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Abstract
Background—Investigators addressing nursing research are faced increasingly with the need to
analyze data that involve variables of mixed types and are characterized by complex nonlinearity
and interactions. Tree-based methods, also called recursive partitioning, are gaining popularity in
various fields. In addition to efficiency and flexibility in handling multifaceted data, tree-based
methods offer ease of interpretation.

Objectives—To introduce tree-based methods, discuss their advantages and pitfalls in
application, and describe their potential use in nursing research.

Method—In this paper, (a) an introduction to tree-structured methods is presented, (b) the
technique is illustrated via quality of life (QOL) data collected in the Breast Cancer Education
Intervention (BCEI) study, and (c) implications for their potential use in nursing research are
discussed.

Discussion—As illustrated by the QOL analysis example, tree methods generate interesting and
easily understood findings that cannot be uncovered via traditional linear regression analysis. The
expanding breadth and complexity of nursing research may entail the use of new tools to improve
efficiency and gain new insights. In certain situations, tree-based methods offer an attractive
approach that help address such needs.
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Investigators addressing nursing research frequently undertake composite research
questions. The involved statistical analysis has become more and more demanding as the
collected data are often characterized by variables of mixed types and complex nonlinearity
and interactions that challenge the assumptions of common analytic methods.
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Tree-based methods, also called recursive partitioning, are effective in handling multifaceted
data, and are gaining acceptance as a methodology for addressing data complexity, which
renders them particularly popular in biomedical applications. See Crichton, Hinde, and
Marchini (1997); Fan, Su, Levine, Nunn, and LeBlanc (2006); Hess, Abbruzzese, Lenzi,
Raber, and Abbruzzese (1999); Mair, Smidt, Lechleitner, Dienstl, and Puschendorf (1995);
McKenzie et al. (1993); Steffann, Feyereisen, Kerbrat, Romana, and Frydman (2005); and
Vlahou, Schorge, Gregory, and Coleman (2003) for some examples in medical prognosis
and diagnosis. The hierarchical tree structures are useful for creating model-based clinical
decision rules that mimic the way of assigning prognosis or diagnosis by clinicians.

Tree modeling has gained so much popularity that its implementation has been made
available in all major statistical computing packages. In R (R Development Core Team,
2010), two main packages are available, tree and rpart; in SAS, tree analysis can be
conducted using PROC Split; it is also implemented in SPSS, in the Decision Trees module.
Now it is possible to perform tree analysis without a deep understanding of detailed steps in
this algorithmic procedure.

With great flexibility and easy interpretation, tree-structured modeling can be applicable to
nursing research. With the advent of computing facilities and database technology, huge
amounts of high-dimensional data with multifaceted structures are being collected in the
nursing field. An increasing amount of nursing research and publications are based on
primary or secondary analysis of large national surveys or web-based databases (e.g., Cho,
Ketefian, Barkauskas, & Smith, 2003; Duffy, 2006; Henry, 1995; Lange & Jacox, 2004).
Tree-structured methods are among the fundamental tools for mining or exploring large
observational data.

The purpose of this paper is to provide an informative and accessible introduction to tree
modeling, discuss the advantages and pitfalls of this emerging and cutting-edge technique,
and demonstrate a tree application in analyzing quality of life (QOL) data in a Breast Cancer
Education Intervention (BCEI) trial.

History of Tree Methods
The history of tree methods can be traced back to Morgan and Sonquist (1963), who
initiated the idea and implemented the first tree software – the Automatic Interaction
Detection (AID). Tree models have been made popular and widely applicable by the
introduction of the Classification and Regression Trees (CART; Breiman, Friedman, Olshen,
& Stone, 1984) methodology. The tree size selection problem and many other practical
issues in tree applications are addressed successfully with CART. The CART paradigm
remains the current standard of tree modeling. Other noteworthy tree implementations
include CHi-squared Automatic Interaction Detector (CHAID) by Kass (1980) and C4.5 by
Quinlan (1993). There are typically two types of trees: regression trees when the outcome or
response variable is continuous and classification trees (also known as decision trees) when
the outcome is binary or categorical. From a statistical perspective, regression itself is a
broader concept that includes the classification problem as a special case. In fact, regression
trees have been extended to handle many other types of responses, such as count data (Choi,
Ahn, & Chen, 2005; Lee & Jin, 2006), censored survival times (LeBlanc & Crowley, 1993),
longitudinal data (Lee, 2005; Segal, 1992), and times series (Adak, 1998). The focus of this
paper is on regression trees where the outcome is the continuous variable and the CART
methodology.
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A Simple Tree Example
Tree models approximate an underlying regression function between the response and its
associated predictors by splitting the predictor space recursively into disjoint regions and
then fitting constants to each region. Consider a simple example with artificial data where
the objective is to predict a continuous outcome y with two continuous predictors x1 and x2.
A binary tree model built for this purpose is shown in Figure 1. It can be seen that a tree
graph comprises a number of hierarchically connected nodes. The whole data set (called the
root node) is first split into two child nodes by the splitting rule of whether the x1 value is
greater than or equal to 0.755. Those observations satisfying the rule go to the right child
node while those not satisfying the rule go to the right child node. Subsequently, the left
child node, observations with x1 ≥ .755, is further bisected according to the rule of whether
x1 ≥ .505 and so on.

In general tree terminology, a node that has child nodes is called an internal node, as
symbolized by ellipsoids in Figure 1. A node t is the descendant of another node t′ on a
higher level, if there is a path down the tree connecting t and t′. In this case, the node t′ is
said to be an ancestor of t The splitting continues till a terminal node is claimed. A terminal
node, symbolized by rectangles in Figure 1, is a node that has no further split. The size of a
tree is the number of terminal nodes that it has. In this sense, the tree model in Figure 1 has a
size of 4.

The fitting equation can be expressed as

where I {·} is the indicator function equaling 1 if the condition inside the parenthesis is
satisfied and 0 otherwise and the symbol ∩ reads as and denoting the intersection of two
conditions. This fitting function can be drawn as a three-dimensional plot as in Figure 2. It
can be seen that the tree model separates data into disjoint regions and fits a constant model
within each region, facilitating a piecewise constant approximation to the underlying
regression function for the outcome.

The CART Methodology
In earlier tree research, different stopping rules were proposed to determine the final tree.
However, these stopping rules often result in either underfitted or overfitted tree models.
The pruning idea proposed in CART, in combination with the use of cross-validation, seems
to provide more satisfactory results. The CART paradigm consists of three major steps: first,
grow a large initial tree, from which a subtree will be selected as the final tree model;
second, prune the large tree to obtain a nested sequence of subtrees; third, select a subtree of
optimal size from the sequence via cross-validation. The CART method starts with growing
a large initial tree that overfits the data, to avoid missing important structures. In this large
initial tree, the true patterns are mixed with numerous spurious splits that are then removed
via validation in sequent steps.

Growing a Large Initial Tree
A single split of the data can be either binary or multiway. In general, multiway splitting is
not as good a strategy as bisecting, because a multiway split can be attained by applying
several binary splits; permissible multiway splits dramatically outnumber the binary splits;
besides, it is challenging to compare and optimize across multiway splits for which only ad
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hoc approaches are available. For these reasons, the following discussion is limited to binary
splits.

A binary split s is induced by a question of the form “Is X ≤ c ?” for a continuous or ordinal
predictor X, where c is a cutoff point. For a nominal predictor, the question “Is X contained
in C?” is used, where C is a subset of all levels that X has. Partitioning a node involves
finding the split that leads to two purer child nodes. More formally, the best split is selected
by minimizing within-node impurities. The node impurity, denoted as i(t), is a function that
measures how pure or how close to each other the response values in a node t are.
Essentially i(t) is a measure of variation. For regression trees, the sum of squared deviations

from the node average  is a natural choice, where ȳ(t) is the sample
average of node t Suppose that a candidate split s bisects node t into child nodes tL and tR
Define the resultant reduction in node impurity as Δi(s,t) = i(t) − {i(tL) + i(tR)} as a
performance measure for split. Alternatively, a weighted version Δi(s,t) = i(t)−{PLi(tL) +
PRi(tR)}can be used, where PL and PR denote the proportions of observations falling into tL
and tR, respectively. A preferable split achieves greater reduction Δi(s,t) in node impurity.
The algorithm searches over all permissible splits for node t, a procedure termed as greedy
search in the optimization literature. The best split s* yields the maximum reduction in
impurity.

Based on the identified best split s*, node t is split into two child nodes, tL and tR
accordingly. The same greedy search procedure for the best split is repeated on tL and tR
separately and partitioning continues. A terminal node is claimed when further splitting no
longer decreases the impurity to the extent specified by some relaxed stopping rules. This
would result in a large initial tree, denoted as T0.

Pruning and Determining Optimal Tree Size
To understand the pruning step, the concepts of branches and subtrees are important (Figure
3). A branch of a tree T has a node t in T as root and includes all the descendants of t .
Pruning a branch that has root node t from a tree T means cutting off all the descendants of
t . What results from pruning is a pruned subtree of T. A subtree t′ of T has the same root
node as T does and every node of t′ is also contained in T.

A subtree of the initial large tree T0 will be selected as the final tree model. Nevertheless, the
number of subtrees that a tree has increases very fast as the size of the tree or the number of
terminal nodes grows. For example, a full tree of five depths, in which every terminal node
has four ancestors, has 458,330 subtrees available. Thus, it is not computationally feasible to
examine every possible subtree. The purpose of pruning is to narrow down the number of
subtree choices by iteratively truncating the weakest link. In some ways, the pruning
procedure resembles backward elimination in stepwise variable selection. The initial large
tree plays the same role as the whole model that contains all structures and truncating an
internal node amounts to removing one or more terms from the model. However, unlike
backward elimination, there are no appropriate significance tests to determine when to stop
the pruning process. Instead, pruning proceeds step-by-step to a natural end – the null tree
model that contains the root node only. Specifics of the pruning algorithm are rather
technical and beyond the scope of this introductory review. The result of pruning is a
sequence of nested subtrees, TM≺TM−1≺···≺T1≺T0, where the symbol ≺ means is a subtree
of and TM is the null tree containing the root node only. Each subtree in the sequence enjoys
certain optimality in terms of some tree performance criterion employed.
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Finally, the best subtree is selected from this sequence via a separate cross-validation
process. Two methods are available for this purpose, depending on the sample size. For
large sample sizes, a section of the data set, called the validation sample, can be reserved for
validating or reassessing the performance of TM in the subtree sequence obtained from the
pruning procedure. The subtree that performs best is then selected as the final tree, where the
tree model performance can be measured by commonly used model selection criteria (Su,
Wang, & Fan, 2004) such as Akaike (1974) Information Criterion (AIC) or Bayesian
information criterion (BIC; Schwarz, 1978). If the sample available is moderately sized,
resampling techniques such as v-fold cross validation or bootstrapping are used (see
Breiman et al. (1984) and LeBlanc and Crowley (1993) for more in-depth discussions).

Merits of Trees
Major advantages of tree-based methods include the following. First, tree methods are
nonparametric in nature and more robust to statistical assumptions. The tree
implementations are made available in an automated manner and require less fitting efforts
from the users. Tree methods are data-driven in the sense that the algorithm offers more
freedom for the data to choose suitable basis functions (i.e., sets of indicator functions) that
best approximate the true regression function. Second, easy and meaningful interpretations
can be extracted by tracing the splitting rules down the path to each terminal node. These
combined rules enable detection of what reason accounts for a low or high average outcome
value. Third, categorical predictors are handled by defining dummy variables in linear
models. The inclusion of many categorical predictors or categorical predictors with many
levels may result in a massive model even before considering interactions among predictors.
The tree method provides an efficient way to optimize the usage of categorical predictors in
modeling by merging redundant levels. This feature is particularly attractive in nursing
research studies where categorical variables commonly are collected. Fourth, trees are
invariant to monotone transformations of predictors. For example, the binary question “ x ≤
c? “ for c > 0 induces exactly the same split on the data as “Is log(x) ≤ log(c)?” This
property saves considerable fitting efforts in tree modeling. Fifth, the tree structure provides
a natural and optimal way of grouping data, which renders tree methods attractive to many
applications such as patient segmentation, subgroup analysis, disease prognosis or diagnosis,
and risk scoring. Finally, trees excel in dealing with interactions of high order and
substantial complexity. In linear regression, interaction terms are formulated commonly
using cross-products. In practice, only first-order interactions are considered. Nevertheless,
interactions may occur both in complex nonlinear forms and of higher orders. With the
hierarchical tree architecture, complex interactions are handled implicitly yet thoroughly via
tree analysis. In fact, the initial proposal of trees, Automatic Interaction Detection (AID) by
Morgan and Sonquist (1963), was motivated by the problem of dealing with complex
interactions among categorical variables in social surveys.

Limitations of Trees
Some limitations and remedial measures are noted for tree-structured methods. First, the tree
method is unstable as an adaptive data-driven modeling tool in the sense that small
perturbation in the data could lead to substantial changes in the final tree structure. Second,
the piecewise-constant prediction function supplied by a tree model lacks continuity and
smoothness and may not attain satisfactory accuracy in a predictive task. In particular, trees
perform quite well in handling nonlinearity but they are less efficient in modeling linearity.
It takes a relatively large tree structure to account for a linear pattern. There are additional
limitations that are more inherent with tree methods. The greedy search scheme for best split
achieves only local optimality for each node, but the resultant tree models are not
necessarily globally optimal. In terms of variable selection, trees give preference to
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predictors that have more levels or values. Tree modeling is not recommended for samples
that are of small sizes relative to the number of variables and the signal strength in the data.

A variety of tree extensions have been proposed in the literature to address or circumvent
these above-mentioned limitations. Hastie, Tibshirani, and Friedman (2008) have described
these extended tree methods that are among topics currently under intensive research in
statistical science. In summary, as is the case with other research tools, nursing researchers
should be aware of the advantages and disadvantages to apply tree methods appropriately.

Illustration of Tree-Structured Analysis Using Quality of Life Data
To illustrate the application of tree modeling, the Breast Cancer Education Intervention
study (BCEI), a randomized quality of life (QOL) intervention trial with psychoeducational
support for breast cancer survivors (BCSs) in their first year of posttreatment survivorship,
was used. A detailed description of the BCEI and its efficacy assessment is described
elsewhere (Meneses et al., 2007) and will be outlined briefly here.

The BCEI study was approved by the Institutional Review Boards of the university and
participating cancer centers. Participants were recruited from a regional cancer center and
private oncology offices in the southeastern United States. Inclusion criteria were: women at
least 21 years of age with histologically confirmed Stage 0-II breast cancer, within 1 year of
diagnosis, having at least 1 month time period since completion of surgery, having radiation
therapy or chemotherapy to recover from acute treatment side effects, and willing and able
to communicate in English. Exclusion criteria were advanced or metastatic disease at
diagnosis. Women having hormonal therapy (aromatase inhibitor or tamoxifen) at study
entry were not excluded. Two hundred and sixty-one (261) BCSs gave in-person written
informed consent, and were assigned randomly to the experimental or wait control arm. The
primary endpoint of the BCEI was overall QOL. Besides other measures, the following two
sets of variables were collected in the study: (a) Breast Cancer Treatment and Socio-
demographic Data Tool at baseline; and (b) the self-perceived QOL, measured at baseline, 3
months, and 6 months after study entry.

Breast Cancer Treatment and Sociodemographic Data Tool
This tool consists of 21 baseline variables used to document breast cancer treatment (i.e.,
surgery, radiation therapy, chemotherapy, hormonal, and anti-HER2 therapy) and
sociodemographic characteristics (e.g., age, race, ethnicity, education, marital status,
employment status, telephone and communication patterns, family income; Table 1).

Quality of Life–Breast Cancer Survivors
The Quality of Life–Breast Cancer Survivors Scale (QOL-BC) is a 50-item scale measuring
QOL in women with breast cancer (Ferrell, Dow, Leigh, Ly, & Gulasekaram, 1995) and was
adapted from the QOL-Cancer Survivors Scale (Ferrell, Dow, & Grant, 1995). The QOL-BC
uses a 10-point rating asking participants to describe overall QOL problems or concerns, and
QOL concerns within four identified domains (physical, psychological, social, and spiritual
well-being). A higher scale reflects more problems in QOL; a lower score indicates better
QOL. The grand average of these 50 items is used as an overall measure of QOL. Test-retest
reliability was 0.89 and Cronbach’s alpha for internal consistency was 0.93, reported in the
original proposal of QOL-BC. In the present study, Cronbach’s alpha coefficient is 0.91 for
overall QOL.

Of specific interest in this illustration is the relationship between baseline QOL and the
predictor variables. For this purpose, linear regression is the conventional approach. The
fitting results of the best linear model via stepwise selection are presented in Table 2. Three
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variables, age, chemotherapy, and number of months since diagnosis are retained in the final
model, which yields a R2 of 0.194. The estimated slope parameters can be interpreted in the
following ways – either at the individual level or at the population level. Given two BCSs
(e.g., A and B) who have the same chemotherapy status and same number of months since
diagnosis, the QOL score reported by participant A is expected to be 0.3 (± 0.07) less
(reflecting better QOL) than participant B if participant A is 10 years older. With same age
and number of months since diagnosis, BCSs who received chemotherapy have a 0.449 (±
0.184) higher QOL score compared with those who have not received chemotherapy.

Next, a tree analysis was performed using R software. A large initial tree with 19 terminal
nodes was first constructed with relaxed stopping rules. It represents a highly complex
model with many terms. The pruning algorithm yielded a sequence of 18 nested subtrees.
Due to the moderate sample size, 10-fold cross-validation was used to aid in the tree size
determination. The cross-validated deviance versus tree size is plotted in Figure 4. The AIC
and BIC were computed accordingly and added to the plot. The best tree sizes were 3, 3, and
2, supplied by the minimum values of cross-validated deviance, AIC, and BIC, respectively;
the one with three terminal nodes is further explored as the final tree structure.

The tree diagram is plotted in Figure 5. The data set was first split into younger and older
BCSs with the cutoff age of 60 years. The older group (Node III) contained 68 BCSs with an
average QOL score of 2.472. The younger group (< 60 years of age) consisted of 188 BCSs
and were further split according to whether they had completed chemotherapy treatment.
The 126 younger BCSs who had received chemotherapy (Node I) were associated with the
worst QOL, reporting the highest average QOL score of 3.743. The other 62 younger BCS
(Node II) who had not received chemotherapy had an average QOL score of 3.099.

Additional graphical exploration of these three groups identified by the tree model is
provided in Figure 6. Specifically, Figure 6(a) plots the original QOL scores versus age,
which shows a threshold effect at age 60 years. The chemotherapy status is indicated among
younger BCSs in the plot. Figure 6(b) provides the parallel boxplots (also called five-
number summary plots) for comparison. The QOL scores in three terminal nodes all are
distributed roughly normally with similar variations. The tree model can be rewritten in a
linear model form with dummy variables. The resultant model fit is presented in Table 2(b).
With a simple structure, the tree model provides a rather comparable fitting performance to
the best linear model. Furthermore, the grouping rules identified in the tree structure could
be applied to future strategic research on planning interventions. The tree structure suggests
that future interventions may be particularly beneficial to subjects in Node I; that is, younger
BCSs who received chemotherapy. These BCSs are associated with the highest average
QOL or the worst QOL score and hence have more room for improvement with tailored
interventions.

Two variables are involved in the tree splitting, age and chemo. Variables present in the
final tree structure can be deemed as important. On the other hand, variables not showing up
in tree splitting are not necessarily unimportant ones since their effects might have been
masked by other correlated ones (Breiman et al., 1984). This masking effect is analagous to
the confounding effect in linear regression. The goal is to identify which varaibles are
important for predicting QOL. This question can be better answered using the variable
importance ranking feature supplied in random forests (RF; Breiman, 2001), one of the tree
extentions. In this approach, a forest is formed by constructing a large numer of tree models
with bootstrap resampling. For each tree, the predictive power of every variable is assessed
via permutation. The information is then integrated across the forest of trees to provide an
overall evaluation of importance of each predictor in predicting the response. The resultant
variable importance measures for BCEI data are plotted in Figure 7. Age is identified as the
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most important varaible in determining QOL, followed by number of months since
diagnosis, chemotherapy status, number of family members, and employment status.

Discussion
In the example, the tree analysis was contrasted with linear regression to better illustrate
their advantages and limitations. Tree methods take a very different approach than
traditional linear regression, offering new insights to statistical modeling. It is important to
note the different ways of making interpretations between the two methods. Interpretation of
linear regression is made via conventional statistical inference (i.e., confidence intervals or
significance testing). Often, only the predictors included in the final linear model are
deemed as important and further discussed. Comparatively, tree models are built on cross-
validation and interpretation is extracted from the decision rules. Although similar t-test
results are presented in Table 2(b) for the tree model, their associated p-values are
overoptimistic because of the adaptive nature of recursive partitioning and therefore should
not be cited. The variable importance ranking feature in RF offers excellent complementary
information to the single tree analysis. It faciliates a comprehensive assessment of the
importance of each predictor under the joint influence of other predictors.

Often obtaining a best linear model takes tremendous fitting efforts, calling for techniques
ranging from level collapsing and dummy variables for categorical predictors, variable
selection, and interaction detection, to residual analysis, variable transformation, and other
model diagnostics, requiring considerable time and effort from a sophisticated analyst. On
the other hand, despite the complexity and intensity of computation, tree modeling is data-
driven and automated by computer algorithms, requiring little interactive input during its
fitting process.

Looking at the final tree structure in Figure 5, it is not clear whether or not getting
chemotherapy made a difference in QOL in the older age group (Node III). This question
also has to do with whether an interaction exists between age and chemotherapy in terms of
their effects on QOL. The results show that older BCSs were less likely to receive
chemotherapy compared with younger BCSs. Out of 194 younger BCSs, 132 received
chemotherapy, while out of 70 older BCSs, only 12 received chemotherapy. Perhaps
because of the small sample size in Node III, no further split on chemotherapy shows up in
the final tree structure. For this reason, it is difficult to fully address the issue with the BCEI
data set. In general, the structure found with Node I and Node II should not be interpreted
necessarily as interaction between age and chemotherapy. Interactions are handled implicitly
by tree modeling and it takes further research efforts to understand which variables interact
with which for a given tree structure. See Su, Tsai, Wang, Nickerson, and Li (2009) for a
discussion on how to explicitly extract treatment-by-covariate interactions with tree
methods.

Implications for Nursing Research
As technological capacity increases, there is a concomitant exponential increase in activity
and data to fill the expanded capacity. This adage seems true when considering nursing
research. Data encountered by nurse researchers and interdisciplinary teams have been
growing both in size and in complexity. It is critical to be aware of the methodological
obstacles and issues in dealing with huge complex datasets. For example, a common
predicament with statistical testing is that nearly every variable, even those with practically
negligible effects, become statistically significant merely because of a large sample size.
The challenges posed by huge data sets have led to a new emerging field, data mining.
Using internally built-in cross validation rather than statistical testing, tree-based methods,

Su et al. Page 8

Nurs Res. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



together with the various extensions, constitute a fundamental family of analytic tools in
data mining. Tree methods offer an attractive alternative for analyzing complex data and
generate new findings that may not be uncovered using traditional modeling approaches.

Tree models also can play a critical role in nursing informatics, which is aimed at facilitating
the integration of data, information, and knowledge to support patients, nurses, and other
care providers in their decision-making in all roles and settings. Unlike other modeling tools,
the collection of meaningful splitting rules produced by trees can be useful in developing
model-based decision support systems for intervention and care planning.
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Figure 1.
Binary tree diagram with tree terminology
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Figure 2.
A 3-dimensional illustration of regression trees
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Figure 3.
Illustration of pruning, branch, and subtree. The subtree is obtained by pruning the branch
that roots from node t.
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Figure 4.
Tree size determination for baseline QOL data via 10-fold cross-validation. A tree model
with a smaller AIC or BIC is preferred.
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Figure 5.
The final decision tree structure for baseline QOL. Given in each terminal node are the node
size (i.e., number of BCSs) and the average QOL score.
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Figure 6.
Two plots for exploring the three terminal nodes (I, II, and III) in the final tree: (a) plot of
QOL versus Age with threshold at 60, the status of whether the patient took drug for cancer
treatment also symbolized among younger patients; and (b) parallel box-plots. Node I
contains younger BCSs who were no older than 60 years and had received chemotherapy;
Node II contains younger BCSs who were no older than 60 years and did not have
chemotherapy; and Node III contains older individuals of age above 60 years.
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Figure 7.
Variable importance ranking for baseline QOL computed from random forests (RF). The RF
options include 5,000 trees constructed with bootstrap samples and six predictors randomly
selected at each node. The horizontal axis stands for the increased node purity.

Su et al. Page 17

Nurs Res. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Su et al. Page 18

Table 1

Variable Description for the BCEI Data

Variable
Name

Type Number of
Levels or Values

Description

1 age continuous 51 age at enrollment

2 race binary 7 1 - Black/African American; 2 - Asian;

3 - Caucasian; 4 - Hispanic/Latin; etc.

3 language nominal 5 1 - English; 2 - Spanish; etc.

4 education ordinal 5 education level: 1 - Grade school;

2 - High school; etc.

5 religion nominal 22 1 - Atheist; 2 - Buddhist; 3 - Catholic;

4 - Christian; 5 - Jehovah Witness; etc.

6 marital nominal 6 marital status: 1 - Never Married;

2 - Married; 3 - Living with partner; etc.

7 family nominal 14 family type: 1 - spouse; 2 - parents;

3 - children; etc.

8 numfamily count 7 number of family members

9 employment nominal 4 1 - full time; 2 - part time;

3 - retired; 0 - others.

10 income ordinal 7 annual family income level: 1 - $10,000 or less;

2 - $10,000-$20,000; 3 - $20,000-$30,000; etc.

11 other.cancer binary 2 0 - none; 1 - yes

12 surgery nominal 3 surgery type: 1 - lumpectomy;

2 - mastectomy; 0 - others

13 chemotherapy binary 2 0 - no; 1 - yes

14 radiotherapy binary 2 0 - no; 1 - yes

15 rad.type nominal 3 radiation type: 0 - none; 1 - primary;

2 - postoperative.

16 hormonal binary 2 0 - no; 1 - yes

17 type.horm nominal 3 hormonal type: 0 - none; 1 - Tamoxifen; 2 - others

18 fatigue binary 2 0 - no; 1 - yes

19 medfat binary 2 any medicine for fatigue? 0 - no; 1 - yes

20 support binary 2 currently with a breast cancer support group?

0 - no; 1 - yes

21 nmth.diag continuous 20 months since diagnosis
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