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Abstract

We propose an anisotropic diffusion method to denoise and aid the reconstruction of planar
objects in three-dimensional images. The contribution of this paper is the development of a
planarity function characterizing plate-like structures using an image Hessian’s eigensystem. We
then construct a diffusion tensor for anisotropically smoothing plates and satisfying necessary
scale-space properties. Our method finds applications in improving the fidelity of highly noisy cell
membrane images from confocal microscopy. In dense cellular regions, cell membranes assume
linear shapes (planar) between neighbors. The imaging process makes cell membranes appear as
diffuse structures owing to the non-uniform fluorescent marker distribution, point-spread function
of the optics, and anisotropic voxel resolution which make automatic cell segmentation difficult.
We apply diffusion filtering to identify and enhance membranes. We demonstrate the use of our
methods on 3D cell membrane images of a zebrafish embryo acquired using fluorescent
microscopy and quantify the improvement in image quality.

Index Terms
Anisotropic diffusion filtering; smoothing; fluorescent microscopy; membranes

1. INTRODUCTION

Developmental biologists and researchers studying tissue morphogenesis and cancer are
interested in cellular interactions that occur during development of tissues and organs. Their
research relies on using quantitative information collected from microscopic time-lapse
images that depict the behavior of cells and their organelles including nuclei and membranes
[1]. As a result, there is a widespread effort to develop automated microscopy image
analysis techniques focused on identifying cellular structures [2, 3]. While there have been
numerous research studies involving automated analysis of nuclei images for cell
localization, this has not been the case with using membrane images.

In microscopy, cell organelles are first labeled/stained with a marker and imaged using a
high-resolution microscope. For example, in Fig. 1, we consider a confocal image wherein
fluorescent markers are first tagged to proteins in the nuclei and membranes and then
excited by a laser. The fluorescent marker-labeled structures emit signals that are then
localized in 3D using suitable optics to form images. Objects such as the nuclei contain a
volumetric source of fluorescent protein that can be sufficiently sampled (in a Nyquist-
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sense) on an imaging grid and reconstructed. Hence, they appear well-resolved with high-
fidelity gradients at their boundaries, thereby making their extraction a relatively easy
process.

In contrast, membranes may be likened to a thin shell of thickness much smaller than the
point spread function; hence, the resolution afforded by current microscopes?. Fluorescent
markers sample the shell surface at discrete points. Please refer to Fig. 1(c). Imaging planes
(in red) optically slice this shell at large regular intervals. The point spread function of the
optics smoothly interpolates light from neighboring markers and creates a diffuse thin wispy
membrane structure visible in images. The intensity at a voxel is therefore a function of the
number of fluorescent markers in a small neighborhood region of the tissue. It depends on
its proximity to membrane junctions, adjacent cell membranes, and marker aggregations.
Note that membrane junctions are generally more intense as a result of higher spatial
concentration of fluorescent protein markers due to multiple membrane co-localization
(orange circle in Fig. 1(b)). Artifacts caused by marker aggregations occur when the
fluorescent protein molecules stick together in clumps. Nevertheless, these factors make the
membrane intensity highly inhomogeneous thereby affect its suitability to automated image
analysis systems.

The membrane channel provides important quantitative information on cell size, shape and
localization outside the nucleus region and the surface area of cell boundaries and also helps
in resolving the separation of cells in some instances [3]. Therefore, the goal of this work is
to eliminate membrane intensity inhomogeneities and improve the fidelity of the observed
signal as much as possible. An important observation that we make in this regard is the
linearity of the membranes as tessellations in dense cell regions [4]. We use this fact to
design filters to first identify and then enhance membrane signals in planar directions while
suppressing noise orthogonal to it.

Contributions

Our main contribution is the development of a planarity function that is selectively
maximized at the medial plane for a plate-like structure with some thickness. We design the
function to deliberately suppress point and tube-like structures in the images. For a given
application, this function can be fine-tuned for robustness to noise by selecting an
appropriate scale. An example of this function is shown in Figure 5.

Our second contribution is the application of the planarity function to develop an anisotropic
diffusion process in plate-like structures. We operate on the premise that filtering operations
need to be cognizant of interpolating in-plane intensities and smoothing out-of-plane
intensities. We design a diffusion tensor whose eigen values are guided by the planarity
function response and whose orientation is provided by a local neighborhood Hessian
operator. We develop an anisotropic diffusion filter for membrane images in clumped
cellular regions.

Related Work

Our methods are inspired by work on vessel-detection in which diffusion filters were
designed to detect vessels [5, 6]. They used the fact that eigenvectors of the Hessian point in
the directions of principle curvature. At vessel boundaries, the eigenvector with largest
eigenvalue is almost normal to the boundary, and the one corresponding to the smallest

IThe x-y planar resolution is different from the axial resolution in a ratio of 0.2:0.2:1x m
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eigenvalue points along the vessel axis. In the case of membranes, however, the structure of
the Hessian changes and filter described above needs to be modified to account for this.

There has not much work devoted to the identification of membrane structures. Tasdizen et
al [7] proposed diffusion based method enhancing cell boundaries using the Hessian in 2D
only. It relies on using absolute differences of eigen values to design the diffusion tensor.
The drawback of this method is that it fails to use the 3D structure of membranes to guide
the diffusion process and results in enhancing structures other than membranes.

2. METHODS

Diffusion filtering [8] was first proposed to remove high-frequency noise while avoiding the
blurring and localization problems of linear Gaussian smoothing [9]. It is a non-uniform
process that has reduced diffusivity at locations having a larger likelihood to being edges.
Classical anisotropic diffusion based on image gradients, is unsuitable for differentiating
between the different types of surfaces present in the image, which are characterized by their
principle curvatures. Therefore, we use a version of anisotropic diffusion [10], where the

diffusion tensor is determined by the Hessian ( V24) of the image function u, as:

g—?:V-(D(V?,u)V,,u) on  Qx(0,),

with u: Q x [0, T] — R, u(x, 0) = f (X) and Neumann boundary conditions.

The regularized Hessian V2 and gradient V,, are computed by convolving u(x) with the
appropriate derivatives of a Gaussian having bandwidth . The diffusion tensor D: R3*3 —
R3*3 is a matrix that enforces the directional preference of the diffusion process along the
principal directions. Also, in order for the diffusion equation to generate a scale-space of
solutions that a) are unique, b) vary continuously with respect to the initial conditions, c) are
smooth and d) are information reducing (i.e. do not create new extrema), the diffusion tensor
must satisfy the following conditions: i) D is C* continuous (i.e. smooth), ii) D is
symmetric, and iii) for all g: Q — R such that |g(x)| < K there exists a positive lower bound

v (K) on the eigenvalues of D(V2g) (i.e. uniform positive definiteness).

We now discuss the design of the planarity function for selectively extracting plate-like
structures, which is the core idea of this work and then get back to the design of D(V> g).

2.1. Planarity Function Design

Let [21(X)| < A2(X)| < [A3(x)| be the eigenvalues of V2 4(x) with corresponding eigenvectors
v1(X), Vo(X), v3(X). The eigen system of the Hessian specifies the principal directions of
second-derivatives of the intensity function. We define the planarity of a voxel x (the

similarity of the neighborhood - to a plate-like structure), as:

0 if A3 =0
- _ & a2 _ B — 3\'3
Pe(A)=9 (1—e ¥).e %7 ¢ # .¢ % otherwise
\ e’ e’ N
T T T: T;

(2)
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A> V|12 S S
where, A= -', p= Y “i, S= JB+2+2)
[43] [43] c 3)

Here, 0 < #, < 1 with larger values indicating more similarity at regularization scale o.
Since, the membrane is brighter than the background, we always have ; < 0 and hence, we
set #, = 0 when the minimum eigen value 13 > 0. Here, (a, 3, y, C) are user-tunable scale
parameters that depend on the specifics of the imaging modality. A plot of the function &
with all parameters set to 1 is shown in Fig. 2.

Foreground vs. background—If A— ~ 0, it indicates image background with minor
variations due to noise. This case is quantified by T, and y controls the smallest acceptable
scale. Tg evaluates to 1 in foreground regions showing intensity variation and is close to 0 in
constant intensity regions. Given that membranes have a small thickness, they have large S
values and hence qualify as foreground.

When 0 % |14] & | A9] K |A3], % is similar to a plate of very small thickness. This
corresponds to the point indicated in the left half of Fig. 2. So the following cases arise:

1. Plate vs tube—The term A measures the ratio of the largest pair of eigen-values. It is
close to O for a plate and 1 for a tube. Note that for a tube, 0 ~ 11 <K 1y = 3. Therefore, the
term Tq selectively eliminates a tube structure.

2. Plate vs blob—The term B measures the ratio of the smaller pair of eigen-values with
the largest one. It is close to 0 and in turn, T, has values closer to 1. Note that for a blob, A
~ Ay & Jgand T, K 1 as indicated by the right point in Fig. 2.

Figure 2 shows the values of p plotted against 13 for different values of 11, 1, with ug = 15,
11 =0.1, up = 0.2 and uz = 1. It is beyond the scope of this paper, but the planarity function
# . is smooth. The interested reader is directed to [6] for a proof.

2.2. Diffusion Tensor Design

In order to direct the diffusion along the plane of the membrane and inhibit it in the

perpendicular direction, the diffusion tensor is defined as D(V2u(x))=V(x) A ®Vx),
where V(x) = [v1(X), va(x), v3(X)]. The diffuseness along the eigen-directions is given by

A (x)=diag[ 1, 1 13] Where:

M) =hx) = 1+(@-1)Z(x)""
Bx) = 1+(e—1)Ps(x)"/s

(4)
where 0 <¢ <1 <K wands>1isa sensitivity factor.

The A (X) represents the extent of diffusivity along the principal directions. For large values

of #, 1, and 2, attain high values leading to anisotropic tensor. The effect of this diffusion
tensor on V u from eqgn. 1 is to stretch it along the principle semi-axis of the disc while
contracting it along the perpendicular direction, thereby enhancing diffusion along the
membrane. In the converse case of low values of #, all 4; are approximately equal to 1
leading to local isotropic Gaussian smoothing from egn. 1.
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As can be readily seen, the diffusion tensor is C* continuous, symmetric, and positive
definite, thereby exhibiting the necessary scale-space properties of being well-posed and
information reducing.

The numerical implementation of the diffusion equation in its un-regularized form has been
shown to be ill-posed. In addition to numerical stability, regularization confers infinite
differentiability and robustness to noise [11]. However, selecting the right value of this scale
parameter ¢ vis a vis the size of the membrane in the local neighborhood % is essential.
Please refer to Fig. 5 where # has been plotted for different o for the membrane image of
Fig. 4(a). The size of a membrane is smaller than 0.2 um. When ¢ is too small as in Fig.

5(a), then small variations due to noise will have relatively large effects. However, when ¢ >
y3 as in Fig. 5(c), then # (x) (eqn. 2) becomes increasingly insensitive to y3, adversely
impacting the membrane enhancement of the filter. In the next section, we elaborate on
setting the appropriate value of ¢ in our application.

3. RESULTS

In order to validate our methods, we first created phantom datasets. An example is shown in
Figure 3(a). The function f (X, y, z) = 1006(z—10)+906 (z—9)+906 (z—11)+400 (z—8)+406 (z
—12) is sampled on a grid of pixel dimensions 20 x 20 x 20. A hole of pixel dimensions 4 x
4 x 4 is then placed in the center of the plane. The images are degraded with Gaussian noise
(« =0, o =10). The planar topology is then recovered by our methods with (a, B, y, S, W, ¢, t)
=(0.5,0.5, 5, 1.5, 0.01, 50). We observe (i) the smooth interpolation of planar intensities
across the hole; (ii) there is no diffusion of intensities out of the plane and (iii) reduction of
Gaussian white noise in the background. In the phantom image, the average foreground/
background value was x = (100.16, —0.887) intensity units with a standard deviation of ¢ =
(10.03, 10.075) respectively, as expected. After smoothing, the mean was at x = (73.43,
5.73) while the standard deviation dropped to (7.10, 4.91) respectively. Note that the
foreground intensity now covers the hole and its mean value decreases. By smoothing out
the background noise, its mean increases and the standard deviation reduces. This process
was conducted for a geometric series of Gaussian ¢ in the range [5, 30] and the system was
found to be very robust even at (o = 30). We always found the same data trends as explained
above with progressive degradation in quality.

Figs. 4 and 6(a) shows a portion of a confocal image of zebrafish spinal precursor neuron
cells. The enhancement of cell membranes requires: (i) closing of gaps in the membranes
due to non-uniform staining and (ii) removal of noise and enhancement of background due
to light scattering. Filtering with a Gaussian kernel removes noise; however, it also blurs
membranes, Figs. 4 and 6(b). Using parameters (C = 5, t = 15) the P-M PDE [8] moves the
input image toward a piecewise constant image, Figure 1(c). The continuity of membranes is
not enhanced; in fact, it is even disrupted in certain places and feeble membranes are
smoothed. The results of the coherence enhancing diffusion PDE [12] is shown in Figs. 4
and 6(c). This filter creates ringing artifacts and as a result closely located noise pixels
sometimes get connected. We experimented with the parameters to obtain the best
qualitative results (« = 0.001; 6 = 1.0; C = 5.0; p = 3.0; t = 15). While the membranes are
enhanced, they are not necessarily improving the contrast from noisy structures as shown by
the red arrows. In Figs. 4 and 6(d), we show the result from our proposed PDE with (a, £, v,
s, w, g t) = (0.5, 0.5, 5, 1.5, 0.01, 50). The contrast of the membranes and their continuity
are enhanced while feeble membranes are relatively better preserved although the
localization of smoothing occurs in a band surrounding the membrane. This is because our
filter computes the Hessian requiring second-order derivatives as compared to Weickert’s
first-order methods.
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An important contribution of the paper has been the introduction of the planarity function
selective to membranes. In Fig. 5, we show images of # for different scales of o. While the
localization is excellent at high scales, a lot of noise is introduced. Lower scales are marked
by missing membrane segments. Therefore, this shows that it is necessary to operate at the
right scale. In Fig. 7, we compute a membrane mask from the response at o = 0.5 and apply
it to the response at o = 0.2. We observe a good localization of the membrane (even feeble
ones). A simple global threshold applied at this stages yields a high quality segmentation.
Therefore, other sophisticated algorithms can easily be used to get a fine segmentation.

As part of our future work, we plan to explore mathematical processes of backward
diffusion to recover intensities diffused orthogonal to the membranes due to the point-spread
function of the optics.
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Fig. 1.

Two channel fluorescence microscopy images of a zebrafish embryo. (a) Linear membranes
filaments shown in the red channel and spherical nuclei in the green channel. The yellow
rectangle shows a membrane coincident on the x-y optical plane. (b) A zoomed version of a
single cell. Planar directions of the membrane are shown by the white double arrow.
Orthogonal directions are indicated by the blue arrows. The orange circle shows a
membrane vertex which is intensely stained. (c) An illustration of the optical sampling
process of membrane point clouds. The x-y planes are shown in red and the intensity profiles
on the plane are marked by curves in dark red. Cell membranes imaged en face” such as the
interface between cells 2 and 4 are poorly reconstructed.
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Fig. 2.
Plot of # with 11 = 1, vs. A3 and all parameters set to 1.
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Fig. 3.
(a) Phantom image containing a plane with a through hole. (b) After anisotropic smoothing.
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Fig. 4.
(a) The middle slice of a 3D confocal dataset of cell membranes; (b) Perona-Malik; (c)
Coherence-enhancing; (d) Our method.
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Fig. 5.
Planarity maps # at o = (Left) 0.2; (Mid) 0.5; (Right) 1 um
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Fig. 6.
(a) Another field of view; (b) Perona-Malik diffusion; (c) Coherence-enhancing; (d) Our
method.
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Fig. 7.
Left: Original image slice of membranes. Right: Output of the planarity function at ¢ = 0.2
masked by the response at ¢ = 0.5.
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