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Abstract
Exemplar-similarity models such as the exemplar-based random-walk (EBRW) model (Nosofsky
& Palmeri, 1997a) were designed to provide a formal account of multidimensional classification
choice probabilities and response times (RTs). At the same time, a recurring theme has been to use
exemplar models to account for old-new item recognition and to explain relations between
classification and recognition. However, a major gap in research is that the models have not been
tested on their ability to provide a theoretical account of RTs and other aspects of performance in
the classic Sternberg (1966) short-term memory-scanning paradigm, perhaps the most venerable of
all recognition-RT tasks. The present research fills that gap by demonstrating that the EBRW
model accounts in natural fashion for a wide variety of phenomena involving diverse forms of
short-term memory scanning. The upshot is that similar cognitive operating principles may
underlie the domains of multidimensional classification and short-term, old-new recognition.

According to exemplar models of classification, people represent categories by storing
individual exemplars in memory, and they classify objects on the basis of their similarity to
the stored exemplars (Hintzman, 1986; Medin & Schaffer, 1978). A well known
representative from the class of exemplar models is the generalized context model (GCM;
Nosofsky, 1986). In the GCM, exemplars are represented as points in a multidimensional
psychological space, and similarity between exemplars is a decreasing function of their
distance in the space (Shepard, 1987). An important achievement of the GCM is that it
allows for the prediction of fine-grained differences in classification probabilities for
individual items, based on their fine-grained similarities to exemplars in the
multidimensional space.

A central goal of exemplar models such as the GCM is to account not only for
categorization, but to explain relations between categorization and other fundamental
cognitive processes, such as old-new recognition memory (Estes, 1994; Hintzman, 1988;
Nosofsky, 1988, 1991). When applied to item recognition1 the GCM assumes that each
member of a study list is stored as a distinct exemplar in memory. At time of test, the
observer is presumed to sum the similarity of each test item to these stored study exemplars.
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The greater the summed similarity, the more “familiar” is the test item, so the greater is the
probability with which the observer responds “old”. Indeed, the GCM can be considered a
member of the class of “global matching” models that have been applied successfully in the
domain of old-new recognition (e.g., Clark & Gronlund, 1996; Eich, 1982; Gillund &
Shiffrin, 1984; Hintzman, 1988; Murdock, 1982; Shiffrin & Steyvers, 1997). Within this
broad class, an important achievement of the GCM is that, just as is the case for
categorization, the model predicts fine-grained differences in recognition probabilities for
individual test items, based on their fine-grained similarities to the studied exemplars
(Nosofsky, 1988, 1991; Nosofsky & Zaki, 2003).

A more recent development in the application of the GCM to categorization and recognition
data involves extensions of the model to predicting categorization and recognition response
times (RTs; Cohen & Nosofsky, 2003; Lamberts, 1995, 1998, 2000; Nosofsky & Palmeri,
1997a,b). This direction is important, because RT data often provide insights into
categorization and memory processes that would not be evident based on the analysis of
choice-probability data alone (Kahana & Loftus, 1999). Nosofsky and Palmeri’s (1997a)
exemplar-based random-walk (EBRW) model adopts the same fundamental representational
assumptions as does the GCM. However, it specifies a random-walk decision process,
driven by the retrieval of stored exemplars, which allows the model to predict the time
course of categorization and recognition judgments. Nosofsky and Palmeri (1997a) and
Nosofsky and Stanton (2005) showed that, in perceptual categorization tasks, the EBRW
model accurately predicted mean RTs and choice probabilities for individual stimuli as a
function of their position in multidimensional similarity space, and as a function of variables
such as individual item frequency, probabilistic feedback, and overall practice in the tasks.
Analogously, Nosofsky and Stanton (2006) showed that, when applied to forms of long-
term, perceptual old-new recognition, the model also achieved accurate predictions of mean
RTs and choice probabilities (for closely related work, see Lamberts, Brockdorff, & Heit,
2003). These accurate predictions were obtained at the level of individual subjects and
individual stimuli, thereby providing rigorous tests of the modeling ideas.

To date, however, a major gap in the tests of the EBRW model (and familiarity-based
exemplar models more generally) is that researchers have not considered its predictions for
the fundamental Sternberg memory-scanning paradigm, perhaps the most venerable of all
old-new recognition RT tasks (Sternberg, 1966, 1969, 1975). In the Sternberg paradigm,
observers are presented on each trial with a short list of items (the memory set), followed by
a test item (or probe). They are required to judge, as rapidly as possible, while minimizing
errors, whether the probe occurred on the study list. As is well known, highly regular sets of
RT results are observed in the core version of the paradigm and in important variants of the
paradigm (see below). Indeed, it forms a fundamental test-bed for a wide variety of formal
models of recognition RT that aim to explain the nature of memory-based information
processing.

From one perspective, the Sternberg paradigm may seem outside the intended scope of
models such as the GCM and EBRW. After all, it involves forms of short-term memory
access, and the processes that govern short-term recognition may be quite different from
those that operate when people form categories or make long-term recognition judgments.
Nevertheless, the central aim of the present work is to begin an investigation of the
performance of the EBRW model in this fundamental paradigm and to fill this major gap in

1Throughout our article, we limit consideration primarily to “item” recognition paradigms, as opposed, for example, to forms of
“associative” recognition. Thus, the individual to-be-recognized items can be thought of as atomistic entities, rather than compound
entities composed of separate parts. There is much evidence to suggest that associative forms of recognition involve cognitive
processes, such as recall and recollection, that go beyond the summed-similarity, familiarity-based processes that we posit operate in
short-term item recognition.
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research. To the extent that the EBRW model can provide a natural and convincing account
of the data, it would suggest the possibility that the seemingly disparate processes of “short-
term memory scanning” and category representation and decision making may reflect the
same underlying cognitive principles. Furthermore, detailed analysis of the recognition RT
and accuracy data within the framework of the model also has the potential to provide
important insights into the nature of people’s short-term memory representations and
retrieval processes. For example, the patterns of parameter estimates derived from fits of the
model to data may reveal interesting characteristics of those representations and processes.

Although one aim of the present work will be to consider the EBRW’s account of
performance in the “standard” Sternberg paradigm, the goals are more far-reaching, because
we will also consider its applications to important variants and extensions of the standard
paradigm. For example, in the standard paradigm, the to-be-recognized items are generally
highly discrete entities, such as alphanumeric characters. Because such items are highly
discriminable in memory and because the to-be-remembered lists are short, accuracy is
usually close to ceiling in the standard paradigm. Therefore, in modeling performance in the
standard Sternberg paradigm, the central focus is usually on the RTs. By way of comparison,
in a modern variant of the paradigm, Kahana, Sekuler and their colleagues have tested short-
term recognition of visual patterns embedded in a continuous-dimension similarity space
(e.g., Kahana & Sekuler, 2002; Kahana, Zhou, Geller, & Sekuler, 2007; Sekuler & Kahana,
2007; Viswanathan, Perl, Visscher, Kahana, & Sekuler, 2010). In this case, the stimuli are
highly confusable, and highly structured sets of error data are collected. Indeed, the
challenge to fitting the error data is so extreme that researchers have gone in the opposite
direction, thus far focusing on only the error data, without formal consideration of the RTs.
A major goal of the present work is to use the EBRW model to account jointly for the RTs
and accuracies in this continuous-dimension, similarity-based variant of the Sternberg
paradigm. As will be seen, in this extended version of the paradigm, the model will be
applied to predicting mean RTs and accuracies at the level of individual lists with fine-
grained differences in their similarity structure.

In addition to predicting mean RTs and accuracies in both the similarity-based and standard
versions of the Sternberg paradigm, the model will be applied to predict: i) performance
patterns in a category-based variant of the paradigm, ii) how accuracy grows with
processing time in a response-signal version of the standard paradigm, and iii) detailed RT
distribution data from the standard paradigm observed at the level of individual subjects and
types of lists. Before turning to these diverse tests and applications, we first provide an
overview of the formal model.

The EBRW Model of Old-New Recognition
In this section we provide an overview of the EBRW model as applied to old-new
recognition RTs and accuracies. We start by describing the model in a generic form.
Specializations of the model appropriate for the individual variants of the Sternberg
paradigm are then described in the context of the individual applications. In general, in the
variants of the Sternberg paradigm that we will consider, the fundamental independent
variables that are manipulated include: 1) the size of the memory set, 2) whether the test
probe is old or new, 3) the serial position of an old test probe within the memory set, 4) the
similarity structure of the memory set, and 5) the similarity of the test probe to individual
members of the memory set. The free parameters of the EBRW model may depend
systematically on the manipulations of some of these independent variables. In this section
we preview some ideas along these lines. More detailed assumptions are stated when fitting
the EBRW model to the results from the specific experiments.
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The EBRW model assumes that each item of a study list is stored as a unique exemplar in
memory. The exemplars are represented as points in a multidimensional psychological
space. In the baseline model, the distance between exemplars i and j is given by

(1)

where xik is the value of exemplar i on psychological dimension k; K is the number of
dimensions that define the space; ρ defines the distance metric of the space; and wk (0 < wk,
∑wk = 1) is the weight given to dimension k in computing distance. In situations involving
the recognition of holistic or integral-dimension stimuli (Garner, 1974), which will be the
main focus of the present work, ρ is set equal to 2, which yields the familiar Euclidean
distance metric. The dimension weights wk are free parameters that reflect the degree of
“attention” that subjects give to each dimension in making their recognition judgments. In
situations in which some dimensions are far more relevant than others in allowing subjects
to discriminate between old versus new items, the attention-weight parameters may play a
significant role (e.g., Nosofsky, 1991). In the experimental situations considered in the
present work, however, all dimensions tend to be relevant and the attention weights will turn
out to play a minor role.

The similarity of test item i to exemplar j is an exponentially decreasing function of their
psychological distance (Shepard, 1987),

(2)

where cj is the sensitivity associated with exemplar j. The sensitivity governs the rate at
which similarity declines with distance in the space. When sensitivity is high, the similarity
gradient is steep, so even objects that are close together in the space may be highly
discriminable. By contrast, when sensitivity is low, the similarity gradient is shallow, and
objects are hard to discriminate. In most previous tests of the EBRW model, a single global
level of sensitivity was assumed that applied to all exemplar traces stored in long-term
memory. In application to the present short-term recognition paradigms, however, it seems
almost certain that allowance needs to be made for forms of exemplar-specific sensitivity.
For example, in situations involving high-similarity stimuli, an observer’s ability to
discriminate between test item i and exemplar-trace j will almost certainly depend on the
recency with which exemplar j was presented: Discrimination is presumably much easier if
an exemplar was just presented, rather than if it was presented earlier on the study list (due
to factors such as interference and decay). We state the detailed assumptions involving the
exemplar-specific sensitivity parameters in the context of the modeling for each individual
experiment.

Each exemplar j from the memory set is stored in memory with memory-strength mj. As is
the case for the sensitivities, the memory-strengths are exemplar-specific (with the detailed
assumptions stated later). Almost certainly, for example, exemplars presented more recently
will have greater strengths.

When applied to old-new recognition, the EBRW model presumes that background (or
criterion) elements are part of the cognitive system. The strength of the background
elements, which we hypothesize is at least partially under the control of the observer, helps
guide the decision about whether to respond “old” or “new”. In particular, as will be
explained below, the strength setting of these elements acts as a criterion for influencing the
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direction and rate of drift of the exemplar-based random-walk process. Other well known
sequential-sampling models include analogous criterion-related parameters for generating
drift rates, although the conceptual underpinnings of the models are different from those in
the EBRW model (e.g., Ratcliff, 1985, pp. 215-216; Ratcliff, Van Zandt, & McKoon, 1999,
p. 289).2

Presentation of a test item causes the old exemplars and the background elements to be
activated. The degree of activation for exemplar j, given presentation of test item i, is given
by

(3)

Thus, the exemplars that are most strongly activated are those with high memory strengths
and that are highly similar to test item i. The degree of activation of the background
elements (B) is independent of the test item that is presented. Instead, background-element
activation functions as a fixed criterion against which exemplar-based activation can be
evaluated. As discussed later in this article, however, background-element activation may be
influenced by factors such as the size and structure of the memory set, because observers
may adjust their criterion settings when such factors are varied.

Upon presentation of the test item, the activated stored exemplars and background elements
race to be retrieved (Logan, 1988). The greater the degree of activation, the faster the rate at
which the individual races take place. On each step, the exemplar (or background element)
that wins the race is retrieved. Whereas in Logan’s (1988) model the response is based on
only the first retrieved exemplar, in the EBRW model the retrieved exemplars drive a
random-walk process. First, there is a random-walk counter with initial setting zero. The
observer establishes response thresholds, +OLD and −NEW, that determine that amount of
evidence needed for making each decision. On each step of the process, if an old exemplar is
retrieved, then the random-walk counter is incremented by unit value towards the +OLD
threshold; whereas if a background element is retrieved, the counter is decremented by unit
value towards the −NEW threshold. If either threshold is reached, then the appropriate
recognition response is made. Otherwise, a new race is initiated, another exemplar or
background element is retrieved (possibly the same one as on the previous step), and the
process continues. The recognition decision time is determined by the total number of steps
required to complete the random walk. It should be noted that the concept of a “criterion”
appears in two different locations in the model. First, as explained above, the strength setting
of the background elements influences the direction and rate of drift of the random walk.
Second, the magnitude of the +OLD and−NEW thresholds determine how much evidence is
needed before an old or a new response is made. Again, other well known sequential-
sampling models include analogous criterion-related parameters at these same two locations
(for extensive discussion, see, e.g., Ratcliff, 1985).

Given the detailed assumptions in the EBRW model regarding the race process (see
Nosofsky & Palmeri, 1997a, p. 268), it turns out that, on each step of the random walk, the
probability (p) that the counter is incremented towards the +OLD threshold is given by

2Because our primary interpretation is that the background elements function as criterion settings that guide drift rate, for clarity it
might be more appropriate to refer to them as “criterion” elements throughout. Indeed, we might even speak of a single level of
criterion activation rather than in terms of multiple elements that are activated. However, we leave open the possibility that the
strength of these elements may also sometimes reflect more hard-wired memory-based factors, so the more generic terminology
“background” elements is used instead. In our view, although we hypothesize that the magnitude of background-element strength is at
least partially under the control of the observer, the success of the general theory does not stand or fall on this hypothesis. Instead, the
factors that influence background-element strength, and the extent to which it is under the control of the observer, are important
empirical questions to be investigated in future research.
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(4)

where Ai is the summed activation of all of the old exemplars (given presentation of item i),
and B is the activation of the background elements. (The probability that the random walk
steps toward the −NEW threshold is given by qi = 1− pi.) In general, therefore, test items
that match recently presented exemplars (with high memory strengths) will cause high
exemplar-based activations, leading the random walk to march quickly to the +OLD
threshold and resulting in fast OLD RTs. By contrast, test items that are highly dissimilar to
the memory-set items will not activate the stored exemplars, so only background elements
will be retrieved. In this case, the random walk will march quickly to the −NEW threshold,
leading to fast NEW RTs. Through experience in the task, the observer is presumed to learn
an appropriate setting of background-element activation (B) such that summed activation
(Ai) tends to exceed B when the test probe is old, but tends to be less than B when the test
probe is new. In this way, the random walk will tend to drift to the appropriate response
thresholds for old versus new lists, respectively.

Given these processing assumptions and the computed values of pi, it is then straightforward
to derive analytic predictions of recognition choice probabilities and mean RTs for any
given test probe and memory set. The relevant equations are summarized by Nosofsky and
Palmeri (1997a, pp. 269-270, 291-292). Simulation methods, described later in this article,
are used when the model is applied to predict fine-grained RT-distribution data.

In sum, having outlined the general form of the model, we now apply specific versions of it
to predicting RTs and accuracies in different variants of the Sternberg memory-scanning
paradigm

Experiment 1: Continuous-Dimension Sternberg Paradigm
In Experiment 1, we conduct the Kahana-Sekuler extension of the Sternberg paradigm (e.g.,
Kahana & Sekuler, 2002), in which subjects make recognition judgments for stimuli that are
embedded in a continuous, multidimensional similarity space. All past applications of the
Kahana-Sekuler paradigm, however, have involved the modeling of only choice-probability
data. By contrast, the goal in the present experiment is to collect both accuracy and RT data
and to test the EBRW model on its ability to simultaneously fit both forms of data.
Furthermore, the goal is to predict these data at the level of individual lists.

In our experiment, the stimuli are a set of 27 Munsell colors varying along the dimensions of
hue, brightness, and saturation (3 values along each dimension, combined factorially to yield
the total set). These stimuli are classic examples of “integral-dimension” stimuli (Garner,
1974). Such stimuli appear to be encoded in holistic fashion and are well conceptualized as
occupying points in a multidimensional similarity space (Lockhead, 1972), thereby allowing
for straightforward application of the EBRW model. We conducted a multidimensional
scaling study to precisely locate the colors in the space (see Appendix A for details). This
form of detailed similarity-scaling information is needed to allow for the quantitative
prediction of RTs and choice probabilities at the level of individual memory sets and test
probes.

The design of the experiment involved a broad sampling of different list structures in order
to provide a comprehensive test of the model. There were 360 lists in total. The size of the
memory set varied from 1 to 4 unique items (with an equal number of lists at each memory-
set size). For each memory-set size, half of the test probes were old and half were new. For
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old lists, for each memory-set size, the member of the memory set that matched the probe
occupied each serial position an equal number of times. To create the lists, items were
sampled randomly from the complete stimulus set, subject to the constraints described
above.

Because the goal was to predict performance at the individual-subject level, we tested three
subjects for an extended period (approximately 20 one-hour sessions for each individual
subject). As it turned out, each subject showed extremely similar patterns of performance
and the pattern of best-fitting parameter estimates from the EBRW model was the same
across the subjects. Therefore, for simplicity in the presentation, and to reduce noise in the
data, we report the results from the averaged-subject data. The individual-subject data sets
and fits to the individual-subject data are available from the authors upon request.

Method
Subjects—The subjects were three female graduate students at Indiana University with
normal or corrected-to-normal vision and who reported having normal color vision. The
subjects were paid for their participation ($8 per session plus a $3 bonus per session for
good performance). The subjects were unaware of the issues being investigated in the study.

Stimuli—The stimuli were 27 computer-generated colors from the Munsell system. The
original Munsell colors varied along the dimensions of hue (7.5 purple-blue, 2.5 purple-blue,
and 7.5 blue), brightness (values 4, 5, and 6) and saturation (chromas 6, 8, and 10). The
orthogonal variation of these values produced the 3 × 3 × 3 stimulus set. We used the
Munsell color conversion program (WallkillColor, Version 6.5.1; Van Aken, 2006) to
calculate each color’s RGB value. The red-green-blue (RGB) values for the 27 stimulus
colors are reported in Appendix A. Each color occupied a 2 × 2 inch square (144 × 144
pixels) presented in the center of an LCD computer screen, displayed against a white
background. The display resolution was set to 1024 × 768 pixels. Each stimulus subtended a
visual angle of approximately 9.6 degrees.

Procedure—The structure of the 360 lists was as described in the introduction to this
experiment. The same 360 lists were used for all of the subjects. Each list was presented
once per day (session) of testing, with the order of presentation randomized for each
individual subject on each individual session. Subjects 2 and 3 participated in 20 sessions
and Subject 1 participated in 21 sessions. To enable the subjects to keep track of their
progress, each trial was preceded by the trial number, displayed in the center of the screen
for 1 s. The screen was then blank for 1 s, after which list presentation began. Each list item
was presented for 1 s, with a blank 1-s interstimulus interval separating the items. Following
the final list item, there was a presentation of a central fixation point (“x”) for 1140 ms. In
addition, 440 ms after the onset of the fixation point, a high-pitch tone was sounded for 700
ms. Then the test probe appeared with the question, “Was this color on the preceding list?”
The subject’s task was to respond by pressing either the left (“yes”) or right (“no) mouse
button, using the left or right index finger. The test probe remained visible until the subject’s
response was recorded. The subject received immediate feedback (“Correct” or “Wrong”,
displayed for 1 s) following each response. Twenty practice lists were presented at the start
of the experiment, and there were short rest breaks following every 90 trials.

For each subject-list combination, we removed from the analysis RTs greater than three
standard deviations above the mean and also RTs of less than 100 ms. This procedure led to
dropping 1.24% of the trials (1.65% for Subject 1, 0.75% for Subject 2, 1.32% for Subject
3).
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Model-Fitting Procedure and Results
Multidimensional-Scaling Analysis—To fit the EBRW model to the recognition data,
we make use of an MDS solution for the colors that is derived from the similarity-ratings
data. The details of the MDS procedure are described in Appendix A. The main summary
result is that a three-dimensional scaling solution for the colors provided a very good fit to
the similarity data. Although there were some local distortions, the derived psychological
structure of the stimuli reflected fairly closely the 3×3×3 Munsell coordinate structure. This
derived three-dimensional scaling solution is used in combination with the EBRW model to
fit the recognition data.

Fitting the EBRW Model to the Recognition Data—We fitted different versions of
the EBRW model to the old-new recognition data by varying systematically which
parameters were freely estimated and which parameters were constrained at default values.
In this section, we describe what we view as the “core” version of the model. The core
version achieved reasonably good fits to the mean RTs and accuracies associated with the
360 individual lists. Importantly, as will be seen, it also accounted for the major qualitative
trends in the data, to be described below. Following presentation of the fits of the core
version of the model, we then describe in more detail the role of the free parameters in
achieving these fits.

First, as explained above, the psychological coordinate values of the stimuli (the xik values
in Equation 1) were given by the three-dimensional scaling solution derived from the
similarity ratings. These coordinate values are held fixed in all of the fits to the recognition
data. However, the wk attention weights in Equation 1 were allowed to vary as free
parameters, in case subjects allocated attention to the dimensions differently for purposes of
recognition than for purposes of making similarity judgments (Nosofsky, 1987, 1991).
Because the weights vary between 0 and 1 and are constrained to sum to 1, there were two
free attention-weight parameters.

With an exception to be described below, the exemplar-specific sensitivities (the cj values in
Equation 2) and the memory strengths (the mj values in Equation 3) were assumed to depend
on lag only, where lag is counted backwards from the presentation of the test probe to the
memory-set exemplar. For example, for the case in which memory set-size is equal to 4, the
exemplar in the fourth serial position has lag 1, the exemplar in the third serial position has
lag 2, and so forth. Presumably, the more recently an exemplar was presented (i.e., the lower
its lag), the greater will be the exemplar’s memory strength and its level of sensitivity. Note
that memory-set size has no direct influence on the settings of the memory-strength and
sensitivity parameters. Instead, memory-set size influences those parameter settings
indirectly: The greater the memory-set size, the more exemplars there will be that have
greater lags (cf. Murdock, 1971, 1985). The lag-based memory-strength parameters are
denoted M1 through M4, and the lag-based sensitivities are denotedθ1 through θ4 (where the
subscript indicates the lag). Without loss of generality, the value M4 can be held fixed at 1,
so there are three freely varying lag-based memory-strength parameters and four freely
varying lag-based sensitivity parameters.

In addition, based on inspection of the data and on preliminary model fitting, provision was
made for a modulating effect of primacy on memory strength and sensitivity (cf., Murdock,
1985). The memory strength for the exemplar that occupied the first serial position of each
list was given by m = Mlag × PM, where PM is a primacy-based memory-strength multiplier
and where Mlag is the lag-based memory-strength parameter defined previously.
Analogously, the sensitivity for the exemplar that occupied the first serial position was given
by c = θlag × Pθ. The special status of the exemplar in the first serial position most likely
reflects that subjects tend to devote greater attention and rehearsal to it than to the other
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memory-set exemplars (cf. Atkinson & Shiffrin, 1968). For example, when it is first
presented, there are no other memory-set exemplars that are competing with it for attention
and rehearsal time.3

The strength of the background elements (B in Equation 4) was assumed to be linearly
related to memory-set size S,

(5)

where u and v are freely estimated parameters. All other things equal, as memory-set size
grows, summed activation (Ai in Equation 4) will also grow, because the sum is taking place
over a larger number of stored exemplars. Allowing for increases in B with increases in
memory set size is intended to reflect the possibility that the observer may establish a higher
criterion for assessing the amount of summed activation that tends to be associated with
longer lists. Otherwise, if B remains fixed, then as study lists become arbitrarily long,
summed activation (Ai in Equation 4) would eventually always exceed B and the random
walk would always drift toward the OLD response threshold, regardless of whether the
probe is old or new.

Fitting the EBRW model also requires estimation of the random-walk response-threshold
parameters, +OLD and −NEW. Just as is the case for the background-element strength, it is
conceivable that the observer might adjust the magnitude of the threshold parameters
depending on the properties of each studied list. Nevertheless, in fitting the core version of
the model, we assumed for simplicity that single values of +OLD and −NEW operated for all
lists.4

Finally, a scaling parameter κ was estimated for translating the number of steps in the
random walk into ms; and a residual parameter μ was estimated that represented the mean of
all processing times not associated with the random-walk decision-making stage (e.g.,
encoding and response-execution times).

In sum, the core version of the model uses 17 free parameters (2 attention weights, 4 lag-
based sensitivities, 3 lag-based memory strengths, 2 primacy-related parameters, 2
background-strength parameters, 2 random-walk thresholds, 1 scaling constant, 1 mean
residual time) for simultaneously fitting the mean RTs and choice probabilities associated
with the 360 lists (a total of 720 freely varying data points). As will be seen, some of these
free parameters can be set at default values with little effect on the quality of fit. Others will
be seen to vary in highly systematic and psychologically meaningful ways.

Model-Fitting Approach—In many of the applications in the present article, the plan is to
use the EBRW model to provide a joint account of both mean-RT and choice-probability
data. It is unclear how best to combine these separate data sets into a composite fit index.

3We hypothesize that if subjects were provided with arbitrary instructions and payoffs for good performance on the exemplar in the
second serial position, they would devote greater attention and rehearsal to the second exemplar than occurs in the standard paradigm.
This increased attention would result in boosted memory strength and sensitivity for the second exemplar instead. Other factors,
however, may also contribute to the boost in memory strength and sensitivity for the exemplar in the first serial position, such as lack
of proactive interference from neighboring items on the study list.
4Following previous practice, in fitting mean RTs with the analytic prediction equations, we allow the threshold parameters to vary
continuously rather than constraining them at integer values. The theoretical justification is that the predictions from the model with
the threshold parameters continuous-valued can be extremely well approximated by allowing probabilistic mixtures of integer-valued
settings. For example, the predictions with +OLD=3.5 can be well approximated by assuming that, on some proportion of trials,
+OLD is set at 3, and on the remaining proportion of trials, +OLD is set at 4. The practical reason for allowing continuous-valued
threshold settings is that, otherwise, the parameter search routines are extremely prone to getting stuck in local minima. In addition,
there is likely a great loss in model flexibility if the threshold parameters are held fixed at integer-valued settings.
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Our general goal is simply to establish that the EBRW model is a serious contender by
demonstrating that it accounts for the major qualitative trends in performance across diverse
paradigms involving short-term memory scanning. Thus, for each paradigm, we choose
heuristic fit indexes that seem to yield sensible results involving the joint prediction of the
mean RTs and choice probabilities and that satisfy our general goal of demonstrating the
utility of the model. Later in our article, we collect and analyze detailed RT-distribution
data, which allows for the application of more rigorous and principled maximum-likelihood
methods for jointly fitting the RTs and choice probabilities.

For the present paradigm, the criterion of fit was to maximize the average percentage of
variance accounted for across the mean RTs and the “old” recognition probabilities. That is,
for any given set of parameters, we used the model to derive the predictions of the “old”
recognition probabilities for the 360 lists; and the predicted mean RTs of the 360 lists. Given
these predictions, we computed the percentage of variance accounted for in the old
recognition probabilities, and the percentage of variance accounted for in the mean RTs. The
overall fit was the average of these two quantities. Here and throughout the rest of the article
we used a computer-search routine (a modified version of Hooke and Jeeves, 1961) to locate
the best-fitting parameters. In an effort to avoid local minima, 100 different random starting
configurations were used in the parameter searches.

Model-Fit Results—The summary fits of the core version of the model are reported in the
top row of Table 1. As shown in the left columns of the table, the model accounted for
96.5% of the variance in the “old” recognition probabilities, and for 83.4% of the variance in
the mean RTs. A more detailed breakdown is provided in the right columns of the table,
which report the summary fits for the “old” and “new” lists considered separately. Naturally,
because the separate list types generally involve vastly reduced ranges of the dependent
variables (especially the probability of responding “old”), the percent-variance summary
statistics for the separate list types are smaller than for the aggregate data. As will be seen,
considering the summary statistics for the old and the new lists separately provides
diagnostic information for helping to evaluate different versions of the model.

The performance of the core model is illustrated graphically in Figures 1 and 2. Figure 1
plots the observed recognition probabilities for the 360 lists against the predicted recognition
probabilities. Figure 2 plots the observed mean RTs against the predicted mean RTs.
Separate symbols are used to denote the size of each list; whether the test probe was old or
new; and, if old, the test probe’s lag. To aid visual inspection, old lists are denoted by
numeric symbols, whereas new lists are denoted by shape symbols. Inspection of the
scatterplots suggests that, although there are occasional outliers, the model is providing a
good overall quantitative account of the complete sets of choice-probability and mean-RT
data. Furthermore, inspection of the scatterplots and the summary-fit statistics in Table 1
indicates that the model captures a substantial proportion of variance for the old and new
lists considered separately.

To help evaluate any systematic departures between observed and predicted data values, and
to summarize key trends in the data, Figure 3 displays the observed (top row) and predicted
(second row) results averaged across tokens of the main types of lists. Specifically, the left
panels plot the observed and predicted error probabilities as a function of memory set size,
type of test probe (old or new), and lag, averaged across the individual tokens of these main
types of lists. The right panels do the same for the mean RTs. Inspection of these plots
suggests that the model is doing an outstanding job of capturing the main patterns in the
data. For both the error-probability and the mean RT data, there is a dramatic effect of lag:
For each memory-set size, more recent items (with lower lags) have lower error probabilities
and faster mean RTs than do less recent items. (As discussed later in this article, this same
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basic pattern is often observed in tests of the standard Sternberg paradigm.) Once one takes
lag into account, there is little additional effect of memory-set size per se, i.e., the curves
corresponding to old lists of varying set sizes are nearly overlapping. The main exception is
a fairly consistent primacy effect: In general, for each memory-set size, the item with the
longest lag is “pulled down” with a faster mean RT and, usually, a somewhat reduced error
rate. The data also show a big effect of memory-set-size on the error rates and mean RTs of
the new test probes (i.e., the lures): The greater the memory-set size, the greater is the mean
false-alarm probability and the slower is the overall mean RT. As can be seen in Figure 3
(second-row panels), the core version of the EBRW model accounts for all of these
qualitative trends and does so with high quantitative precision.

Beyond accounting for the main effects of lag, memory set size, and type of probe,
inspection of the detailed, individual-list scatterplots in Figures 1 and 2 reveals that the
model accounts well for effects of the fine-grained similarity structure of the lists. For
example, consider lists of memory-set-size 4 in which the test probe is new (Lure Size 4).
As can be seen in the scatterplots, there is huge variability in performance across different
tokens of these lists. Some are associated with extremely high false alarm rates and others
have very low false alarm rates. Likewise, some tokens of these types of lists have very slow
mean RTs, whereas others have moderately fast ones. The model captures well this
variability in performance across different tokens of the Lure-Size-4 lists. To understand
why, note, for example, that false alarm rates will be high when the lure is highly similar to
one or more exemplars of the memory set. By contrast, false alarm rates will be low when
the lure is dissimilar to all of the memory-set members. In addition, in the latter case, the
model predicts correctly that there will be fast correct-rejection RTs, because only
background elements will be retrieved, leading the random walk to march rapidly to the
NEW threshold.

Best-Fitting Parameters and Special-Case Versions of the Model—The best-
fitting parameters from the model are reported in Table 2. First, note that the attention-
weight parameters (i.e., the wk’s) hover around their default values of 1/3, indicating that
subjects gave roughly the same degree of attention to each of the individual stimulus
dimensions in making their recognition judgments. The freely estimated weights are not
doing much work in terms of allowing the model to achieve its good fits in the present
situation.

More importantly, there are systematic effects of lag on the values of the memory-strength
and exemplar-specific sensitivity parameters. More recently presented exemplars have both
greater memory strengths and greater sensitivities than do less recently presented exemplars.
This pattern seems highly plausible from a psychological point of view. Presumably, the
more recently an exemplar was presented, the greater should be the strength of its memory
trace. (The implication is that a positive probe activates its own memory trace to a greater
degree if it was just recently presented on the study list.) At the same time, the more recently
an exemplar was presented, the better should subjects be at discriminating between that
exemplar and test lures, so the pattern of estimated lag-related sensitivities seems sensible as
well. Also, as expected from inspection of the data, there was a primacy effect on both the
estimated memory strength and sensitivity, with the exemplar in the first serial position
receiving a slight boost.

To assess the importance of the lag-specific sensitivity parameters, we fitted a constrained
version of the EBRW model in which the sensitivity parameters were held fixed at a
constant value. As shown in Table 1, the fit of this constrained model is dramatically worse
than that of the core version, particularly with respect to the RTs associated with the new
lists. The predictions of the summary trends from the constant-sensitivity version of the
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model are shown in the third-row panels of Figure 3. It is evident from inspection that this
special-case model fails to predict correctly the lure RTs. In particular, the predicted range
of RTs as a function of set size is vastly smaller than what is seen in the observed data.5

We also fitted a constrained version of the model in which the memory-strength parameters
were held fixed at a constant value. Compared to the core version, this special-case model
suffers with respect to the old RTs (see Table 1, right columns). The summary-trend
predictions from the constant-memory-strength model are shown in the fourth-row panels of
Figure 3. The model fails to predict sufficient separation between the old-RT functions
associated with different set sizes and, in general, predicts too little overall variation in the
old RTs. For completeness, we also fitted a special-case version of the model that assumed
both constant sensitivity and constant memory strength. As can be seen in Table 1, this
special-case model provides extremely poor fits to the data.

In sum, the estimated memory-strength and sensitivity parameters vary in systematic and
psychologically meaningful ways and they make unique contributions to the fit of the
EBRW model. Nevertheless, it is important to acknowledge that the values of these lag-
related parameters are strongly correlated, suggesting also that some common psychological
mechanism may underlie them.

It is interesting to note that the choice-probability data display set-size-based “mirror
effects” (Glanzer & Adams, 1990) -- see Figure 3. Averaged across lags, hit rates get
smaller and false alarm rates get larger as set size increases. The model predicts this mirror
effect even if the background-parameter B is held fixed across the different set-size
conditions. As shown in Table 1, for the present data set, there is little change in the fit of
the model if B is held fixed; also, although not illustrated in Figure 3, when B is held fixed,
the predictions of the summary trends are virtually identical to those of the core model. The
reason the model predicts decreasing hit rates with increasing set size is because the lag for
the positive probes tends to grow larger as set size increases. (With increasing lag, the
positive probe activates its own memory trace to a lesser extent, and this self-activation is
the dominant term in the summed-activation equation.) By contrast, the model predicts
increasing false alarm rates with increasing set size for two reasons. First, all other things
equal, as set size increases, summed activation for negative probes will tend to increase
because the sum is taking place over a larger number of stored exemplars. Second, the larger
the set size, the greater are the chances that the memory set will include at least one
exemplar that is highly similar to the negative probe.

Similarity Assumptions—To assess the importance of the MDS-based similarity
representation of the exemplars, we fitted other versions of the EBRW model as well. In one
version, we made allowance for only a binary-valued distance relation between exemplars:
The distance between an exemplar and itself was set equal to zero, whereas the distance
between any two distinct exemplars was set equal to a free parameter D. With the exception
of the attention-weight parameters (which contributed negligibly to the fit of the core
model), the free parameters in this binary-distance model were the same as those in the core
version of the model. The fits of the binary-distance model, reported in Table 1, are

5Our inference that sensitivity decreased significantly with lag is at odds with findings from a much different paradigm conducted
recently by Zhang and Luck (2009). In particular, these researchers required subjects to recall (in continuous fashion) colors
associated with squares in varying locations at varying time delays. A model-based analysis of their data led them to conclude that
subjects had all-or-none memories for the colors. Either a memory for a color had a “sudden death,” in which case the recalled color
was a random guess; or else the memory for the color was retained, with little or no loss in precision. Although a detailed presentation
goes beyond the scope of the present article, we attempted to fit a variety of such “sudden-death” models to the present data, but all
failed to account for our results, particularly the RTs. Future research is needed to reconcile our contrasting conclusions regarding
changes in visual/memorial sensitivity with lag or delay, and much may depend on the details of the experimental paradigm that is
involved.
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dramatically worse than those of the core model. (For example, the binary-distance model
accounts for only 5.1% of the variance in the recognition probabilities associated with new
lists.) Clearly, for the present paradigm, the graded similarity representation is a crucial
component of the EBRW-modeling approach.

As acknowledged earlier, however, the core model makes clear mis-predictions for some of
the lists as well, so there is room for improvement. At least part of the reason for some of the
mis-predictions is that, despite its great utility, the derived MDS representation does not of
course provide a perfect representation of the similarity relations among the exemplars.
First, the representation was derived in an independent task, and the precise form of
“similarity” that underlies peoples’ ratings may differ from the similarity that underlies their
recognition judgments. Second, each individual subject will have a slightly differently
calibrated perceptual system, so the group representation derived from the similarity ratings
can provide only an approximation to each individual’s similarity space. Furthermore,
because of the nonlinear relation between similarity and distance, even small errors in
represented distance can sometimes lead to large errors in predicted recognition confusions
and RT.6 Most likely, the ability of the EBRW model to predict the recognition choice-
probability and RT data would improve with still more sophisticated approaches to deriving
each individual’s similarity representation for the exemplars.

List Homogeneity Effects—In their previous work involving the continuous-dimension
Sternberg paradigm, Kahana, Sekuler and their colleagues have provided convincing model-
based evidence for a role of list homogeneity on old-new recognition judgments (e.g.,
Kahana & Sekuler, 2002; Kahana, et al., 2007; Sekuler & Kahana, 2007; Viswanathan et al.,
2010; see also Nosofsky & Kantner, 2006). The general effect is that humans appear to set a
stricter criterion for responding “old” when they study high-homogeneity lists compared to
low-homogeneity ones. These effects are compatible with extended versions of the EBRW
model that make allowance for criterion settings to depend on the degree of study-list
homogeneity. We conducted extensive analyses similar to those of Kahana and Sekuler for
the present data set. As it turned out, list homogeneity per se seemed to play only a limited
role in the present case, so we present these analyses in Appendix B. In our judgment, the
hypothesis that study-list homogeneity may sometimes exert a powerful influence on old-
new recognition decisions is almost certainly true. However, future research is needed to
understand the precise experimental conditions in which such list-homogeneity effects arise.

Summary—In summary, the EBRW model provides a good overall quantitative account of
the mean RT data and old recognition probabilities associated with the 360 individual lists
(Figures 1 and 2). It also accounts well for the major qualitative patterns of results involving
memory set size, lag, and probe type (summarized in Figure 3), and accounts for effects of
fine-grained similarity structure within these main list types. Finally, the best-fitting
parameters from the model vary in systematic and easy-to-interpret ways. Taken together,
this initial test suggests that the EBRW model is an excellent candidate model for explaining

6A case in point is the extreme mis-prediction seen towards the lower-left of the choice-probability scatterplot (Figure 1), where the
predicted recognition probability is .01 and the observed recognition probability is .37. This case involved a one-item list in which the
test item was a lure. The lure was identical to the memory-set exemplar in saturation and brightness but one step away in hue. Given
the best-fitting value of the sensitivity parameter (which is constrained to try to fit all 720 data points), the computed distance between
the lure and the memory-set exemplar in the MDS representation is near the cusp where the exponential similarity gradient begins its
rapid ascent. If the lure were just slightly closer to the exemplar in the derived MDS representation, or if sensitivity were somewhat
reduced, the predicted false-alarm probability would rise rapidly. We fitted an elaborated version of the EBRW model that made
allowance for drift-rate variability by assuming a triangular probability distribution of sensitivity and memory strength across trials. In
particular, with probability .5 sensitivity was given by c(j); with probability .25 by c(j)−δcc(j); and with probability .25 by c(j)+ δcc(j),
where δc is a proportionality constant between 0 and 1. (An analogous triangular probability distribution was estimated for the
memory strengths.) This more complicated model fixed the outlier point, but led to relatively small improvements in overall fit
otherwise.
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both choice probability and RTs in this continuous-dimension version of the Sternberg
paradigm.

The Standard Sternberg Paradigm: Application to Monsell’s (1978) Data
Thus far, the focus in this article has been on the continuous-dimension extension of the
Sternberg paradigm. A natural question, however, is how the EBRW model might fare in the
standard version of the paradigm, in which highly discrete alphanumeric characters are used.
To the extent that things work out in a simple, natural fashion, the applications of the EBRW
model to the standard paradigm should be essentially the same as in the just-presented
application, except they would involve a highly simplified model of similarity. That is,
instead of incorporating detailed assumptions about similarity relations in a continuous
multidimensional space, we apply a simplified version of the EBRW that is appropriate for
highly discriminable, discrete stimuli.

Specifically, in the simplified model, we assume that the similarity between an item and
itself is equal to one; whereas the similarity between two distinct items is equal to a free
parameter s (0 < s < 1). (This model is a special case of the binary-distance model fitted to
the Experiment-1 data.) Presumably, the best-fitting value of s will be small, because the
discrete alphanumeric characters used in the standard paradigm are not highly confusable
with one another. Note that the simplified model makes no use of the dimensional attention-
weight parameters, lag-dependent sensitivity parameters, nor the primacy-based sensitivity
parameter. In addition, in the experimental data that we will consider, the primacy effects
were small, so we will not estimate a primacy-based memory-strength parameter. All other
aspects of the model are the same, so we need to estimate the lag-dependent memory-
strengths, random walk thresholds, and background-element parameters.

Here, we apply the simplified EBRW model to a well known data set collected by Monsell
(1978; Experiment 1, immediate condition). In brief, Monsell (1978) tested 8 subjects for an
extended period in the standard Sternberg paradigm, using visually presented consonants as
stimuli. The design was basically the same as the one that we used in Experiment 1 of this
article, except that the similarity structure of the lists was not varied. A key aspect of his
design was that individual stimulus presentations were fairly rapid, and the test probe was
presented either immediately or with brief delay. Critically, the purpose of this procedure
was to discourage subjects from rehearsing the individual consonants of the memory set. If
rehearsal takes place, then the psychological recency of the individual memory-set items is
unknown, because it will vary depending on each subject’s rehearsal strategy. By
discouraging rehearsal, the psychological recency of each memory set item should be a
systematic function of its lag. Another important aspect of Monsell’s design is that he varied
whether or not lures were presented on recent lists (i.e., lists immediately prior to the current
one). Lures presented on recent lists are referred to as recent-negatives, whereas lures not
presented on recent lists are referred to as novel-negatives. For starting purposes, we ignore
this aspect of the procedure in describing and modeling the data, but then consider its impact
in a subsequent discussion.

The mean RTs and error rates observed by Monsell (1978) in the immediate condition are
reproduced in the top panel of Figure 4. (The results obtained in the brief-delay condition
showed a similar pattern.) Following Monsell’s (1978, Figure 4) presentation, the data for
the lures are averaged across the recent-negative and novel-negative conditions. Inspection
of Monsell’s RT data reveals a pattern that is very similar to the one we observed in our
Experiment 1 after averaging across the individual tokens of the main types of lists (i.e.,
compare to the observed-RT panel of Figure 3). In particular, the mean old RTs vary
systematically as a function of lag, with faster RTs associated with more recently presented
probes. Once lag is taken into account, there is little if any remaining influence of memory-
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set-size on old-item RTs. For new items, however, there is a big effect of memory-set-size
on mean RT, with slower RTs associated with larger set sizes. Because of the non-
confusable nature of the consonant stimuli, error rates are very low; however, what errors
there are tend to mirror the RTs. Another perspective on the observed data is provided in
Figure 5, which plots mean RTs for old and new items as a function of memory-set-size,
with the old RTs averaged across the differing lags. This plot shows roughly linear increases
in mean RTs as a function of memory-set-size, with the positive and negative functions
being roughly parallel to one another. The main exception to that overall pattern is the fast
mean RT associated with positive probes to 1-item lists. This overall pattern shown in
Figure 5 is, of course, extremely commonly observed in the Sternberg memory-scanning
paradigm.

We fitted the EBRW model to the Figure-4 data by using a weighted least-squares criterion.
Specifically, we conducted a computer search for the values of the free parameters that
minimized the quantity

(6)

where SSD(RT) is the sum of squared deviations between the predicted and observed mean
RTs, SSD(Error) is the sum of squared deviations between the predicted and observed error
proportions, and W is the weight given to SSD(Error). Sensible-looking fits (i.e., ones for
which the model yielded predictions that were simultaneously in the ballpark of the RT and
error data) were obtained with W set equal to 100,000.

The predicted mean RTs and error probabilities from the EBRW model are shown
graphically in the bottom panel of Figure 4. Comparison of the top and bottom panels of the
figure reveals that the EBRW model does an excellent job of capturing the performance
patterns in Monsell’s (1978) tests of the standard Sternberg paradigm. Mean RTs for old
patterns get systematically slower with increasing lag, and there is little further effect of
memory-set-size once lag is taken into account. Mean RTs for lures are predicted correctly
to get slower with increases in memory-set size. (The model is also in the right ballpark for
the error proportions, although in most conditions the errors are near floor.) Figure 5 shows
the EBRW model’s predictions of mean RTs for both old and new probes as a function of
memory-set size (averaged across differing lags), and the model captures the data from this
perspective as well. Beyond accounting for the major qualitative trends in performance, the
EBRW model provides an excellent quantitative fit to the complete set of data.

The best-fitting parameters from the model are reported in Table 3. As expected, the
memory-strength parameters decrease systematically with lag, reproducing the pattern seen
in the fits to our detailed Experiment 1 data. The best-fitting value of the similarity-
mismatch parameter (s = .050) reflects the low confusability of the consonant stimuli from
Monsell’s experiment.

As noted earlier, Monsell (1978) manipulated whether or not lures were presented on recent
lists. One purpose of this manipulation was to test between different explanations of lag
effects on mean RTs. In terms of the present modeling, old items with short lags have
greater memory strengths, leading to more efficient memory retrievals and a speeded
random-walk decision process. A potential alternative explanation, however, is that old
items with short lags are encoded more rapidly when presented as test probes; that is, the
explanation for the speeded RTs lies in the residual stages of processing and not in the
memory-retrieval stage. Monsell’s manipulation of lure recency addresses this issue. If the
sole explanation of the lag effects is that more recently presented items are encoded more
rapidly, then recent-negatives should have faster RTs than do novel-negatives. The data,
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however, went decidedly in the opposite direction, with recent-negatives having slower RTs.
This general pattern seems compatible with the EBRW-modeling ideas, simply by assuming
that items on recently presented lists are still stored in memory, albeit with greatly reduced
memory strengths (see Ratcliff, 1978, for a similar conceptual argument). Thus, if a recent-
negative is presented as a test probe, it may occasionally retrieve its memory trace from
previous trials, slowing the march of the random walk to the NEW threshold.

In sum, without embellishment, the EBRW model appears to provide a natural account of
the major patterns of performance in the standard version of the Sternberg paradigm, at least
in cases in which the procedure discourages rehearsal and where item recency exerts a major
impact.

A Category-Based Version of the Sternberg Paradigm
Omohundro and Homa (1981) collected response-time data in paradigms that can be
described as category-based versions of the Sternberg task. In these paradigms, instead of
the stimuli being discrete alphanumeric characters, or arbitrary items randomly sampled
from a continuous-dimension similarity space, the study lists were composed of members of
categories. In their Experiment 1, Omohundro and Homa (1981) tested an individual-item
recognition design similar to the ones described earlier in our article, with categorized lists
that varied in memory-set size. In general, as expected, recognition RTs for both positive
and negative probes increased with memory-set size, and the EBRW’s account of those data
is similar to the ones that we provided earlier. Therefore, in this section we focus instead on
their Experiment 2, which involved an alternative procedure in which subjects were tested
on category-membership verification rather than on individual-item recognition.
Importantly, although the task goals differ for recognition versus category verification, from
the perspective of the EBRW model the underlying processes are the same. Furthermore,
addressing the category-verification results is of particular interest because Omohundro and
Homa (1981) argued that they were problematic for exemplar models.

In particular, Omohundro and Homa (1981; Experiment 2) used the classic prototype-
distortion paradigm (Posner & Keele, 1968, 1970) to create categories and memory sets. In
their paradigm, each category was defined around a polygon prototype. Statistical-distortion
procedures were used to create low, medium, and high distortions of each prototype. In a
preliminary training phase, subjects learned to classify the stimuli into three categories: a
size-3 category, a size-6 category, and a size-9 category. There were equal numbers of low,
medium, and high distortions within each category.

Following the training phase, subjects participated in a speeded-verification test of category
membership. They were re-presented with the members of each category set, one at a time,
and then presented with test probes. Half of the test probes were new members of the
category (i.e., new statistical distortions of the category prototype). These test items were the
positive probes. The remaining half of the test items were random patterns, i.e., negative
probes. Among the new category members (positive probes), there was an equal number of
low, medium, and high distortions. Subjects were asked to judge, as rapidly as possible
without making errors, whether each test item was a member of the studied category.

The RT and accuracy results from Omohundro and Homa (1981) are displayed in the top
panels of Figure 6. The figure plots the mean RTs and accuracies as a function of category
size and item type (low, medium, high distortion; or negative probe). As can be seen, for the
positive probes, as category size increased, mean RTs got systematically faster and
accuracies increased. (Note that this pattern is opposite of what is generally observed in
individual-item recognition tasks.) In addition, subjects were fastest and most accurate on
the low- distortion positive probes, intermediate on the medium-level probes, and slowest
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and least accurate on the high-distortion probes. Although there appear to be effects of
category size on performance for the negative probes, Omohundro and Homa (1981) report
that these changes were not statistically significant. (Note also that, for the negative probes,
the RT and accuracy results go in opposite directions, with faster RTs for the size-9
category, but lower accuracy for the size-9 category.)

Omohundro and Homa (1981) interpreted their data as problematic for exemplar models of
categorization and memory verification. In particular, they argued that “…if the comparison
process is between the test probe and the individual category members, then the matching
process should be slowed by increasing the number of exemplars used to define the
category” (p. 279). Although Omohundro and Homa’s data may challenge certain versions
of exemplar-matching and exemplar-search models, we argue below that the EBRW model
provides a natural account of the results.

The EBRW model can be readily applied to the results from the Omohundro-Homa
paradigm. First, we define parameters sL, sM, and sH representing the average similarity of
the low, medium, and high distortions to the category training patterns. (In general, the low
distortions will tend to have the greatest average similarity to the training patterns, whereas
the high distortions will tend to have the least.) Likewise, we define a free parameter sN that
represents the average similarity of the negative probes to the category members. (The value
sN should have the lowest magnitude among all of the similarity parameters.) For simplicity,
we assume that the summed similarity of a test probe to the category exemplars is given by
the category size times the average similarity.7 For example, for the size-3 category, the
summed similarity for a low-distortion probe is simply 3*sL. The remaining free parameters
for the model are the same as in all previous applications in this article. Thus, we assume
that the strength of the background elements (B) is linearly related to category size (S), B = u
+ v·S. Likewise, we need to estimate the random-walk threshold parameters +OLD and
−NEW, the mean residual time μ, and a scaling parameter κ for translating the number of
steps in the random walk into ms. Although the magnitude of the random-walk thresholds
might conceivably vary as a function of category size (especially because the category-
verification tests were conducted in a between-blocks fashion), for simplicity we hold those
parameters constant across category size.

As in our applications to the standard Sternberg paradigm, we fitted the EBRW model to the
Figure-6 data by searching for the values of the free parameters that minimized SSD(Total)
in Equation 6. Again, we obtained reasonable-looking results with the weight on SSD(Error)
set to W=100,000. The predicted mean RTs and accuracies are displayed graphically in the
bottom panels of Figure 6, with the best-fitting parameters and summary fits reported in
Table 4. As can be seen, this baseline version of the EBRW model provides a reasonably
good account of the results. It predicts correctly that RTs for positive probes get faster (and
accuracy increases) as category size increases and as the distortion level of the test probes
gets smaller. The reason is that both factors lead to increasing summed similarity of the test
probes to the stored exemplars, which increases the rate of drift toward the +OLD (i.e.,
category-member) response threshold. A possible limitation of the model is that, with the
present parameter settings, it predicts a flat RT function for the negative probes, whereas the

7A complicating factor is that, in their design, Omohundro and Homa (1981) presented items from categories with small-category size
more often than items from categories with large-category size in order to equate overall category familiarity. Although this
manipulation would lead to increased strength of items from small categories, the increased frequency would also lead those items to
become more differentiated (e.g., Ratcliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, & Clark 1990). Rather than adding free
parameters to model such effects, we assume that the increased strength and increased differentiation roughly cancel each other out, so
that performance is mainly governed by overall category size and distortion level of test items. Another complicating factor is that
because Omohundro and Homa’s paradigm involved an extended test phase, learning may have occurred during test. Again, for
simplicity, we assume that these learning-during-test effects are small relative to the initial learning that occurred during the study
phase and we make no attempt to model them.
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observed negative-probe RT appears to decrease with category size. Recall, however, that
the observed RT changes for the negative probes were not statistically significant, so this
limitation may not be a serious one. Finally, inspection of Table 4 reveals a sensible pattern
of parameter estimates, with measured similarity decreasing regularly across the low,
medium and high distortions and the negative probes.

In summary, without embellishment, the EBRW model accounts in natural fashion for the
overall pattern of performance in the category-based version of the Sternberg paradigm
tested by Omohundro and Homa (1981). An interesting direction for future research would
be to conduct item-recognition and category-verification versions of the memory-scanning
task in which all factors are held constant across conditions except for the task goal (i.e.,
recognition versus categorization). According to the present theory, the EBRW model
should account simultaneously for the data across both conditions, while allowing only
certain parameters to vary. For example, observers might learn to set a lower value on the
background-element strength parameter in the categorization condition than in the item-
recognition condition, because recognizing an item requires an exact match, whereas
categorizing requires only a sufficient degree of match to the items on the study list.

Modeling Speed-Accuracy-Tradeoff Curves in the Response-Signal Paradigm
Another major perspective on the process of short-term memory recognition is obtained
through use of the response-signal procedure (e.g., McElree & Dosher, 1989; Reed, 1973).
In this procedure, rather than allowing the subject to respond freely, the subject is trained to
make a response as soon as a signal is given. By varying the onset of the response signal,
one can map out speed-accuracy-tradeoff (SAT) curves that show how accuracy changes as
a function of processing time.

McElree and Dosher (1989) conducted an extremely rigorous and influential set of studies
that applied the response-signal procedure to the Sternberg paradigm. In this section we
briefly describe the results from their Experiment 1 and consider applications of the EBRW
model to their data. In their Experiment 1, the stimuli were sets of words, and subjects were
presented with lists of set-size 3 or 5. Within each set size, positive probes occurred equally
often at each serial position. (Negative probes occurred equally often as did positive probes.)
As was the case in Monsell’s (1978) study described earlier in this article, stimulus-
presentation parameters were arranged to minimize rehearsal, so that psychological recency
of the study-list items was determined by their lag. Following onset of the test probe, a
response signal was presented at one of eight times: 100, 200, 300, 400, 550, 900, 1300 or
1800 msec.

McElree and Dosher computed d’ as a function of set size, lag, and response-signal time and
plotted the resulting SAT curves. The data averaged across subjects are re-presented in our
Figure 7, where each SAT curve corresponds to a distinct combination of set size and lag.
(Our plots differ slightly from those of McElree and Dosher because we do not include the
mean RT associated with each response-signal delay.) To characterize the data, McElree and
Dosher fitted exponential growth functions to the SAT curves, of the form

(7)

where d’(t) is the value of d’ at processing-time t; λ is the asymptote of the exponential-
growth function; δ is the intercept where the curve starts to rise; and β is the rate at which
the curve rises toward asymptote. In particular, they fitted different families of exponential
curves to the data by placing different types of constraints on the free parameters (λ, δ and β)
and reported the results from the family that provided the most parsimonious fit. The fit was
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evaluated using the proportion of variance accounted for (corrected by the number of free
parameters):

(8)

where di and  are the observed and predicted d’ values, respectively; d̄ is the mean
observed d’ value; n is the number of data points; and P is the number of free parameters.

The main summary statement from these formal analyses was that a distinct asymptote (λ)
was associated with each individual SAT curve. However, except for the lag-1 curves, the
“dynamics” of the curves were the same, in the sense that they had nearly invariant
intercepts and rates of rise toward asymptote. However, the best fits to the data required that
a faster rate parameter be estimated for the lag-1 curves. In sum, this best-fitting exponential
family used 8 distinct asymptote parameters, 2 rate parameters, and an intercept parameter.
This descriptive model accounted for .956 of the (corrected) variance in the observed d’ data
and provides a challenging benchmark against which to assess the fit of process-oriented
models.

McElree and Dosher noted that a variety of formal models of short-term recognition failed
to predict these general characteristics of the observed SAT curves. For example, they noted
that serial exhaustive scanning models predicted curves with markedly different rate
parameters, in marked contrast to the observed data. They noted as well that a general
version of Ratcliff’s (1978) diffusion model with suitably chosen drift-rate parameters could
capture the data, although they did not assess the quantitative fits of more specific,
constrained versions of that process model.

We fitted different versions of the EBRW model to McElree and Dosher’s response-signal
data by simulating the model and adopting the following assumptions. In the first version,
we assumed that there is a log-normally distributed encoding stage (with location parameter
μE and scale parameter σE) in which the observer first encodes the test probe.8 The random-
walk decision process does not get started until the test probe is encoded. The difference
between the processing time determined by the response signal and the simulated encoding
time (DIFF) determines the amount of time that the exemplar-based random-walk process
can operate. Recall that the EBRW model has a scaling parameter (κ) for translating number
of steps of the random walk into ms. Thus, on a given simulated trial, the random walk will
take int(DIFF/κ) steps, where int truncates any number down to the nearest integer. On any
given step, the probability that the random-walk steps toward the OLD threshold is
computed in the same manner as described previously for the standard Sternberg paradigm.
Thus, we need to estimate the lag-related memory strength parameters M1-M5, the
background-element parameters u and v, and the similarity-mismatch parameter s. (Without
loss of generality, M5 can be held fixed at 1, so there are 4 freely varying memory
strengths.) To account for small primacy effects in McElree and Dosher’s data,9 we also
estimate the primacy-based memory-strength multiplier PM.

8The mean of the log-normal is given by  and the variance is given by . The
log-normal is a common descriptive model for capturing the shapes of latent and observed RT distributions because it is: i)
continuous; ii) non-negative; iii) unimodal; iv) positively skewed; and, with appropriate choice of free parameters, v) has minuscule
probability density below a reasonable cut-off point.
9The primacy effect can be observed in Figure 7 by noting that in the Set-Size-5 condition, the lag-5 curve has a slightly higher
asymptote than does the lag-4 curve; and in the Set-Size-3 condition, the lag-3 curve has a slightly higher asymptote than does the
lag-2 curve.
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Note that in the present version of the model, estimates of the random-walk thresholds
+OLD and −NEW are not needed to fit the data. Instead, we assume simply that, upon
presentation of the response signal, if the random walk has taken a greater number of steps
towards the OLD threshold than towards the NEW threshold that the observer responds
“old”; else, the observer responds “new”. Finally, a technical assumption was needed to
prevent undefined or exploding values of d’ at the very longest response-signal times. For
simplicity, we set the maximum hit rate in any given condition to .99 and the minimum false
alarm rate to .01. This technical assumption can be justified by positing the influence of a
secondary process on performance. For example, there may always be some small
probability of a response-execution error regardless of the outcome of the random-walk
decision-making process.

Following McElree and Dosher, we conducted a computer search for the values of the free
parameters that maximized the corrected r2 value (Equation 8).10 The best-fitting version of
the baseline model described above yielded r2 = .941, a fit that is already in the same
ballpark as the one achieved by the descriptive exponential-growth curves. In agreement
with McElree and Dosher’s exponential growth-curve analysis, the main limitation of the
baseline model was that it failed to account for the early rapid rise of the lag-1 functions at
both set sizes 3 and 5. As noted by McElree and Dosher, the lag-1 curves correspond to a
case of immediate repetition of a study item by the test probe. Immediate repetition may
influence various components of the information-processing sequence. To accommodate the
finding, we followed McElree and Dosher by allowing a separate free parameter unique to
these curves. In particular, we estimated a separate encoding-time parameter (μE1) for the
lag-1 curves to allow them to get off to a more rapid start. This elaborated model accounted
for .962 of the corrected variance in the data, which is essentially the same as the fit
achieved by the descriptive exponential growth curves from McElree and Dosher.

The fit of this version of EBRW model is shown along with the observed data in Figure 7.
Inspection of the figure suggests that the EBRW model is providing a good quantitative
account of the complete set of SAT curves. The best-fitting free parameters are reported in
Table 5. As in our previous applications, the pattern of best-fitting free parameters seems
easily interpretable and psychologically meaningful. For example, memory-strength declines
systemically with lag of presentation, with a small residual primacy effect associated with
the item in the first serial position. In addition, the estimated similarity between distinct
items is s = .097; this low estimated value of similarity seems reasonable for the distinctive
word stimuli used in the McElree and Dosher experiments.

The version of the EBRW model described above assumed that partial information (i.e.,
whether the state of the random walk is positive or negative) is always available to the
observer. Sophisticated techniques have been developed to evaluate whether this assumption
is tenable and the issue has been debated in the literature (e.g., Meyer, Irwin, Osman, &
Kounios, 1988; Ratcliff, 1988). An alternative approach to modeling response-signal data is

10Some technical issues should be addressed with regard to the fitting procedure. First, we decided to use the corrected r2 criterion of
fit to achieve comparability with the previously reported results from McElree and Dosher. More modern approaches to fitting SAT
response-signal curves make use of model-selection criteria such as the Bayesian Information Criterion (e.g., Liu & Smith, 2009). For
present purposes, however, our goal is simply to demonstrate that the EBRW is a serious candidate model for explaining performance
in the task. In our view, this goal is met with the present model-fitting approach. Second, we should clarify that the observed data in
our Figure 7 are plotted as a function of response-signal time, whereas McElree and Dosher plotted the data as a function of average
processing time. Processing time is defined as the sum of response-signal time plus average delay to actually execute the response.
From the perspective of the EBRW model, the assumption is that the random-walk operates only until such time as the response-signal
is presented. Any residual response-execution time should not be included in modeling the random-walk decision process. A possible
complication, however, is that on some trials subjects may delay responding until some final steps of the random walk have been
completed, and these final steps form part of the total delay. We leave the formulation and investigation of these more complicated
possibilities to future research.
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to assume that response thresholds are still involved (e.g., Hintzman, Caulton, & Curran,
1994; Ratcliff, 2006). If one of the response thresholds has been reached by the time of the
response signal, then the observer emits the appropriate response; otherwise, the observer
guesses randomly. We also fitted this version of the EBRW model to McElree and Dosher’s
(1989) data. It used the same free parameters as did the first version that we described
above, but also estimated values for the response thresholds (+OLD and −NEW) and a
response-threshold variability parameter (for details, see Extended EBRW Model section in
Experiment 2). This alternative EBRW version accounted for an even higher corrected-
proportion-of-variance (r2 = ..968) in McElree and Dosher’s data than did the first version,
albeit at the expense of an extra three free parameters.

In sum, regardless of whether or not one assumes that the observer has access to partial
information, the EBRW model accounts in natural fashion for the growth in accuracy that is
observed as a function of processing time in the response-signal paradigm of short-term
recognition.

Predicting the Shapes of RT Distributions
If the EBRW model is to be considered a viable candidate for explaining short-term memory
scanning, then it must also predict correctly the shapes of RT distributions observed in the
task. In this section we provide an initial investigation of this issue. Then, in the following
section, we provide rigorous tests of the model by fitting it to detailed RT distributions
obtained in a new experiment.

One of the major approaches to characterizing the shapes of RT distributions is a method in
which the “ex-Gaussian” distribution is fitted to the data (e.g., Heathcote, Popiel, &
Mewhort, 1991; Hockley, 1984; Hockley & Corballis, 1982; Ratcliff & Murdock, 1976).
The ex-Gaussian is a convolution of a normal and an exponential distribution. The normal
component has two parameters, the mean (μ) and standard deviation (σ); whereas the
exponential component has a rate parameter (τ). Although not intended as a process model
(Matzke & Wagenmakers, 2009), the ex-Gaussian generally provides an excellent
description of observed RT distributions. Furthermore, its best-fitting parameter estimates
allow one to characterize the shapes of the distributions observed in a task and how the
shapes change across experimental conditions. To a good first approximation, μ and σ reflect
the leading edge of the distribution (i.e., the minimum RTs), whereas the ratio τ/ σ reflects
the extent to which the distribution tails out and is positively skewed.

Hockley (1984) conducted a systematic investigation of how the ex-Gaussian parameters
varied across different cognitive tasks. Included in his investigation was an examination of
the standard Sternberg paradigm, with the key question of interest being how the shapes of
the RT distributions changed as a function of memory set size. He reported clear-cut results
(see Hockley, 1984, p. 603, Figure 4) in which τ increased markedly with memory set size; σ
was constant; and μ increased very slightly. This same pattern was observed for both
positive and negative probes. The bottom-line conclusion, corroborated by visual inspection
of the observed RT distributions (see Hockley, 1984, p. 604, Figure 5), was that the leading
edge of the RT distributions was nearly invariant with increases in memory set size;
however, as set-size increased, the distributions tailed out and grew more positively skewed.
Such results pose extreme challenges, for example, to serial-exhaustive scanning models,
which predict large changes in the leading edge of the distributions as a function of set size.
In addition, owing to implications of the central limit theorem, it seems that the most natural
prediction from such models is that the distributions associated with large set sizes should
tend to be more bell-shaped rather than more positively skewed.

Nosofsky et al. Page 21

Psychol Rev. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Unfortunately, we cannot directly fit Hockley’s data with the EBRW model. The reason is
that, in his results, mean RT did not vary with the serial position of the probe on the study
list. In Hockley’s experimental procedure, a long retention interval was used, so subjects
almost surely rehearsed the items on the study list. Therefore, the psychological recency of
the individual items would not correspond in a direct way to their serial position. Because
RT did not vary with serial position, we cannot estimate how memory strength varied with
lag in Hockley’s experiment, so the EBRW model cannot be directly applied to his data.

Nevertheless, we can still examine what is the a priori pattern of qualitative predictions
made by the EBRW model with respect to how the shapes of RT distributions should change
with memory set size. To do so, we used as representative parameter settings (with one
exception explained below) the best-fitting parameter estimates obtained from our fits of the
EBRW model to Monsell’s (1978) memory-scanning data (see our Table 3). Then, using
these parameter estimates, we simulated the EBRW model to generate its predicted RT
distribution for each memory set size and each type of probe (positive and negative).
Finally, we fitted the ex-Gaussian distribution to the simulated RT distributions to
characterize how their shapes changed with increases in memory set size. Note that,
although Hockley did not observe serial-position effects on RT, our analysis is still of
theoretical relevance to his data. Our assumption is that his RT distributions were produced
by averaging across trials in which memory strengths varied for given serial positions
depending on how rehearsal operated on each trial. Flat serial position curves in the
averaged data could be produced by numerous different rehearsal strategies, including
random-order ones.

To generate plausible RT distributions from the EBRW model, however, we needed to make
an additional assumption. Specifically, because we had fitted only mean RTs in our
applications of the EBRW model to Monsell’s (1978) data, we had made use of only a mean
residual-time parameter. The residual stages of encoding and response execution, however,
are obviously variable, and will contribute to the overall variability and shape of the entire
RT distribution. Therefore, as part of the simulations, we included variable encoding-time
and response-execution-time components. For simplicity, we assumed that the encoding-
time distribution was the one that we estimated by fitting the EBRW model to McElree and
Dosher’s (1989) response-signal data, i.e., a log-normal distribution with mean 148.7 ms and
standard deviation 61.8 ms. In the absence of any information about the time course of
response-execution, we assumed for simplicity that response-execution times had this same
distribution. (The encoding and response-execution times were assumed to be independent.)

Thus, on any given simulated trial, we made random draws from the encoding-time and
response-execution-time distributions, and then simulated the EBRW process. The total RT
on each simulated trial was the sum of these three components. We conducted 10,000 such
simulations for each probe type and memory set size. For positive probes, for each memory
set size, we conducted an equal number of simulations with the probe at each serial position
of the study list. Finally, we fitted the ex-Gaussian distribution to each simulated distribution
to obtain the best-fitting values of μ, σ, and τ. (These fits made use of the software package
developed and made available by Heathcote et al., 1991.)

The results from these analyses are displayed in Figure 8, which plots the estimated values
of μ, σ, and τ as a function of set size, separately for the positive and negative probes. The
results are highly reminiscent of the ones observed by Hockley in the analysis of his
empirical data (compare to Hockley, 1984, Figure 4). That is, for both positive and negative
probes, the parameter τ increases markedly with increases in set size, whereas μ and σ are
nearly flat. (Hockley’s set sizes varied from 3 to 6, whereas our simulations based on
Monsell’s data consider set sizes that vary from 1 to 4, but the qualitative match between the
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plots is still clear.) Although we made no attempt to fit Hockley’s data, it is also worth
noting that the quantitative values of the derived parameter values are remarkably close as
well (for matching set sizes).

Finally, in Figure 9 we plot the actual RT distributions that were generated from our
simulations of the EBRW model, together with the best-fitting ex-Gaussian distributions. A
separate plot is provided for each combination of type of probe and set size. Inspection of
the plots reveals that the ex-Gaussian provides an excellent fit to the simulated RT
distributions. Because Hockley showed that the ex-Gaussian describes well the shapes of
empirical RT distributions in the Sternberg task, this result provides further support for the
EBRW model as a viable candidate for explaining performance in the task. Furthermore,
inspection of the plots reveals that the leading edge of the RT distributions is nearly
invariant with increases in memory set size, while the positive skew increases systematically
with increases in set size. Again, the plots are highly reminiscent of the empirical RT
distributions reported by Hockley and mirror closely how the shapes of the empirical
distributions changed with increases in memory set size in his experiment (compare to
Hockley, 1984, Figure 5).

Perhaps the main limitation of the model is that it predicts that μ should be flat, whereas
Hockley (1984) did observe very slight (but statistically significant) increases in μ as set size
increased. In the following part of the article we report a new experiment in which we
collect our own RT-distribution data in the Sternberg task. As will be seen, under our
experimental conditions, we observe large increases in μ with increases in set size, a result
that the core model fails to account for. An extended version of the model, however, that
allows for increases in the magnitude of the random-walk response thresholds with increases
in set size, provides a good account of the detailed shapes of the RT-distribution data.

Experiment 2
The purpose of this experiment was to collect detailed RT-distribution data in the Sternberg
task at the level of individual subjects and to test the EBRW model on its ability to account
quantitatively for the data. We followed the general procedures of Monsell (1978) and
McElree and Dosher (1984) by using rapid presentations of the memory-set items and a
short retention interval. Again, this procedure was intended to minimize rehearsal. Thus, our
expectation was that, unlike Hockley (1984), we would observe strong serial position effects
in the data. In addition, we used two main designs for collecting the data. The first was the
more typical design in which each set size was tested an equal number of times. In the
second design, we instead tested each set-size/lag combination an equal number of times.
The reason for also testing the latter design was that our goal was to model the RT
distributions for each individual set-size/lag combination. A disadvantage of the first design
is that the sample sizes are relatively small for the individual set-size/lag combinations in
which set size is large. For example, in the case in which set size is equal to 5, then the total
number of observations is divided across 5 different lag conditions. This problem is
remedied by the second design. Nevertheless, a disadvantage of the second design is that
trials involving small set sizes are relatively infrequent. Because each design has its own
advantages and disadvantages, we decided to test both.

Method
Subjects—There were four subjects (1 male and 1 female in each of two designs). The
subjects were all members of the Indiana University community with normal or corrected-
to-normal vision. Subject 3 was the third author of this article. With the exception of Subject
3, the subjects were unaware of the issues under investigation in the research and they were
paid for their participation ($9 per session plus a $3 bonus per session for good
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performance). Subjects 1 and 2 participated in Design 1, and Subjects 3 and 4 participated in
Design 2.

Stimuli—The stimuli were the set of uppercase English consonants except for the letter
“Y”. The stimuli were presented visually and sequentially. Each stimulus was presented in
the center of the screen and subtended a visual angle of approximately 3 degrees.

Procedure—In both designs, memory-set-size varied from 1 to 5. On each trial, a study list
was created by sampling randomly without replacement from the full set of stimuli. On
negative-probe trials, the probe was selected randomly from the remaining stimuli in the full
set. In Design 1, each memory-set-size was tested an equal number of times. Each subject
participated in nine sessions (days) of testing, with 10 blocks per session and 50 trials per
block. Within each block, there were 10 trials of each set size, half with positive probes and
half with negative probes. On positive-probe trials, the serial position of the target was
chosen randomly. In Design 2, each set-size/lag combination was tested an equal number of
times. Each subject participated in 16 sessions of testing, with 10 blocks per session and 30
trials per block. Within each block, each set-size/lag combination was presented once. Half
the trials had positive probes and half had negative probes. In both designs, the order of
presentation of the trials within each block was random.

Each trial began with the presentation of a fixation cross, centered on the screen, for 500 ms.
Each study item was then presented for 500 ms with a 100 ms break between stimuli.
Following presentation of the last study item, an asterisk was presented for 400 ms. The
asterisk signaled the presentation of the test probe, which remained on the screen until a
response was made. Feedback was then provided for 1000 ms, followed by a blank screen
for 1500 ms.

Subjects were instructed to respond as rapidly as possible without making errors. They were
instructed that they would receive a $3 bonus in each session if they averaged less than one
second per response and over 90% accuracy across all trials. Subjects made their responses
by pressing the “F” key for OLD and the “J” key for NEW. They were instructed to rest
their left and right index fingers on these keys throughout the testing session.

For each subject/list-type combination (where a list type refers to the combination of set size
and lag), we removed from the analysis RTs greater than three standard deviations above the
mean and also RTs of less than 150 ms. This procedure led to removing 1.57%. 1.40%,
1.50%, and 1.98% of the trials for Subjects 1-4, respectively.

Results and Model-Fitting Analyses
Mean Correct RTs—The mean correct RTs for the individual subjects are displayed as a
function of experimental conditions in the left panels of Figure 10. (With a couple of
exceptions to be described later, error rates were low and mirrored the RTs, so we focus first
on the mean RT data.) Inspection of Figure 10 reveals that, for the most part, these
individual-subject performance patterns are similar to the previous results that we have
reported (e.g., compare to Figures 3 and 4). In general, mean RTs for the old lists get slower
with increasing lag; however, there is usually a primacy effect in which the item with the
greatest lag for each set size is “pulled down.” Mean RTs for the new lists get systematically
slower with increases in set size. One difference from the previous performance patterns is
that, for the old lists, the set-size functions do not overlap as much as before. That is, there
are many cases in which, holding lag constant, set size exerts its own effect on RT, with
larger set sizes generally leading to slower mean RTs. Two seemingly idiosyncratic results
(which we will not attempt to model) are that: i) at Lag 1, Subject 4 shows slower mean RTs
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for set-size-1 lists than for some of the other lists; and ii) Subject 2 shows a nearly flat lag-
RT function for set-size 5 (but not for any of the other set sizes).

Ex-Gaussian Analyses—We fitted the ex-Gaussian to the RT distributions observed for
each individual subject in each set-size condition, with the data aggregated across lags. The
best-fitting ex-Gaussian parameters are displayed for each subject as a function of set size
and type of probe in Figure 11. In general, as was observed by Hockley (1984), the σ
parameter is flat across the different set-size conditions; whereas τ increases markedly as a
function of set size. (An exception arises for Subject 4, where τ is surprisingly large in the
set-size-1 condition; this result coincides with the subject’s relatively slow mean RT in that
condition.) The main difference from Hockley’s (1984) results is that we also observe large
increases in μ as a function of set size. The large increase in μ suggests that the leading
edges of the RT distributions increase as a function of set size under our experimental
conditions.

From the perspective of the EBRW model, this systematic increase in the leading edge
suggests that subjects may be increasing the magnitude of the random-walk thresholds
(+OLD and −NEW) as set size increases. Intuitively, if the thresholds remain constant, then,
regardless of the drift rate, the fastest RTs in each condition (i.e., the leading edge of the
distributions) should be roughly the same. The reason is that, in some proportion of the
cases, each step in the random walk will move in a consistent direction toward one or the
other threshold, producing the same fastest RTs across the different set-size conditions. By
contrast, if the thresholds increase as a function of set size, then the minimum number of
steps required to complete the random walk increases as well. Note that the assumption of a
response-threshold shift also has the potential to explain why the mean RT functions
associated with different set sizes are not fully overlapping (see Figure 10). The drift rate for
positive probes in the EBRW model is determined mainly by the probes’ lag. However,
assuming a fixed lag and drift rate, the mean number of steps required to complete the
random walk will increase as the threshold settings are increased, so mean RTs will increase
with set size even if lag is held fixed.

Armed with this information regarding both the pattern of mean RTs and the leading edges
of the RT distributions, we decided to extend the core version of the EBRW model by
making allowance for threshold shifts with increases in set size.

Extended EBRW Model—Fitting the EBRW model to the RT-distribution data will
require methods in which the random-walk process is simulated. In the discrete random
walk, the threshold settings on each simulated trial are integer valued. To allow for
“continuous-like” increases in the magnitude of the integer-valued threshold settings as a
function of set size, we used the following mechanisms. First, we extended the EBRW
model by explicitly incorporating threshold variability across trials (e.g., Brown &
Heathcote, 2005; Ratcliff, van Zandt, & McKoon, 1999). In the simulations, a location
parameter L and a range parameter R defined a uniform distribution from which the
threshold was sampled on each given trial; the lower limit of the uniform distribution was
given by L − R/2 and the upper limit by L + R/2. For set-size-1, the location parameters for
the OLD and NEW thresholds were simply the parameters +OLD and −NEW; the same
range parameter R was assumed for both the OLD and NEW thresholds. Next, for any given
trial, a random sample was drawn from each uniform distribution. The integer-valued
threshold magnitude for that simulated trial was then defined by truncating the randomly
drawn sample to its integer-valued magnitude (e.g., the sampled value −3.6 would be
truncated to −3). Finally, the magnitude of the location parameters that defined the uniform
distributions were allowed to increase linearly as a function of set size. So, for example, for
the old threshold, the location parameter for set-size S was given by L = OLD + δ·(S−1),
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where δ is the slope of the linear function. This extension adds the free parameters R and δ
to what was the core version of the model. In a nutshell, the extended model defines integer-
valued threshold settings that operate on each individual simulated trial, but allows for
continuous-like increases in the locations of the distributions from which the threshold
settings are sampled.

Finally, based on inspection of the data and preliminary model-fitting results, we made
special provision for the modeling of Subject 3’s data. As will be seen in the next section,
Subject 3 had high error rates in a couple of the conditions involving old lists with large set
sizes and lags. The threshold-shift model described above failed to account for these high
error rates. At the same time, the model predicted mean RTs in those conditions that were
too slow. A salient hypothesis stemming from those combined mis-predictions was that
Subject 3 occasionally “short-circuited” the memory-comparison process in cases in which it
was dragging on for too long. To model this pattern, we assumed that the subject adopted a
variable deadline time, and responded “new” whenever the deadline was exceeded. On each
simulated trial, the deadline was randomly selected from a normal distribution with mean μd
and standard deviation σd.

Model-Fitting Approach—For each subject, the correct RT data for each list type (i.e.,
each set-size/lag combination, plus the new lists) were divided into 50-ms bins, ranging from
150 ms to 1350 ms. In addition, a final bin defined the total number of errors for each list
type. Because error rates were generally very low, we did not attempt to fit error-RT
distributions. However, the error data still strongly constrain the model, because it is
required to simultaneously fit both the correct-RT distributions and the overall error rates for
each list type. In particular, the fit of the model to the data was evaluated using the
multinomial log-likelihood function:

(9)

where Ni is the number of observations of list type i (i = 1, n); fij is the frequency with which
list-type i had a correct RT in the j’th bin (j = 1,m) or was associated with an error response
(j = m+1); and pij (which is a function of the model parameters) is the predicted probability
that list-type i had a correct RT in the j’th bin or was associated with an error response. The
log-likelihood values were then transformed to account for the number of free parameters
used by the model. In particular, we used the Bayesian Information Criterion (BIC;
Schwarz, 1978), which penalizes the log-likelihood based on the number of free parameters
and the size of the sample being fit:

(10)

where np is the number of free parameters in the model and M is the total number of
observations in the data set. The BIC will be useful for comparing the fit of the extended
threshold-shift version of the EBRW model to the core version.

Quantitative predictions of the RT-distribution and error-probability data were generated
using 10,000 simulations for each list type (200,000 simulations for the entire set). We used
a modified Hooke and Jeeves (1961) parameter-search procedure starting from 100 different
random starting configurations to find the set of best-fitting parameters for each individual
subject.
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Model-Fitting Results—The predicted RT distributions are shown along with the
observed RT distributions for each individual list type in Panels A-D of Figure 12. (Each
individual plot also reports the predicted and observed error rates for that list type.) The
spatial layout of the plots is such that the rows correspond to the differing set sizes and the
columns correspond to the differing lags. Visual inspection of these plots suggests that,
besides predicting correctly the overall locations of the individual-list RT distributions, the
model is providing a good account of their detailed shapes. As an example, note that, for
each subject, the lag-1 distributions tend to have peaked shapes with only slight positive
skew. As lag increases, the distributions begin to flatten out and exhibit greater positive
skew. This pattern of changing shapes is well captured by the model. As a second example,
consider the RT distributions for the lures (far right column of each figure). As one moves
from set-size-1 through set-size-5, two changes can be observed. First, the leading edge of
the distributions moves farther to the right; second, the shapes of the distributions change
from peaked to flatter and more positively skewed. These patterns too are well captured by
the model. Finally, although error rates tend to be low, the model is usually in the right
ballpark for the error data.

To gain some additional perspective on the performance of the model, in the right panels of
Figure 10 we plot the predicted mean RTs as a function of conditions. Although no attempt
was made to directly fit the observed mean RTs, visual inspection of the figure indicates that
the model does quite well at reflecting the overall performance patterns. (Not surprisingly, it
fails to predict the slow mean RT exhibited by Subject 4 in the size-1/lag-1 condition; and it
fails to predict the flat lag-RT function for Subject 2 in the set-size-5 condition.)

To gauge the extent to which the model is accurately predicting the shapes of the
distributions, we conducted ex-Gaussian analyses on the predicted RT distributions. In
Figure 11 we plot the best-fitting predicted ex-Gaussian parameters as dashed lines for
comparison with the observed parameters. These plots show that, in general, the parameters
derived from the predicted distributions track very closely the parameters derived from the
observed ones. The major exception occurs for Subject 4 in the set-size-1 conditions, where
the model vastly under-estimates the observed value of τ.

In Table 6 we report the BIC fit of the model for each subject. For purposes of comparison,
we also report the BIC fits of a constrained version of the model in which the response
thresholds were assumed to remain fixed across the different set sizes (i.e., δ = 0). In all
cases, the constrained model fits worse than does the extended one, sometimes dramatically
so. The worse fit of the fixed-threshold model is not surprising in view of the previous
qualitative evidence that suggested that threshold shifts occurred.

Best-Fitting Parameters—The best-fitting EBRW parameters for each of the subjects
are reported in Table 7. In general, the patterns of parameter estimates are similar to what
we reported previously in fitting the core version of the model to the other data sets. For
example, the memory strengths tend to decline with increasing lag. Note, however, that for
S1 and S2, at very long lags the memory strengths begin to “wrap around” and slightly
grow. Conceivably, for the set-size-5 lists, these subjects made efforts to rehearse and
reactivate the initial members of the memory set. Such a process would help to explain the
nearly flat lag-RT function observed for S2 in the set-size-5 condition.11

Discussion
In sum, overall, the EBRW model provides a good account of the detailed shapes of the RT
distributions observed in the Sternberg task. These good predictions are observed at the level
of individual subjects and types of lists. However, to achieve these good fits, we needed to
make allowance for the idea that subjects increased the magnitude of their random-walk
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response thresholds as memory set-size increased. Still, this assumption involved the
estimation of only a single additional free parameter, and the model was required to fit
extremely rich data sets. It is an open question what are the conditions that lead subjects to
vary the magnitude of their random-walk thresholds across different set sizes. The subjects
in the present experiment were highly experienced, having participated in the task for
between 9-16 days of testing. Possibly, the between-list shifts in the random-walk thresholds
were related to this extensive experience that the subjects had in performing the task.

Although the EBRW model provided a good overall account of the observed performance
patterns, there were a couple of results that were outside its scope. Perhaps the most obvious
example was the relatively slow mean RT displayed by Subject 4 on the size-1 lists. In the
design in which Subject 4 participated, set-size-1 lists were rare. Possibly, some type of
“surprise” factor may have contributed to the subject’s slow RTs on those trials. That
particular result is likely to present a major challenge to virtually all reasonably constrained
models of short-term memory scanning.

The Extralist Feature Effect on Short-Term Recognition
In our final application, we acknowledge an important limit on the EBRW’s account of
short-term recognition and sketch some preliminary ideas that may remedy the problem. The
limit involves a robust effect reported by Mewhort and Johns (2000; 2005; Johns &
Mewhort, 2002) in which subjects make use of extralist feature information as a basis for
correctly rejecting negative probes. As indicated in our introduction, the EBRW model is a
member of the class of global-matching models, which assume that subjects judge a test
probe to be “old” if there is sufficient positive match between the test probe and the items
stored in memory. In contrast to this principle, Mewhort and Johns provide convincing
evidence that there are situations in which subjects make use of individual features of test
probes to provide negative evidence that the test probe must be new.

To illustrate, the structure of Mewhort and Johns’s (2000) Experiments 1-3 is shown
schematically in Table 8. The study set consisted of colored shapes. In the table, each
uppercase letter to the left denotes a shape, whereas each lowercase letter to the right
denotes a color. Thus, Aa might denote square/red, Bb might denote circle/blue, and Ab
would then denote square/blue. The critical manipulation in the experiment involved the
types of negative probes presented at time of test. The features that composed the negative
probes either came from the study set or instead were extralist features. For example, if the
study colors included blue, green, and red, then an extralist color might be yellow. In the
notation in Table 8, an uppercase X to the left denotes an extralist shape and a lowercase x
to the right denotes an extralist color. Across Experiments 1-3, there were four main types of
negative probes, denoted by the number of times that each of its features occurred in the
study set. In particular, for a 0:0 probe, both features occurred zero times in the study set,
i.e., both were extralist features (Xx). For a 1:0 probe, one feature occurred once in the study
set and one feature was an extralist feature (e.g., Xa in Experiment 2). For a 2:0 probe, one

11An interesting question is whether there may be some lawful quantitative relation between memory strength and lag. The
maximum-likelihood methods available for fitting the present RT-distribution data allowed us to conduct principled statistical
explorations of that issue. We fitted a special case of the EBRW model to each individual subject’s data that assumed a 2-parameter
power-model relation between memory strength and lag, i.e., Mj = α·j−β, while continuing to make allowance for a primacy effect on
memory strength (i.e., the primacy-multiplier parameter PM was included in the fits). This 2-parameter model can be considered an
approximation to Wickelgren’s (1974) classic power law for relating memory strength to the retention interval (Wixed & Carpenter,
2007). For all four subjects, the power model provided slightly worse BIC fits than did the full version of the EBRW in which the
memory strengths were estimated individually. (A 2-parameter exponential-decay model provided substantially worse BIC fits for all
four subjects.) Future research should continue to investigate the issue. Although our experimental methods were intended to
discourage complex rehearsal strategies, they probably did not eliminate them completely. Lawful quantitative relations between
memory strength and lag may be observed under conditions in which rehearsal is brought under tight control, thereby leading to still
more parsimonious accounts of memory-scanning performance.
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feature occurred twice in the study set and the other feature was an extralist feature (e.g., Ax
in Experiment 2). And for a 1:1 probe, each feature occurred once in the study set (e.g., Ba
in Experiment 3).

Perhaps the key result obtained by Mewhort and Johns was that 2:0 probes had much faster
correct rejection RTs than did 1:1 probes, despite the fact that traditional global-matching
models predict that they have the same degree of global match or familiarity to the items in
the study set. To illustrate, consider an application of the EBRW model. When applied to
separable-dimension stimuli (Shepard, 1964) composed of two discrete features, the model
assumes that the similarity between items i and j is given by

(11)

where αk = 1 if objects i and j match on feature k; and αk is set equal to a free parameter s (0
< s < 1) if the items mismatch on that feature (Medin & Schaffer, 1978; Nosofsky, 1984).
(As discussed by Nosofsky [1984, 1986], this multiplicative-similarity rule entails the
assumption that distances between separable-dimension stimuli are computed on a city-
block metric, with similarity being an exponential-decay function of distance.) For example,
the similarity of Ab to Ac would be equal to s, and the similarity of Ab to Cc would be equal
to s2. Thus, the reader may verify that, in Mewhort and Johns’s Experiment-3 design, the
summed similarity of the 2:0 probe and the 1:1 probe to the study-set items is identically
equal to 2s + 2s2, so the model predicts they should have identical correct-rejection RTs, in
marked contrast to the observed data.

Moreover, beyond this fundamental qualitative effect, Mewhort and Johns showed that the
overall pattern of correct-rejection RTs across their Experiments 1-3 could be predicted
reasonably well simply in terms of the number of a probe’s features that had occurred in the
study set. (For example, in Experiment 3, one of the features of probe 2:0 occurred in the
study set, whereas two of the features of probe 1:1 occurred in the study set.) This relation is
shown in the top panel of our Figure 13 (adapted from Mewhort and Johns’s [2000] Figure
3). As can be seen in the figure, the greater the number of a probe’s features that had
occurred in the study set, the slower was the mean correct-rejection RT. This result was
among the sources of evidence that led Mewhort and Johns to suggest that the features of a
probe are compared to a composite memory of features and items from the study set. Once
an observer verifies that a given test feature was not in the study set, there is already
sufficient evidence to reject the test probe as a new item. Furthermore, the greater the
number of such extralist features, the faster on average can such negative evidence be found.

Here, we sketch a couple of possible extensions of the EBRW model that might serve as
starting points for candidate models to handle the effects. The first extension stays close to
the standard EBRW model. In considering the applications of global-matching models to
their experimental designs, Mewhort and Johns made an eminently reasonable assumption
that we will term the fixed-similarity assumption. This assumption is that the similarity
between two mismatching features that occurred on the study list (e.g., A and B in
Experiment 1) is the same as the similarity between an extralist feature and a study feature
(e.g., X and B in Experiment 1). This assumption is reasonable because the features that
served as study-list features or extralist features were randomly chosen on each trial.
Nevertheless, here we propose the alternative idea that an extralist feature may be
psychologically less similar (on average) to a given study-list feature than are two study-list
features to one another. This proposal draws upon an important idea from the psychological
literature that inter-item similarity is not a fixed and invariant relation but rather a highly
context-dependent one (Medin & Schaffer, 1978; Nosofsky, 1984, 1986; Tversky, 1977).
For example, in the GCM and the EBRW model, the similarity between two items depends
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on the attention weights given to the features, and those weights are hypothesized to vary
systematically depending on the structure of the categories or the study lists to be learned
(Nosofsky, 1986, 1991). Thus, the overall global structure of a set of study items may
influence inter-item similarity. Likewise, we think it is plausible that individual-feature
similarity may be influenced by the context in which the features are embedded. A highly
novel feature that is completely unique to a study set may become psychologically less
similar to the study-set features than the study-set features are to one another.

Although future research is needed to test the idea, it is worth considering the implications
of the assumption for the extralist feature results. Thus, we extend the EBRW model by
assuming that although the similarity between two study-list features is given by s, the
similarity between an extralist feature and a study-list feature is given by x < s. So, for
example, the reader may verify that, in Mewhort and Johns’s Experiment 3 (see our Table
8), whereas the summed similarity of probe 1:1 to the study-list items is equal to 2s + 2s2,
the summed similarity of probe 2:0 is equal to 2x + 2sx. We considered the ability of this
extended EBRW model to handle the general pattern of data in Mewhort and Johns’s
Experiments 1-3 by plotting the correct rejection RTs against summed similarity (computed
with feature-mismatch parameters s and x). We set s = .30 and then conducted a computer
search for the value of x that maximized the correlation between summed similarity and the
correct-rejection RTs. The results with x = .12 are shown in the bottom panel of Figure 13,
which demonstrates that the model can capture very well the general pattern of correct-
rejection RTs across the experiments. (Across a wide range of EBRW-parameter values, the
same pattern is observed if the summed-similarity values are transformed to predicted RTs
via the EBRW equations.) Similar results are obtained across a very wide range of settings
of s for suitably chosen values of x. It remains to be seen if this type of extended model can
capture other aspects of extralist feature effects observed in Mewhort and Johns’s
experiments.

Finally, we sketch briefly an alternative possible extension of the EBRW model to account
for extralist feature effects. This alternative extension is in keeping with Mewhort and
Johns’s general proposal that, upon presentation of the study list, the observer stores a
composite memory of both individual items and individual features. This composite form of
memory representation seems particularly plausible in situations in which the to-be-
remembered items consist of highly separable components, such as the colored shapes used
in Mewhort and Johns’s (2000) Experiments 1-3. In the extended model, instead of decision-
making being governed by a single-channel random walk process, as in the EBRW, we
imagine that three separate random walks take place: one tuned to shape, one tuned to color,
and the third to the items (i.e., the shape-color combinations). If any one of the random
walks makes a “new” decision, then the observer can terminate the comparisons and
conclude that the test probe must be new. An “old” decision is made only if the item-based
random walk reaches its OLD threshold. Assuming that the individual-feature random walks
operate more quickly than the item-based random walk, such a model would capture the
general pattern of results observed in the studies. Negative probes with extralist features
would lead to fast “new” decisions on the feature-based random walks. Negative probes
without extralist features would need to rely on the slower item-based random walk to
enable a correct rejection. Furthermore, the greater the number of extralist features in a
probe, the faster on average would one of the feature-based random walks reach its response
threshold, so the faster on average would be the correct-rejection RT. We have presented
only the general outline of such a model in this section because a fully specified version
would likely require more free parameters than there are data points to be fit. Nevertheless,
in our view, such an extension seems promising, and merits careful investigation in future
experiments.
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General Discussion
Summary—Exemplar-similarity models such as the GCM were originally conceived as
models of multidimensional stimulus classification. Extended versions of the originally
formulated models, such as the exemplar-based random-walk (EBRW) model, have
accounted well not only for choice-probability data, but also for classification RTs. A
recurring theme in the literature has been to use exemplar-similarity models of classification
to also explain old-new recognition performance. Moreover, just as is the case for the
applications to classification, the goal is to model not only old-new recognition choice
probabilities, but also recognition RTs. Recent work reported by Lamberts et al. (2003) and
Nosofsky and Stanton (2006) showed that exemplar-similarity models accounted
successfully for long-term recognition RTs and choice probabilities at the individual-subject
and individual-stimulus levels, and that fine-grained differences in recognition RTs could be
predicted on the basis of the precise location of test items in multidimensional similarity
space. Taken together, these previous lines of research have suggested that exemplar-
similarity models may provide a unified account of the processes of multidimensional
classification and old-new recognition.

To date, however, a major gap in research is that the RT predictions of exemplar-similarity
models such as the EBRW model have not been examined in the variants of the Sternberg
paradigm, perhaps the most venerable of all recognition-RT tasks. The primary aim of the
present work was to fill that gap, and to conduct a systematic investigation of the
performance of the EBRW model in that paradigm. In our view, our reported tests of the
model were largely successful, and the model appears to account in natural fashion for a
wide array of results involving short-term memory scanning. The successful applications
include natural accounts of: 1) mean RTs and choice probabilities associated with individual
lists in the continuous-dimension, similarity-based version of the paradigm; 2) mean RTs as
a function of memory-set size, serial position, and probe type in the standard version of the
paradigm that uses discrete alphanumeric characters; 3) mean RTs and error rates in
category-based versions of the paradigm; 4) detailed speed-accuracy trade-off curves
observed in the response-signal method for assessing short-term recognition performance;
and 5) the shapes of RT distributions observed in short-term memory scanning tasks. We
also outlined extensions of the model that may provide viable accounts of extra-list feature
effects on short-term recognition performance. Beyond accounting in natural fashion for
these diverse forms of short-term recognition RT, the best-fitting parameters from the model
varied in easy-to-interpret and psychologically meaningful ways.

In sum, these initial tests suggest that the EBRW model is indeed a promising candidate
model for understanding performance in the many variants of the Sternberg paradigm. In our
view, these preliminary successes are highly intriguing. To reiterate, exemplar-similarity
models such as the GCM and EBRW model were originally conceptualized as models of
multidimensional perceptual classification and have been highly successful in that domain.
It is far from obvious that the types of processes that underlie perceptual classification may
also underlie short-term, old-new recognition. Yet, the current successful tests suggest the
very real possibility that the processes of multidimensional classification and short-term old-
new recognition may be governed by common operating principles.

Other Memory-Scanning Phenomena and Issues—Despite the broad application of
the EBRW model to the diverse paradigms considered in this article, many issues remain for
future research and investigation. We briefly consider some of these issues in this section.

Automaticity in Consistent-Mapping Paradigms—The focus of the present research
was on the version of the Sternberg (1966) paradigm that involved the “varied-set”
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procedure, in which the set of stimuli associated with positive responses changes from trial
to trial. Sternberg (1966) also investigated a “fixed-set” procedure, in which the same
positive set is tested for many trials. Sternberg (1966) observed the same set-size functions
in the varied-set and fixed-set procedures. However, Shiffrin and Schneider (1977) found
that in search paradigms involving fixed sets that receive “consistent mappings,” in which
one set of items always receives positive responses and a second set always receives
negative responses, there are eventually qualitative changes in the set-size functions. In
particular, following extended practice, the RT set-size functions tend to flatten out,
suggesting that some type of automatic detection of targets occurs. Shiffrin and Schneider
(1977, p. 171) posited that Sternberg’s (1966) subjects in the fixed-set procedure were given
too little training for the automatic-detection process to develop. The EBRW model
presented here predicts flat set-size functions when: i) the memory strengths do not vary
with set size or serial position; ii) similarity between distinct stimuli approaches zero, and
iii) the random-walk thresholds do not increase with set size. Because subjects receive
extensive practice searching for the same items under consistent-mapping conditions, it
seems plausible that the memory strengths may reach asymptotic long-term levels and will
not be dependent on set size or on their serial position in the study list presented on each
specific trial. Furthermore, in cases involving highly discriminable stimuli, such as
alphanumeric characters, it seems reasonable that a variety of learning processes might drive
measured similarity between distinct items down to near-zero levels. Finally, under such
conditions, it would be maladaptive for subjects to change their random-walk thesholds
based on set size. Thus, the EBRW model may offer a viable account of the processes that
are involved when subjects learn automatic-detection responses under consistent-mapping
conditions.

Multiple Strategies of Short-Term Recognition—In providing perspective on the
history of research involving the paradigm, Sternberg (1975, pp. 12-13) noted that,
depending on experimental conditions, alternative processing strategies may come into play.
Our focus in this article was on versions of the paradigm that used rapid presentation of the
memory-set items and a short retention interval between study and test. Our rationale was
that such conditions discourage complex rehearsal strategies and so psychological recency
might be systematically related to lag of presentation. By contrast, in Sternberg’s seminal
studies, slower presentation rates were used and there was a long retention interval.
Furthermore, following the old-new recognition judgment, subjects attempted to recall the
memory-set items in their order of presentation. Conceivably, subjects might adopt
familiarity-based recognition strategies under conditions involving rapid presentations and
short retention intervals, but adopt serial-search strategies under conditions such as those
used by Sternberg (1966). One problem with applying the EBRW model under Sternberg’s
(1966) conditions is that subjects’ manner of rehearsal is unknown. Possibly, future research
might investigate performance with the stimulus-presentation and retention-interval
parameters used by Sternberg (1966), yet develop procedures in which the manner of
rehearsal is brought to light. For example, subjects might be required to rehearse overtly, or
might be provided with specific instructions on the strategy of rehearsal to use. It is an open
question whether or not suitable versions of the EBRW would continue to capture
performance under these alternative experimental conditions.

Error Versus Correct RTs—A limitation of the work reported in this article is that we
made no attempt to account for error RTs, which often show complex patterns and can be
highly diagnostic for distinguishing between alternative classes of models. To take just one
example, in their continuous-dimension version of the Sternberg paradigm, Huang, Kahana,
and Sekuler (2009, Figures 5A and 5B) report an interesting pattern involving relations
between false alarm probabilities and false-alarm RTs. Although false-alarm probabilities
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were (marginally) greater for high-similarity lures compared to a low-similarity lure (as
would be expected), there was a case in which the mean false-alarm RT was marginally
faster for the low-similarity lure than for the high-similarity ones. Intuitively, one might
expect the RT results to go in the opposite direction, because the same processes that lead to
high false-alarm probabilities might also induce fast false-alarm RTs. Possibly, the Huang et
al. result could involve certain types of selection effects. In particular, subjects might be
more likely to false-alarm to the low-similarity lure on trials in which the random-walk
thresholds are not set at stringent values, thereby leading to faster RTs. More generally, for
the EBRW model to provide a complete account of the detailed patterns of results involving
error and correct RTs, detailed assumptions would need to be introduced involving both
threshold and drift-rate variability across trials. We leave this important direction as one of
our goals for future research.

Fixed Number of Slots in Visual Working Memory—We do not claim that the
cognitive and neural systems that govern short-term and long-term memory are necessarily
the same. Rather, given the success of the EBRW model in accounting for both short-term
and longer-term recognition RTs, our claim is only that similar operating principles may
underlie performance across these domains. Does our research have anything to say about
the claim that visual working memory is limited by a fixed number of slots (e.g., Awh,
Barton, & Vogel, 2005; Luck & Vogel, 1997; Rouder, Morey, Cowan, Zwilling, Morey, &
Pratte, 2008)? In our view, the relation between the fixed-slots literature and the current
work on short-term memory scanning is unclear. Much of the evidence for a fixed number
of slots in visual working memory resides in the change-detection paradigm, in which
subjects are presented with multiobject simultaneous visual displays. By contrast, in the
Sternberg paradigm, we are concerned with the storage and retrieval of a sequentially
presented list of items. We agree with the recent analysis of Öztekin, Davachi, and McElree
(2010, p. 1131) that the change-detection experiments may measure capacity limits
associated with encoding of simultaneous displays. Different processes may be involved
when subjects attempt to encode and store in memory individual objects one at a time and
then later attempt to recognize and retrieve them. Although the EBRW modeling is silent on
the question of whether fundamentally different systems underlie working memory and
long-term memory, it might serve as a useful analytic tool to help investigate that question.
For example, suppose that subjects are presented with long lists of to-be-remembered items
under conditions in which rehearsal is prevented, and are probed with items at varying serial
positions on the list. Analysis of the RT and accuracy data within the framework of the
EBRW model might reveal a sharp discontinuity between the magnitude of the memory-
strength and sensitivity parameters associated with the final 3-4 items on the list and with
the earlier items. Such a result would support the proposal of a specialized working memory
system with a fixed number of slots.

Contrasting the EBRW Model with Alternative Accounts—The current exemplar-
based account of short-term old-new recognition differs in important conceptual ways from
the dominant past approaches in the field. The classic accounts of short-term memory
recognition tend to posit forms of processing that involve access to individual items in
memory. In some cases, the recognition RT might be based on the strength of an
individually accessed item (e.g., Murdock, 1985). Other models assume that the subject
engages in a serial-exhaustive scan of the memory set to check if a match to an individual
item has been found (Sternberg, 1966, 1969). And, in perhaps the most successful and
comprehensive past approach, discussed in more detail below, the assumption is that the
subject engages in a parallel search of the items in the memory set, which self-terminates if
matching access to any individual item is achieved (Ratcliff, 1978). By contrast, the
conception in the EBRW model is that short-term old-new recognition is based on a global
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match of the test probe to the memory-set items, not on individual access to any single item.
This global match is formalized in terms of the summed activation of the all of the memory-
set items that is yielded by the presentation of the test probe.

To amplify on the conceptual distinction above, we consider in greater detail Ratcliff’s
(1978) seminal multiple-channel diffusion model as applied to short-term recognition.
According to the model, presentation of a test probe evokes a set of parallel diffusion
processes (i.e. continuous-time random walks), with a separate diffusion process
corresponding to each individual item in the memory set. The drift rate of each individual
diffusion process corresponds to the degree of relatedness of the test probe to each
individual memory-set item. If any individual diffusion process reaches the criterion for
responding OLD, then the observer emits an OLD response, and the process self terminates.
The observer emits a NEW response only if all of the individual item-diffusion processes
reach their respective NEW criteria, which entails exhaustive processing of the memory-set
items. Ratcliff’s (1978) application of the model to the Sternberg paradigm involved only
the standard case in which the stimuli were discrete alphanumeric characters. However, it
would likely be straightforward to extend the model to the continuous similarity-based and
category-based versions of the paradigm by allowing the drift rates of the individual
diffusion processes to be functionally related to the degree of similarity between the test
probe and the individual memory-set items.

Despite the close relation between Ratcliff’s (1978) multiple-channel diffusion model and
the present EBRW approach, the models are conceptually different. The Ratcliff (1978)
model says that an OLD response is made if any individual diffusion process reaches its
OLD criterion, i.e., it assumes a form of individual-item access. By contrast, the idea in the
present EBRW model is that the exemplar-based information feeds into a single random-
walk process, driven by the overall global match of the probe to all of the items in the
memory set.

It remains an open question if sufficiently diagnostic experimental paradigms can be devised
to tease apart the alternative conceptions. (For approaches that have been used to try to
distinguish between multiple-channel and pooled single-channel random-walk models in the
domain of multidimensional categorization, see, e.g., Fific, Little, & Nosofsky, 2010; Little,
Nosofsky, & Denton, in press.) Certainly, the question of whether recognition is achieved
via access to individual items or via global-matching processes is among the most
fundamental ones in memory and cognition. Therefore, despite the close relation between
the models, the research direction of trying to distinguish between them is an extremely
important one to pursue.
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Appendix A: Multidimensional Scaling Method and Analysis for Experiment
1

Method
Subjects

The subjects were 88 undergraduate students from Indiana University. The subjects received
credit toward an introductory psychology course requirement and also received a small
monetary bonus for good performance.

Stimuli
The stimuli were the same 27 color squares used in the memory experiment. The colors
were presented in pairs in the center of the computer screen against a white background.
Each color occupied 2 × 2 in. square, and members of the pair were separated by
approximately 25 pixels.

Procedure
In the main part of the experiment, each subject was presented with all 351 distinct pairs of
the 27 stimuli. On each trial, they rated the similarity of the members of a given pair on a
scale from 1 (not similar) to 9 (very similar). The order of presentation of the pairs, as well
as the left-right placement of the members of each pair, was randomized for each subject.
Prior to this main phase, subjects received 25 practice trials, with pairs drawn randomly
from the complete set.

Analysis
We computed the averaged similarity rating for each pair of stimuli and derived a three-
dimensional scaling solution for the stimuli by fitting these averaged ratings. The scaling
model assumed a linear relation between the ratings and the Euclidean distances between
stimuli in the space. We conducted computer searches for the MDS-coordinate parameters
that minimized the sum-of-squared deviations between the predicted and observed ratings.
(Extremely similar solutions were derived using alternative ordinal, “non-metric” scaling
methods that minimized stress.) The parameter search routine was a modified version of
Hooke and Jeeves (1961). Alternative starting configurations based on the Munsell
coordinate structure and on the best-fitting non-metric configuration led to identical
solutions for the parameter-search routine. The derived three-dimensional scaling solution
accounted for 97.4% of the variance in the averaged ratings. The solution is illustrated in
Figure A1, and the individual-stimulus coordinates are listed in Table A1. Although there
are some local distortions, inspection of Figure A1 confirms that the psychological structure
of the stimuli reflects fairly closely the 3×3×3 Munsell coordinate structure. Use of a higher
number of dimensions led to minuscule improvements in the fit of the scaling model to the
similarity data; furthermore, the extra dimensions were not interpretable. Use of fewer than
three dimensions led to dramatically worse fits.
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Figure A1.
MDS solution for the colors. Top panel: plot of Dimension 1 (hue) against Dimension 2
(brightness). Bottom panel: plot of Dimension 1 (hue) against Dimension 3 (saturation). Hue
dimension-values 1, 2, and 3 (both panels) are represented by open, gray, and solid symbols.
Brightness dimension-values 1, 2, and 3 (top panel) are represented by circles, squares, and
triangles. Saturation dimension-values 1, 2, and 3 (bottom panel) are represented by circles,
squares, and triangles.

Table A1

Multidimensional scaling coordinates for the colors used in Experiment 1.

Color 1 2 3

1 1.164 0.969 0.888

2 1.258 0.952 1.322

3 1.409 0.940 1.718

4 1.081 1.724 0.887

5 1.136 1.702 1.397

6 1.275 1.708 1.823

7 1.049 2.579 0.904

8 1.141 2.621 1.305

9 1.286 2.693 1.591

10 3.120 0.688 0.768

11 3.577 0.649 1.562

12 3.915 0.713 2.118

13 3.066 1.607 0.404

14 3.630 1.621 1.639

15 4.057 1.730 2.312

16 3.135 2.763 0.486
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Color 1 2 3

17 3.595 2.923 1.550

18 4.081 2.845 2.150

19 3.932 0.681 0.450

20 4.026 0.736 1.383

21 3.997 0.831 1.823

22 4.101 1.721 0.301

23 4.457 1.788 1.518

24 4.352 1.866 1.997

25 4.119 2.828 0.59

26 4.498 2.830 1.584

27 4.535 2.840 2.161

Table A2

RGB values for the computer-generated colors used in Experiment 1.

Color Hue Brightness Saturation R G B

1 7.5 PB 4 6 88 94 136

2 7.5 PB 4 8 85 93 149

3 7.5 PB 4 10 81 91 162

4 7.5 PB 5 6 112 119 162

5 7.5 PB 5 8 109 118 175

6 7.5 PB 5 10 105 117 188

7 7.5 PB 6 6 137 145 188

8 7.5 PB 6 8 133 144 201

9 7.5 PB 6 10 129 143 215

10 2.5 PB 4 6 63 100 136

11 2.5 PB 4 8 42 101 150

12 2.5 PB 4 10 0 102 162

13 2.5 PB 5 6 88 125 161

14 2.5 PB 5 8 72 126 175

15 2.5 PB 5 10 46 127 189

16 2.5 PB 6 6 114 151 187

17 2.5 PB 6 8 99 152 202

18 2.5 PB 6 10 78 153 216

19 7.5B 4 6 38 104 132

20 7.5B 4 8 0 106 145

21 7.5B 4 10 0 107 157

22 7.5B 5 6 66 129 157

23 7.5B 5 8 15 131 170

24 7.5B 5 10 0 133 183

25 7.5B 6 6 91 156 183

26 7.5B 6 8 59 158 197
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Color Hue Brightness Saturation R G B

27 7.5B 6 10 0 160 210

Appendix B: List-Homogeneity Analyses Involving NEMO and the EBRW
Model

In analyzing performance in the continuous-dimension Sternberg paradigm, Kahana and
Sekuler (2002; Sekuler & Kahana, 2007) have used a model known as the noisy exemplar
model (NEMO). NEMO has been applied to the prediction of choice-probability data only,
and would need to be extended to account for recognition RTs.

NEMO is closely related to the GCM and EBRW model. It borrows from those models the
assumptions of an exemplar-based memory representation and that the exemplars are
embedded as points in a multidimensional similarity space. Furthermore, it uses the same
functions for computing the similarity of a test probe to the memory-set exemplars.
Likewise, it assumes that recognition decisions are based on summing the similarity of a test
probe to the stored exemplars.

There are two main differences between NEMO and these other exemplar models. The first
is that NEMO introduces noise into the recognition judgments in a different manner than
does the GCM and the EBRW. In NEMO, it is assumed that there is noise in the exact
locations of the exemplars in the space. Thus, the summed similarity of a test probe to the
stored exemplars is noisy. If the noisy summed similarity exceeds a criterion value, then the
observer responds “old”, whereas if the summed similarity fails to exceed the criterion, then
the observer responds “new”. By contrast, in the GCM and the EBRW model, the exemplars
occupy fixed points in the multidimensional similarity space. Responding is probabilistic
because of a noisy decision rule (in the GCM) or a noisy retrieval process (in the EBRW).

The second difference is that Kahana, Sekuler and colleagues (e.g., Kahana & Sekuler,
2002; Kahana, et al., 2007; Sekuler & Kahana, 2007; Viswanathan, et al., 2010) have argued
convincingly for the importance of including a list-homogeneity parameter within the
framework of summed-similarity exemplar models (see also Nosofsky & Kantner, 2006).
When the memory-set items are highly similar to one another, creating high-homogeneity
lists, the parameter acts to subtract from the total summed similarity of a probe to the
memory-set items. The degree of subtraction is related in continuous fashion to the degree of
list homogeneity. As noted by Nosofsky and Kantner (2006), one way of interpreting the
role of the list-homogeneity parameter is that the observer adjusts his or her criterion for
responding “old” based on the homogeneity of the memory-set exemplars (see Viswanathan
et al, 2010, for evidence in favor of this interpretation). When there is high homogeneity, the
observer sets a higher criterion for responding “old”. That is, if the list items are highly
similar to one another, then people require more evidence from a probe before they respond
“old”.

To date, the major evidence for the role of list homogeneity in influencing recognition
judgments is that NEMO provides far better fits to the individual-list choice-probability data
when the parameter is included than when it is not included. In view of this evidence, we
conducted extensive model-fitting analyses of the present data (and of data from Nosofsky
& Kantner, 2006) to further investigate the possible role of list homogeneity.

We fitted NEMO to both the present Experiment 1 choice-probability data as well as to a
previous data set collected by Nosofsky and Kantner (2006). The Nosofsky and Kantner
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experiment was closely related to the present one, using a similar stimulus set and design.
The main difference was that Nosofsky and Kantner did not collect or attempt to model RTs,
which is the focus of the present work. Nosofsky and Kantner previously fitted NEMO to
their data, but used a maximum-likelihood statistic as a criterion of fit. To improve
comparability between studies, we refitted the model here, using minimum SSD as the
criterion of fit.

Because extensive descriptions of NEMO have been provided in previous articles, we do not
repeat that presentation here. As explained above, the key issue is whether one makes use of
the homogeneity parameter in the model. As a source of comparison, we also report fits of
different versions of the EBRW model to both the present Experiment 1 data and to the
Nosofsky and Kantner data. The fits to the present Experiment 1 data were constrained by
also requiring the EBRW model to simultaneously fit the mean RT data of the individual
lists.

The minimum-SSD fits of NEMO and the EBRW model are reported in Table B1. For
NEMO, we show the fits of both the full version of the model (with the homogeneity
parameter included) and the reduced version (with the homogeneity parameter held fixed at
zero). We also fitted an extended version of NEMO that made allowance for position-
specific sensitivity parameters and for the criterion parameter to increase linearly with
memory-set-size (analogous to assumptions in the core version of the EBRW model). The
fits of the analogous versions of the EBRW model are reported as well. (We did not include
the primacy parameters in the reduced EBRW model fits.)

As can be seen in the table, for the Nosofsky-Kantner (2006) data, the fit of NEMO
improves considerably when it makes use of the homogeneity parameter. However, it fails to
provide a better fit than does the EBRW model, which makes no reference to list
homogeneity. The fits of both NEMO and the EBRW improve slightly when allowance is
made for the position-specific sensitivity parameters, but the EBRW model (without
homogeneity) continues to perform as well as does NEMO (with homogeneity). Table B1
also shows that, for the present Experiment 1 data, the fit of standard NEMO is only slightly
better than for its reduced version, and adding position-specific sensitivity parameters leads
to only minor improvements in fit. Regardless of which version of NEMO is assumed, the
EBRW model yields markedly better fits to the data, without introducing any assumptions
about an extra role of list homogeneity.

Finally, we explored different approaches to adding a homogeneity parameter to the EBRW
model. For example, one approach was to assume that the background-element strength was
influenced by homogeneity. However, we did not find any versions that improved
substantially the EBRW model’s fits to either data set.

Table B1

Fits of NEMO and the EBRW Model to the choice-probability data from Experiment 1 and
from Nosofsky and Kantner (2006).

Experiment 1

Model # Free Parameters SSD Percent V ariance
Accounted For

Standard NEMO (H) 11 3.56 94.0

Standard NEMO (no H) 10 3.67 93.8

Extended NEMO (H) 16 3.51 94.1
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Experiment 1

Model # Free Parameters SSD Percent V ariance
Accounted For

Extended NEMO (no H) 15 3.53 94.1

Reduced EBRW 9 2.78 95.3

Core-Version EBRW 15 2.23 96.5

Nosofsky & Kantner (2006)

Model # Free Parameters SSD Percent V ariance
A ccounted For

Standard NEMO (H) 11 2.63 92.5

Standard NEMO (no H) 10 3.35 90.4

Extended NEMO (H) 16 2.62 92.5

Extended NEMO (no H) 15 3.30 90.5

Reduced EBRW 9 2.58 92.6

Core-Version EBRW 15 2.46 92.9

Notes: NEMO = noisy exemplar model, Standard NEMO = version of NEMO fitted by Kahana and Sekuler (2002),
Extended NEMO = NEMO with additional free parameters for position-specific sensitivity and set-size dependent
decision-criterion setting, H = homogeneity parameter included, no H = homogeneity parameter not included.

Reduced EBRW = special case of the core version without position-specific sensitivity parameters, primacy parameters, or
set-size dependent background-element strength.

The count of the # of free parameters for the EBRW model does not include those parameters that contribute to only the RT
predictions.
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Figure 1.
Experiment 1, individual list predictions. Old recognition probabilities for the 360 lists
plotted against the predicted probabilities from the EBRW model.
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Figure 2.
Experiment 1, individual list predictions. Overall mean response times for the 360 lists
plotted against the predicted mean response times from the EBRW model.
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Figure 3.
Experiment 1, Observed summary trends and EBRW-predicted summary trends. Left
panels: average error probabilities plotted as a function of lag, set size, and type of probe.
Right panels: average mean RTs plotted as a function of lag, set size, and type of probe. Top
row = observed, second row = core model, third row = constant-sensitivity special-case
model, fourth row = constant memory-strength special-case model..
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Figure 4.
Observed (top panel) and EBRW-predicted data (bottom panel) for Monsell (1978,
Experiment 1). Mean RTs and error rates plotted as a function of lag, memory set size, and
type of probe. Observed data are estimates from Monsell’s (1978) Figures 3 and 4.
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Figure 5.
Observed and EBRW-predicted set-size functions, averaged across different lags, for
Monsell (1978, Experiment 1). Observed data are based on estimates from Monsell’s (1978)
Figures 3 and 4.
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Figure 6.
Observed and EBRW-predicted data for Omohundro and Homa (1981, Experiment 2). Top
panels: observed mean RTs and accuracies plotted as a function of category size and type of
test probe. (Data are estimated from Omohundro and Homa’s Figure 4.) Bottom panels:
EBRW-predicted mean RTs and accuracies. L = low distortion, M = medium distortion, H =
high distortion, NEG = negative probe.
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Figure 7.
Observed and EBRW-predicted speed-accuracy tradeoff curves for McElree and Dosher
(1989, Experiment 1). Top panel: set-size 3, bottom panel: set-size 5.
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Figure 8.
Estimates of μ, σ, and τ obtained by fitting the ex-Gaussian distribution to the simulated RT
distributions from the EBRW model. Left panel: results for negative probes; Right panel:
results for positive probes.
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Figure 9.
Simulated RT distributions from the EBRW model (open-bar histograms) along with the
best-fitting ex-Gaussian distributions (solid diamonds). The left panels are for negative
probes and the right panels are for positive probes. The rows correspond to set-sizes 1
through 4.
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Figure 10.
Experiment 2: Mean RTs plotted as a function of conditions for each of the four subjects.
Left panels = observed, right panels = EBRW predicted.
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Figure 11.
Experiment 2: Ex-Gaussian parameter estimates for the RT distributions corresponding to
the different set sizes and probe types. m = μ, s = σ, t = τ are the ex-Gaussian parameter
estimates derived from the observed RT distributions. Dashed lines show the ex-Gaussian
parameter estimates derived from the predicted RT distributions.
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Figure 12.
Experiment 2: RT distributions corresponding to each individual list type. Open bars =
observed distributions, solid diamonds = predicted distributions. The figure also lists, within
each panel, the predicted and observed error rates for that list type.
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Figure 13.
Top panel: Mean RTs plotted as a function of number of a probe’s features in the study set
across Experiments 1-3 of Mewhort and Johns (2000). (Adapted from Mewhort and Johns,
2000, Figure 3, bottom panel.) Bottom panel: Mean RTs plotted as a function of the EBRW
model’s computation of summed similarity across Experiments 1-3 of Mewhort and Johns
(2000).

Nosofsky et al. Page 57

Psychol Rev. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Nosofsky et al. Page 58

Ta
bl

e 
1

Ex
pe

rim
en

t 1
: S

um
m

ar
y 

Fi
ts

 (P
er

ce
nt

ag
e 

of
 V

ar
ia

nc
e 

A
cc

ou
nt

ed
 F

or
) o

f D
iff

er
en

t V
er

si
on

s o
f t

he
 E

B
R

W
 M

od
el

 to
 th

e 
C

ho
ic

e 
Pr

ob
ab

ili
ty

 a
nd

 M
ea

n
R

es
po

ns
e-

Ti
m

e 
D

at
a.

Se
pa

ra
te

 L
is

t T
yp

es

A
gg

re
ga

te
d

O
ld

N
ew

M
od

el
P(

O
ld

)
R

T
P(

O
ld

 )
R

T
P(

O
ld

)
R

T

C
or

e 
V

er
si

on
96

.5
83

.4
72

.3
86

.7
79

.0
80

.9

C
on

st
an

t S
en

si
tiv

ity
95

.5
59

.5
73

.6
75

.3
69

.9
47

.4

C
on

st
an

t M
em

or
y 

St
re

ng
th

94
.8

78
.2

69
.4

76
.2

65
.3

79
.6

C
on

st
an

t S
en

si
tiv

ity
 a

nd
 

M
em

or
y 

St
re

ng
th

93
.7

51
.4

43
.2

52
.0

65
.2

50
.7

C
on

st
an

t B
ac

kg
ro

un
d 

St
re

ng
th

96
.6

82
.0

69
.4

84
.6

80
.9

79
.9

B
in

ar
y 

D
is

ta
nc

e
87

.3
67

.8
59

.0
84

.3
5.

1
55

.1

Psychol Rev. Author manuscript; available in PMC 2012 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Nosofsky et al. Page 59

Table 2

Experiment 1: Best-fitting parameters for the EBRW model.

w 1 .329

w 2 .344

w 3 [.326]

M1 3.181

M2 1.415

M3 1.202

M4 [1.000]

θ 1 4.745

θ 2 1.361

θ 3 0.944

θ 4 0.711

PM 1.053

Pθ 1.470

u 0.000

v 0.377

OLD 3.464

NEW 3.513

μ 261.441

κ 55.391

Note: Parameter values in brackets are not free to vary. wj = attention-weight for dimension j; Mj = lag-j memory strength; θj = lag-j sensitivity;
PM, Pθ = primacy multipliers on memory-strength and sensitivity; u, v = background-element strength constants; OLD, NEW = response threshold
magnitudes; μ = mean residual RT; κ = random-walk time-scaling constant.
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Table 3

Best-fitting parameters for the EBRW model applied to Monsell’s (1978) Experiment 1 data.

M1 2.157

M2 1.183

M3 1.065

M4 [1.000]

s .050

u 0.529

v 0.044

OLD 2.750

NEW 4.500

μ 139.107

κ 49.253

Note: Parameter values in brackets are not free to vary.
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Table 4

Best-fitting parameters for the EBRW model applied to Omohundro and Homa’s (1981) category-verification
task.

s L .718

s M .586

s H .426

s N .151

u [1.000]

v 0.243

OLD 1.000

NEW 2.281

μ 100.00

κ 376.32

Note: The parameters sL, sM, sH, sN, u and v can be multiplied by any fixed positive constant without changing the predictions from the model.
Here, the background-noise intercept u is set arbitrarily at 1.0, as indicated by placing that parameter value in brackets. The magnitude of the other
parameters is measured relative to this setting.
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Table 5

Best-fitting parameters for the EBRW model applied to the response-signal data of McElree and Dosher
(1989).

M1 1.821

M2 1.237

M3 1.211

M4 1.005

M5 [1.000]

PM 1.116

s .097

u 0.667

v 0.159

μ E 4.922

μ E1 4.405

σ E 0.399

κ 11.249

Note: Parameter values in brackets are not free to vary. Given the best-fitting location and scale parameters of the log-normal encoding distribution
(μE, μE1, and σE), the mean encoding time for the lag-2 through lag-5 serial positions is 148.7, whereas the mean encoding time for the lag-1 serial
position is 88.6. The standard deviation of the encoding time for lag-2 through lag-5 is 61.8, whereas for lag-1 it is 36.8.
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Table 6

Experiment 2: BIC Fits of the EBRW Model to the Individual-Subject RT-Distribution and Error Data.

Subject Threshold-Shift Model Fixed-Threshold Model

1 1258.0 1470.8

2 1365.0 1494.5

3 1284.1 1684.6

4 1671.7 1729.5
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Table 7

Experiment 2: Best-fitting parameters for extended EBRW model.

S1 S2 S3 S4

M1 4.254 1.757 4.290 3.441

M2 0.880 0.833 2.149 1.741

M3 0.782 0.734 1.699 1.372

M4 0.979 0.931 1.226 1.321

M5 [1.000] [1.000] [1.000] [1.000]

PM 1.150 0.987 1.390 1.303

s 0.014 0.026 0.201 0.102

u 0.398 0.333 2.715 0.995

v 0.000 0.012 0.000 0.090

OLD 1.750 2.109 2.749 6.000

NEW 2.497 3.500 3.968 7.014

μ R 273.144 349.380 390.539 367.602

σ R 27.383 38.901 32.863 36.852

κ 30.634 20.438 1.876 6.000

R 0.937 1.417 1.315 1.023

δ 0.213 0.388 2.306 0.602

Note. For Subject 3, μd = 841.7, σd = 60.8. Parameter values in brackets are not free to vary.
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