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Abstract
Since the introduction of the P300 BCI speller by Farwell and Donchin in 1988 speed and
accuracy of the system has been significantly improved. Larger electrode montages and various
signal processing techniques are responsible for most of the improvement in performance. New
presentation paradigms have also led to improvements in bit rate and accuracy (e.g. Townsend et
al. 2010). In particular, the checkerboard paradigm for online P300 BCI-based spelling performs
well, has started to document what makes for a successful paradigm, and is a good platform for
further experimentation. The current paper further examines the checkerboard paradigm by
suppressing items which surround the target from flashing during calibration (i.e., the suppression
condition). In the online feedback mode the standard checkerboard paradigm is used with a
stepwise linear discriminant classifier derived from the suppression condition and one classifier
derived from the standard checkerboard condition, counter-balanced. The results of this research
demonstrate that using suppression during calibration produces significantly more character
selections/min ((6.46) time between selections included) than the standard checkerboard condition
(5.55), and significantly fewer target flashes are needed per selections in the SUP condition (5.28)
as compared to the RCP condition (6.17). Moreover, accuracy in the SUP and RCP conditions
remained equivalent (~90%). Mean theoretical bit rate was 53.62 bits/min in the suppression
condition and 46.36 bits/min in the standard checkerboard condition (ns). Waveform morphology
also showed significant differences in amplitude and latency.
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1. Introduction
In 1988, Farwell and Donchin [1] introduced the first P300-based BCI paradigm in which a
computer presents a 6x6 matrix of letters and commands on-screen and participants attend to
the item they wish to select. In this first P300 BCI paradigm, and in most since, items are
grouped as flashing rows and columns: hence, the nomenclature row/column paradigm, or
RCP. The intersection of the row and the column that elicited the combination of the largest
and most temporally consistent (or classifiable) response is identified as the attended item by
the classification algorithm. With the target of achieving efficient and practical in-home use,
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researchers have tested presentation paradigm design qualities such as inter-stimulus interval
(ISI) and matrix size [2], electrode montages [3], and signal processing methods [4–7].
However, the RCP remains subject to design errors that slow communication. For instance,
errors typically occur with the greatest frequency in locations adjacent to the attended item
(i.e., the target item) and almost always in the same row or column [8–10]. Recently this has
been referred to as ‘‘adjacency distraction” [10] and it occurs when an item surrounding the
target inadvertently attracts attention, thereby creating a target response (i.e., P300). In
contrast, when the target item flashes and is correctly attended to (i.e., produces a P300), all
items flashing with the target, produce a target response due to temporal proximity with the
target. This is especially problematic in the RCP because each time the target row or column
produces a P300 all other items in the row or column include a P300 [11]. Thus, if adjacency
distraction occurs on one or more trials, a nontarget can be identified as the target because
the classifier applies coefficients to each row and each column, sums the scores, and the cell
with the highest row and column score is identified as the target response.

Some have explored alternatives to the RCP paradigm. Guger et al. [12] compared the RCP
to a paradigm which randomly flashed single items. Martens et al. [13] compared an RCP
speller to a paradigm making use of apparent motion; however the motion occurred in rows
and columns. Takano et al. [14] investigated RCP accuracy using three different luminance
and chromatic flash patterns; the luminance/chromatic condition produced online accuracy
higher than the luminance or chromatic conditions alone. Hong et al. [15] compared the
RCP to an apparent motion and color onset paradigm that also presented in a row/column
arrangement. Salvaris and Sepulveda [16] compared changes to the character size, distances
between characters, and background/foreground colors. Others have designed paradigms
that do not rely on variations of the RCP [17]. However, none of these manipulations have
resulted in substantive improvements in performance.

The checkerboard paradigm or CBP, completely disassociates rows and columns [10]. In the
CBP, the items of an 8x9 matrix are logically separated by superimposing the 72 matrix
items into a “virtual” checkerboard (that is not seen by the participants). The items in
“white” cells of the 8x9 matrix are logically segregated into one 6x6 matrix and the items in
the “black” cells are segregated into another 6x6 matrix. Before each sequence of flashes,
the designated items randomly populate the white or black matrix, respectively. The end
result is that the participants see quasi-random groups of six items flashing. As vertically or
horizontally (but not diagonally) adjacent items cannot be included in the same flash group,
and thus cannot flash simultaneously, the virtual checkerboard layout partially controls for
adjacency-distraction errors. The CBP also introduces a constraint that does not allow any
matrix item to flash a second time for a minimum of six intervening flashes or a maximum
of 18 flashes. This constraint avoids the problem of overlapping target epochs. The
expansion to an 8x9 matrix was expected to produce larger P300 amplitudes for the target
items by reducing the probability of the target stimulus occurring [2, 18, 19]. Townsend et al
[10] showed that online accuracy was significantly higher in the CBP (92%), as compared to
the RCP (77%), demonstrating that the CBP is superior to the RCP presentation method.

As a paradigm that performs well and has begun to document what makes a successful
paradigm, the CBP is a good platform for further experimentation on a practical level, and as
a means of exploring what is necessary in a robust paradigm. For example, the CBP still
allows for paradigmatic errors. Item flashes diagonally adjacent to the target can potentially
result in adjacency-distraction. As is well documented in spatial attention literature, in a
standard flanker task, response time significantly increases when nearby items belong to a
response class different from the target class [20]. In the RCP, when adjacency-distraction
errors occur, the distractions typically cause another item in the same row or column as the
target to be selected unintentionally [8–10]. That is, given that each time a target character
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flashes all items in the target row (and/or) column produce P300 responses. Thus,
adjacency-distraction (i.e., distraction from a row or column adjacent to the target) may
change the target ERP in such a manner that responses to erroneous items more closely
resemble the expected target ERP. In other words, the SWLDA classifier models target and
non-target responses. Thus, when an error is made, one can assume that the erroneously
selected character is more similar to the canonical target response than the desired target is
to the canonical response. However, the current study was not designed to explicitly
examine this hypothesis. It should also be noted that Townsend et al [10] showed that in the
CBP 5% of the errors occurred in the target row or column, while the RCP produced 84% of
the errors in the target row or column.

Building upon the results of [10], removing these errors should create performance
improvements. In the case of the CBP, and likely for other presentation paradigms, the
easiest way to remove the effects of adjacency-distraction is to remove the possibility of
simultaneously flashing any of the eight immediately adjacent items during the calibration
phase of the experiment. The current paper examines this hypothesis by using a completely
suppressed CBP (SUP) where none of the eight surrounding items flash simultaneously with
a target during calibration (figure 1(a)). Two competing hypotheses are as follows: 1) A
stepwise linear discriminant (SWLDA) classifier derived from the SUP condition will
perform better than a classifier derived from the CBP because the adjacency distraction has
been removed, presumably producing a more reliable ERP; 2) the SUP classifier will not
perform as well as the CBP classifier because it will not generalize to the standard CBP
presentation during online testing.

2. Methods
2.1. Participants

Eighteen able-bodied adults (9 female, 9 male; age range 19–49) were recruited from the
East Tennessee State University undergraduate psychology participant pool. Fourteen were
completely naïve to BCI use and 4 had previous BCI experience. All had normal or
corrected-to-normal vision and no known cognitive deficit. This work was approved by the
East Tennessee State University Institutional Review Board and each participant provided
informed consent.

2.2. Data Acquisition
Each participant sat in a comfortable chair approximately 1 m from a computer monitor that
displayed the 8x9 matrix. EEG was recorded with a 32-channel tin electrode cap (Electro-
Cap International, Inc.). All channels were referenced to the right mastoid and grounded to
the left mastoid. Impedances were reduced to below 10.0 kΩ before recording. Signals were
digitized at 256 Hz, and bandpass filtered from 0.5 Hz to 30 Hz using two g.tec (Guger
Technologies) 16-channel USB biosignal (g.USBamp version 2) amplifiers. Electrodes Fz,
Cz, Pz, Oz, P3, P4, PO7, and PO8 were used for BCI operation [3]. BCI2000 [21] was used
for stimulus presentation, and data collection.

2.3. Experimental Paradigm
Each participant completed two experimental sessions within a one-week period.
Classification coefficients were generated with data collected during a calibration phase and
subsequently applied during an online test phase. In each phase, participants were provided
with strings of items to select. The participant’s task was to attend to the number of times
the item in parentheses flashed (by counting or mentally repeating the target. During SUP
calibration (as shown in figure 1(a; left)) the target item “D” is flashing and none of the
surrounding items are flashing. During CBP calibration items diagonal to the “D” could
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flash. One sequence of flashes included 24 flashes; each flash consisted of six items. For
each of 36 item selections, five complete sequences (i.e., 10 flashes of each matrix item)
occurred. Sessions were counterbalanced such that half of the participants began with the
SUP session and the other half began with the CBP session. During the calibration phase of
the SUP session, participants were presented with flash patterns which did not include any
simultaneous flashes of adjacent items (figure 1(a)). During the calibration phase of the
CBP, participants were presented with standard CBP flash patterns which included
diagonally adjacent flashes, but not horizontal or vertical adjacent flashes. The event
sequences (i.e., flash patters) and target to target intervals for the SUP and CBP were
identical during calibration. In addition, during online testing, the event sequences for SUP
and CBP were identical (i.e., no suppression). This was achieved by presenting subjects with
identical pre-determined flash patterns that were produced within the constraints of the CBP.
The online test phase was identical to the calibration phase except for two differences. First,
the number of item flashes-per-selection was changed from 10 to a participant-specific
number (described below). Second, item selections were classified using SWLDA feature
weights generated from the calibration data and visual feedback of the selections was
provided to the participant directly below the item to be selected. Both SUP and CBP
operated in the standard CBP (i.e., no suppression) during online testing.

2.4. Classification
Independent SWLDA classifiers were used to determine the signal features that best
discriminated between target and non-target flashes (MATLAB version 7.6 R2008a,
stepwisefit function) [22]. Classifiers were derived separately for the SUP and CBP, as
described in Krusienski et al. [3]. The SWLDA algorithm was then used for online
classification. Epochs from each of the 72 stimulus items were averaged before applying the
SWLDA classification coefficients. Coefficients were then applied to the specific
spatiotemporal features of each of the 72 items of the matrix and summed. The item with the
highest score was selected and presented to the participant as feedback.

2.5. Determining the optimal number of sequences
Due to the P300 response’s relatively low signal-to-noise ratio, each item must be flashed
multiple times and averaged [23]. During calibration, the number of target item flashes was
constant across participants and presentation methods. Item sets were flashed in quasi-
random sequences with two flashes of the target item per sequence, and thus 10 target item
flashes in the five sequences used for each selection. During the online testing phase, we
optimized the number of sequences by calculating each participant’s maximum written
symbol rate (WSR, or symbols/min; [24]). This metric represents the number of item
selections a participant can correctly make in 1 min, taking into account error correction.

3. Results
3.1. Optimal Flashes/Selections, Selections/Minute, Bit Rate, and Accuracy

When participants were characterized with SUP, as opposed to CBP, their mean optimal
flashes-per-selection was 5.28; mean flashes-per-selection in the CBP was 6.17. This totals
to an average difference of 0.89 flashes-per-selection (or approximately one target flash;
p=0.019). As shown in figure 1(b) the SUP condition also resulted in significantly higher
mean selections-per-minute, with SUP at 6.46 and CBP at 5.55 (Δ= 0.91; p=0.008). This
calculation includes time between selections, which is necessary in practical online use; in
this study 3.5s were used, which is consistent to the time between selections used by [10].
We have also conducted other studies that used 5.0s between selections [2, 25]; however,
given that the current study extends that reported in [10], we opted to use 3.5s. Moreover
using a short inter-selection interval increases the practical utility of the system. Thus, this
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value represents the mean number of online selections/min. Theoretical selections-per-
minute were also higher for SUP at 10.95 and CBP at 8.95 (Δ= 2.0; p=0.047), this value is
calculated with the 3.5 s between selections removed (for comparison to other studies that
omit time between selections when reporting bit rate). These are the highest group mean
online bit rates (SUP=31.66 (range of 16.70 to 54.42) and CBP=28.75 (range of 10.60 to
48.68; p=0.114) and group mean theoretical bit rates (SUP=53.62 (range of 20.87 to 108.79)
and CBP=46.36 (range of 13.25 to 97.31); p=0.112) reported to date. There was not a
significant difference in selection accuracy between the SUP and CBP, 87.7% and 89.8%,
respectively. Given that the same algorithm (WSR) was used to optimize the number of
target flashes per selection it is not surprising that accuracy was similar in both conditions.
This is because the tradeoff between additional time per selection (i.e., number of flashes)
diminishes as accuracy begins to asymptote.

3.2. Waveform Morphologies
The CBP and SUP conditions produced different waveforms in several respects. Our
analyses focused on four electrodes, (Cz, Pz, PO7, and PO8) as these electrodes have
previously been shown to typically contribute most to classification accuracy [4, 16]. The
analyses were conducted using the calibration data to hold the amount of data per participant
constant because variable numbers of flashes were used during the online test. Figure 1(c)
shows target (top row) and non-target response grand means for all participants (N=18) at
each of the four electrodes. Amplitude and latency differences were examined at each
electrode location.

Positive peak amplitude and latency between 125 and 350 ms were measured at each
electrode location. The peak at electrode Cz was significantly earlier for the SUP (242 ms)
than the CBP (258 ms; p=0.049). Also, latency and amplitude differences in the positive
peak were observed for electrode PO7. Peak latency was earlier for the SUP (249 ms) than
for the CBP (283 ms; p=0.020 and SUP amplitude was lower (2.701 µV) than CBP
amplitude (3.124 µV; p=0.009).

Negative peak amplitude and latency between 300 and 600 ms were also examined. At
electrode Pz, SUP showed a significantly earlier peak (449 ms) than CBP (470 ms;
p=0.036). The negative peak at electrode PO8 in the SUP was also significantly earlier (455
ms) than the CBP (494 ms; p=0.028).

4. Discussion
Calibrating with SUP increased data throughput: selections-per-minute, and theoretical
selections-per-minute both increased, while the optimally required flashes-per-selection
decreased. The SUP reduction in flashes-per-selection resulted in an additional 0.89
selections/min. The fact that SUP and CBP showed equal mean accuracy is explainable, in
part, because the WSR was used to determine the optimal number of flashes to be used
online. Each sequence takes three seconds; thus, as soon as accuracy begins to asymptote,
the minimal tradeoff in improved accuracy is not worth the time it takes to present additional
sequences of stimuli. On a practical level, SUP calibration increased online speed without
reducing accuracy, thus improving performance of the CBP to the highest mean P300 BCI
bit rate reported to date. Moreover, given that the two experimental paradigms were
identical in every aspect (i.e., stimulus sequence and target to target interval) except for the
fact that surrounding characters did not flash during SUP calibration; the current results
indirectly suggests that SUP calibration provides a more stable SWLDA classification
algorithm. This, in fact, is somewhat surprising given that during online testing items that
can cause adjacency distraction were present.
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These results suggest that suppressing adjacent items is an important consideration in
paradigm design. Optimal signal quality is achieved during calibration as a function of the
presentation paradigm: before filters, amplifiers, or classification algorithms. Optimal signal
quality (e.g., spatial and temporal consistency of the participant’s response) produced by
manipulations at the paradigmatic level can be reasonably expected to translate into better
performance at later processing stages as well. As experimenters have the greatest ability to
manipulate ERP morphology through paradigm manipulations and innovations, it is
practical to focus on extending basic psychophysiological paradigms that have been
extensively studied for more than fifty years. More generally, BCI paradigm design could
benefit from the knowledge provided by various paradigm designs that affect waveform
morphology in different ways and also focus on the vast cognitive psychophysiology
literature regarding comparisons between clinical populations and healthy controls.

5. Conclusions and Future Directions
The results of this research demonstrate the efficacy of SWLDA coefficients derived while
suppressing all items that surround the target character during calibration and then applying
those coefficients to an online version of the speller that does not suppress adjacent items.
These results show that more character selections/min are produced by using fewer flashes
for each selection, while accuracy remains equivalent in the SUP condition and in the
standard CBP. An important next step is to replicate the present research using participants
with severe neuromuscular diseases.
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Figure 1.
Suppression condition presentation and data. (a) Left: Presentation of SUP (suppression
condition) with flashes of all 8 adjacent diagonals restricted during a target flash. Right: A
CBP (standard checkerboard) flash showing diagonal items flashing with the target. (b)
Significant differences were found in flashes-per-selection, selections-per-minute and
theoretical (t) selections-per-minute. (c) Grand mean waveforms for all 18 participants at
electrode locations Cz, Pz, PO7, and PO8. The top row consists of target responses for both
conditions, and the bottom row consists of non-target responses (SUP data is presented in
grey and CBP data is presented in black).
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