, Tas1r3)
proteins, functions as an umami taste receptor for rodents and hu-
mans. Splice variants of metabotropic glutamate receptors, mGluR1

(glutamate receptor, metabotropic 1, Grm1) and mGluR4 (glutamate
receptor, metabotropic 4, Grm4), also have been proposed as taste
receptors for glutamate. The taste sensitivity to umami substances
varies in inbred mouse strains and in individual humans. However,
little is known about the relation of umami taste sensitivity to var-
iations in candidate umami receptor genes in rodents or in humans.
In this article, we summarize current knowledge of the diversity of
umami perception in mice and humans. Furthermore, we combine
previously published data and new information from the single
nucleotide polymorphism databases regarding variation in the
mouse and human candidate umami receptor genes: mouse Tas1r1
(TAS1R1 for human), mouse Tas1r3 (TAS1R3 for human), mouse
Grm1 (GRM1 for human), and mouse Grm4 (GRM4 for human).
Finally, we discuss prospective associations between variation of
these genes and umami taste perception in both species. Am J
Clin Nutr 2009;90(suppl):764S–9S.

INTRODUCTION

The unique taste induced by monosodium glutamate (MSG) is
referred to as the umami taste. It is also evoked by the purine
nucleotides inosine-5#-monophosphate (IMP) and guanosine-5#-
monophosphate (GMP). There is good evidence that a hetero-
dimeric G protein–coupled receptor, which consists of the T1R1
(taste receptor type 1, member 1, Tas1r1) and T1R3 (taste re-
ceptor type 1, member 3, Tas1r3) proteins, functions as an
umami taste receptor for rodents and humans. Splice variants of
metabotropic glutamate receptors, mGluR1 (glutamate receptor,
metabotropic 1, Grm1) and mGluR4 (glutamate receptor, me-
tabotropic 4, Grm4), are also proposed as taste receptors for
glutamate (6–8). A salient feature of umami taste induced by
MSG in rodents and humans is its potentiation by purine nu-
cleotides, such as IMP and GMP (9–11).

In mice and humans, there is substantial variation in umami
taste sensitivity (12–17). However, little is known about the
genetic basis of this variation in umami taste perception. Un-

derstanding the nature of the variation in umami taste perception,
the genetic variation in its receptors, and how this variation
influences diet selection may have important implications for
human health.

There are several examples of sequence diversity in taste
receptor genes that influences taste perception in rodents and
humans. For example, sweetness preference in mice differs be-
tween inbred strains (18). The T1R2 (taste receptor type 1,
member 2) and T1R3 heterodimer functions as a sweet receptor
(1–5). Studies of DNA variants in genetic and cell-based assays
have shown that an amino acid substitution of threonine for
isoleucine at amino acid position 60 of T1R3 is the likely reason
for the low saccharin preference in mice (19–26). In humans,
the best-studied example of taste variation is the sensitivity to
the bitter taste of propylthiouracil and phenylthiocarbamide. The
taste thresholds for these 2 bitter compounds are distributed
bimodally in humans and vary �1000-fold between tasters and
nontasters (27, 28). Single nucleotide polymorphisms (SNPs) in
a bitter taste receptor gene, TAS2R38 (taste receptor type 2,
member 38), were shown to be associated with taste sensitivity
to phenylthiocarbamide and propylthiouracil in humans (29, 30).
These examples raise the possibility that perceptual variation in
umami taste could also be due to variation in umami taste re-
ceptor genes.

In this article, we summarize current knowledge of the di-
versities of umami perception and its receptor candidate genes in
mice and humans and discuss the prospective associations.
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STRAIN DIFFERENCES IN UMAMI TASTE RESPONSES
IN MICE

A comparison of the electrophysiologic responses of the
chorda tympani nerve (CT), which innervates cells of the fun-
giform and a portion of the folliate papillae on the anterior two-
thirds of the tongue, in 3 inbred mouse strains showed differences
in the synergistic effect of MSG and GMP. The order of mag-
nitude of the CT response to MSG plus GMP divided by the sum
of the response to each component tested separately was as
follows: the response of C3H/HeSlc strain of mice was greater
than the response of C57BL/6CrSlc strain of mice, which was
greater than the response of the BALB/cCrSlc strain of mice (12).

In long-term, 2-bottle preference tests, mice of the C57BL/
6ByJ (B6) strain consumed more of a solution of 300 to 1000
mmol MSG/L than did mice of the 129/J (129) strain (13, 14). To
assess the role of afferent gustatory inputs in the strain differences
between B6 and 129 mice, Inoue et al (15) measured responses of
the CT and the glossopharyngeal nerve, which innervates cells of
the vallate and foliate papillae on the posterior third of the tongue,
to MSG, ammonium glutamate, IMP, and GMP. The CT
responses to MSG and ammonium glutamate were similar in the
B6 and the 129 mice. The CT responses to IMP and GMP were
lower in the B6mice than they were in the 129mice. Responses to
umami stimuli in the glossopharyngeal nerve did not differ be-
tween the B6 and the 129 strains.

Such strain differences in umami taste perception in mice offer
an opportunity to examine whether such perceptual variations are
linked to variations in umami taste genes.

VARIATION OF UMAMI TASTE RECEPTORS IN MICE

In one study, homozygous mutant mice lacking either the
Tas1r1 or Tas1r3 gene showed an overwhelming loss of umami
taste, which included all responses to IMP and behavioral at-
traction to MSG and L-amino acids (3). In contrast, a second
study from a different laboratory reported that a disruption of the
Tas1r3 gene diminishes, but does not abolish, behavioral and
neural responses to umami taste stimuli (4). The explanation for
these differences is not known. Nevertheless, both studies im-
plicate these subunits in mediating umami taste perception.
Hence, sequence variants of the Tas1r1 and Tas1r3 may affect
umami taste responses. An analysis of the F2 (second filial
generation) hybrids between the B6 and 129 inbred mouse
strains showed that the Tas1r3 allelic variants do not affect
behavioral or neural taste responses to umami stimuli (31).
Thus, although the T1R3 receptor is involved in transduction of
umami taste, the B6/129 sequence variants do not affect its
sensitivity to umami compounds.

By using GenBank and the Single Nucleotide Polymorphism
database (dbSNP), which are available through the National
Center for Biotechnology Information (NCBI) website (http://
www.ncbi.nlm.nih.gov/), we found 3 SNPs with an amino acid
substitution in mouse Tas1r1 (M347T, K443N, and K626E)
between C57BL/6J and 129P3/J and no SNP with an amino acid
change in both mouse Grm1 and Grm4 in C57BL/6J, 129S1/
SvImJ, 129 · 1/SvJ, and C3H/HeJ (N Shigemura and Y Ninomiya,
unpublished observation, 2008). The 3 amino acid changes in
T1R1 also were reported by Li et al (32). It has been speculated
that MSG and IMP each bind to the T1R1, because neither has
any effect on the T1R2/T1R3 sweet taste receptor (1). These

results suggest that the differences in umami sensitivity between
inbred strains may be related to SNPs with these amino acid
mutations in Tas1r1 but not to amino acid mutations in Tas1r3,
Grm1, and Grm4.

INDIVIDUAL VARIATION IN UMAMI TASTE
SENSITIVITY IN HUMANS

Lugaz et al (17) reported that some humans cannot taste MSG.
In this study, the sample distribution of individual MSG detection
thresholds showed a bimodal distribution curve, with taste
thresholds of MSG differing ’5-fold between tasters (mean:
0.08 mmol MSG/L; range: 0.03–0.18 mmol MSG/L) and hy-
potasters (mean: 0.39 mmol MSG/L; range: 0.14–1.07 mmol
MSG/L). They also reported that subjects could be classified
into taster [81% (47/58) of subjects], hypotaster [�10% (6/58)
of subjects], and nontaster [3.5% (2/58) of subjects] categories
by using 4 tests: 1) detection threshold, 2) isointensity (reference =
29 mmol NaCl/L), 3) time-intensity MSG . NaCl, and 4) dis-
crimination test (17).

VARIATION OF UMAMI TASTE RECEPTORS
IN HUMANS

SNPs with an amino acid substitution in human TAS1R1,
TAS1R3, GRM1, and GRM4 coding regions available from the
study reported by Kim et al (33) and from the NCBI database
are listed in Table 1. Kim et al conducted a comprehensive
evaluation of SNPs and haplotypes in human TAS1R1, TAS1R2,
and TAS1R3. Complete DNA sequences of TAS1R1- and
TAS1R3-coding regions revealed 14 and 6 nonsynonymous
SNPs in TAS1R1 and TAS1R3, respectively. In the dbSNP (from
the NCBI) analysis, we found 7 SNPs in TAS1R1, 5 SNPs in
TAS1R3, 8 SNPs in GRM1, and one SNP in GRM4 for a total of
21 variant amino acid sites (N Shigemura and Y Ninomiya, un-
published observation, 2008). Of these, V110A, E347K, T372A,
and C603R in TAS1R1 and R757C in TAS1R3 were reported by
Kim et al (33).

Examination of the distribution of polymorphisms across the
various domains of the protein shows that 61.1% (22/36) of the
variant amino acid positions reside in the predicted N-terminal
extracellular ligand-binding domain, 22.2% (8/36) in the trans-
membrane domain, 13.9% (5/36) in the C-terminal intracellular
domain, and 2.8% (1/36) in the cysteine-rich domain, which
intervenes between the N-terminal ligand-binding and trans-
membrane regions. One SNP, which substitutes an A for the
normal G at position 2318 in the TAS1R1 cDNA sequence, in-
troduces a premature stop codon (33).

Population diversities of umami receptor SNPs available from
the study reported by Kim et al (33) and the International
HapMap Project (http://www.hapmap.org/index.html.en) are also
shown in Table 1. The majority of the SNPs in TAS1R1, TAS1R3,
GRM1, and GRM4 were observed in 1 or 2 populations. Only 2
SNPs (A372T in TAS1R1 and P993S in GRM1) were widely
distributed and observed in almost all populations.

Previous studies of T1R2/T1R3 sweet receptor chimeras and
mutants showed that there are �3 potential binding sites in this
heterodimeric receptor. Receptor activity toward the artificial
sweeteners, aspartame and neotame, depends on residues in
the N-terminal domain of human T1R2. In contrast, receptor
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TABLE 1

Single nucleotide polymorphisms (SNPs) with an amino acid substitution in human TAS1R1, TAS1R3, GRM1, and GRM411

Genes

Position

amino

acid

dbSNP

rs no.

Nucle-

otide

Amino

acid

encoded Domain

Population-specific allele frequency

Reference 33 HapMap AGI

CAM AME NOR JAP RUS HUN CH PAK CEU HCB JPT YRI ASP CEPH

TAS1R1

NM_138697

Exon 1 42 rs35375392 A Tyr EC — — — — — — — — — — — — — —

G Cys — — — — — — — — — — — — — —

Exon 2 952 A Asn EC 1 1 1 1 1 1 1 0.94 — — — — — —

G Ser 0 0 0 0 0 0 0 0.06 — — — — — —

1102,3 rs41278020 T Val EC 1 1 0.95 1 1 1 1 1 — — — — — —

C Ala 0 0 0.05 0 0 0 0 0 — — — — — —

1263 C His EC 0.95 1 1 1 1 1 1 1 — — — — — —

A Asn 0.05 0 0 0 0 0 0 0 — — — — — —

1273 T Ile EC 1 1 1 1 1 1 0.85 1 — — — — — —

T Thr 0 0 0 0 0 0 0.15 0 — — — — — —

Exon 3 1813 C Gln EC 1 1 1 1 1 1 1 1 — — — — — —

G Glu 0 0 0 0 0 0 0 0 — — — — — —

1823 A Tyr EC 1 1 1 1 1 1 1 0.94 — — — — — —

G Cys 0 0 0 0 0 0 0 0.06 — — — — — —

1913 A Asn EC 1 1 1 1 1 1 0.8 1 — — — — — —

G Ser 0 0 0 0 0 0 0.2 0 — — — — — —

2373 A Ile EC 1 1 1 1 1 1 0.85 1 — — — — — —

C Leu 0 0 0 0 0 0 0.15 0 — — — — — —

3472–4 rs10864628 G Glu EC 0.78 1 1 1 1 1 1 1 1 1 1 0.71 0.93 —

A Lys 0.23 0 0 0 0 0 0 0 0 0 0 0.29 0.07 —

3562 rs41307749 G Cys EC — — — — — — — — — — — — — —

C Ser — — — — — — — — — — — — — —

3722–4 rs34160967 G Ala EC 0.9 1 0.75 0.65 0.95 0.65 0.6 0.94 0.88 0.66 0.64 0.97 0.93 —

A Thr 0.1 0 0.25 0.35 0.05 0.35 0.4 0.06 0.12 0.34 0.36 0.03 0.07 —

3733 C His EC 1 1 1 1 1 1 1 1 — — — — — —

A Asn 0 0 0 0 0 0 0 0 — — — — — —

Exon 4 4833 T Ile EC 0.95 1 1 1 1 1 0.85 1 — — — — — —

C Thr 0.05 0 0 0 0 0 0.15 0 — — — — — —

Exon 5 5072,4 rs35118458 G Arg CD — — — — — — — — 0.97 1 1 1 0.97 —

A Gln — — — — — — — — 0.03 0 0 0 0.03 —

Exon 6 6032,3 rs41278022 T Cys TM 0.88 1 1 1 1 1 1 1 — — — — — —

C Arg 0.12 0 0 0 0 0 0 0 — — — — — —

7733 G Trp TM 0.94 1 1 1 1 1 1 1 — — — — — —

A Stop 0.06 0 0 0 0 0 0 0 — — — — — —

TAS1R3

NM_152228

Exon 1 53 G Ala EC 1 1 0.9 1 1 0.95 1 1 — — — — — —

A Thr 0 0 0.1 0 0 0.05 0 0 — — — — — —

Exon 2 953 T Leu EC 0.98 1 1 1 1 1 1 1 — — — — — —

C Pro 0.02 0 0 0 0 0 0 0 — — — — — —

Exon 3 2473 G Arg EC 0.75 1 1 1 1 1 1 1 — — — — — —

A His 0.25 0 0 0 0 0 0 0 — — — — — —

3673 G Gly EC 0.95 1 1 1 1 1 1 1 — — — — — —

T Cys 0.05 0 0 0 0 0 0 0 — — — — — —

Exon 6 7353 G Ala TM 0.75 1 1 1 1 1 1 1 — — — — — —

A Thr 0.25 0 0 0 0 0 0 0 — — — — — —

7572–4 rs307377 T Cys TM 1 1 1 1 1 0.95 1 0.94 — — — — — 0.92

C Arg 0 0 0 0 0 0.05 0 0.06 — — — — — 0.08

8132 rs34810828 A Lys TM — — — — — — — — — — — — — —

G Arg — — — — — — — — — — — — — —

8162 rs12030791 G Val TM — — — — — — — — — — — — — —

C Leu — — — — — — — — — — — — — —

8232 rs12030797 T Phe IC — — — — — — — — — — — — — —

C Leu — — — — — — — — — — — — — —

8322 rs35913253 A Arg IC — — — — — — — — — — — — — —

G Gly — — — — — — — — — — — — — —

(Continued)
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activity toward the sweetener cyclamate and the sweet taste
inhibitor lactisole depends on residues within the transmem-
brane domain of human T1R3. Furthermore, receptor activity
toward the sweet protein brazzein depends on the cysteine-rich
domain of human T1R3 (5, 34–36). Previous studies of T1R2/
T1R3 sweet receptor suggest that there may be multibinding
sites in T1R1/T1R3 heterodimer for umami substances and that
all SNPs in extracellular, transmembrane, and cysteine-rich
domains may affect umami taste sensitivity in humans. In par-
ticular, 2 SNPs (A372T in TAS1R1 and P993S in GRM1) were
widely distributed and observed in almost all populations with
different minor allele frequencies (0–36% and 31–51%, re-
spectively), which may relate not only to individual differences
but also to population differences in umami sensitivities.

CONCLUSIONS

Relations of umami taste phenotypes to variations in umami
taste receptor genes remain unclear at this point, but the func-
tional analysis with a heterologous expression system may ac-
count for such perceptual differences in umami sensitivity. Many

protein (amino acid)–rich foods, including meat, milk, and
seafood, taste delicious (umami) to humans and are attractive
to rodents and other animals, which suggests that umami percep-
tion plays a key role in ingestion of amino acids (in particular
L-glutamate), which act as biosynthetic precursors of various
molecules, metabolic fuels, and neurotransmitters. Thus, eluci-
dating the causes of the differences in umami taste perception in
rodents and people as well as umami taste mechanisms and
pathways has significant evolutionary implications for human
health. (Other articles in this supplement to the Journal include
references 37–65.)
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TABLE 1 (Continued )

Genes

Position

amino

acid

dbSNP

rs no.

Nucle-

otide

Amino

acid

encoded Domain

Population-specific allele frequency

Reference 33 HapMap AGI

CAM AME NOR JAP RUS HUN CH PAK CEU HCB JPT YRI ASP CEPH

GRM1

NM_000838

Exon 1 342 rs12190109 A Tyr EC — — — — — — — — — — — — — —

C Ser — — — — — — — — — — — — — —

Exon 2 2852,4 rs7760248 G Arg EC — — — — — — — — 1 1 1 0.98 — —

A Lys — — — — — — — — 0 0 0 0.02 — —

Exon 7 5932,4 rs1047005 T Ser EC — — — — — — — — 1 1 0.99 1 — —

C Pro — — — — — — — — 0 0 0.01 0 — —

7292 rs41305288 A Thr TM — — — — — — — — — — — — — —

C Pro — — — — — — — — — — — — — —

7412 rs3025919 T Asp TM — — — — — — — — — — — — — —

A Glu — — — — — — — — — — — — — —

8842,4 rs362936 G Gly IC — — — — — — — — 0.97 1 1 1 — —

A Glu — — — — — — — — 0.03 0 0 0 — —

Exon 8 9292,4 rs2941 G Val IC — — — — — — — — 0.93 0.99 1 1 — —

A Ile — — — — — — — — 0.07 0.01 0 0 — —

9932,4 rs6923492 C Pro IC — — — — — — — — 0.56 0.48 0.52 0.69 — —

T Ser — — — — — — — — 0.44 0.52 0.48 0.31 — —

GRM4

NM_000841

Exon 1 1692,4 rs452752 C Leu EC — — — — — — — — 1 1 0.99 1 — —

T Phe — — — — — — — — 0 0 0.01 0 — —

1 dbSNP, Single Nucleotide Polymorphism database (http://www.ncbi.nlm.nih.gov/); EC, extracellular; TM, transmembrane; IC, intracellular; CAM,

Cameroonian (n = 20); AME, Amerindian (n = 10); NOR, Northern European (n = 10); JAP, Japanese (n = 10); RUS, Russian (n = 10); HUN, Hungarian (n =

10); CH, Chinese (n = 10); PAK, Pakistani (n = 8); CEU, European [30 mother-father-child trios from the Centre d’Etude du Polymorphisme Human (CEPH)

collection (Utah residents with ancestry from northern and Western Europe)]; HCB, Asian: 45 unrelated Han Chinese in Beijing, China; JPT, Asian: 44

unrelated Japanese in Tokyo; AGI, The Applera Genomics Initiative (http://www.applera.com/); YRI, sub-Saharan African: 30 Yoruba mother-father-child

trios in Ibadan, Nigeria; ASP, African American: population samples from Coriell Cell Repositories Apparently Normal Collection; CEPH, genomic DNA

samples were obtained for a panel of 92 unrelated individuals chosen from CEPH pedigrees [the genomic DNA comprised Utah (93%), French (4%), and

Venezuelan (3%)].
2 From dbSNP.
3 From reference 33.
4 From the International HapMap Project (http://www.hapmap.org/index.html.en).
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