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Impaired immune functions leading to primary immunodeficien-
cies often correlate with paradoxical autoimmune complications;
patients with hyper-IgM syndromes who are deficient in activation-
induced cytidine deaminase (AID), which is required for class-
switch recombination and somatic hypermutation, are prone to
develop autoimmune diseases. To investigate the impact of AID-
deficiency on early B-cell tolerance checkpoints in humans, we
tested by ELISA the reactivity of recombinant antibodies isolated
from single B cells from AID-deficient patients. New emigrant/
transitional and mature naive B cells from AID-deficient patients
express an abnormal Ig repertoire and high frequencies of
autoreactive antibodies, demonstrating that AID is required for
the establishment of both central and peripheral B-cell tolerance.
In addition, B-cell tolerance was further breached in AID-deficient
patients as illustrated by the detection of anti-nuclear IgM anti-
bodies in the serum of all patients. Thus, we identified a major and
previously unsuspected role for AID in the removal of developing
autoreactive B cells in humans.

Hyper IgM (HIGM) syndromes are primary immunodefi-
ciencies characterized by defects in class switch recom-

bination (CSR), resulting in severely decreased numbers of cir-
culating isotype-switched memory B cells (1). The genetic basis
of HIGM is diverse and is caused by defects in (i) the CD40L/
CD40 pathway essential for B-cell activation, germinal center
(GC) formation, and CSR induction, or (ii) enzymes such as
activation-induced cytidine deaminase (AID) and uracil DNA
glycosylase mediating CSR and somatic hypermutation (2–5).
Aside from the susceptibility to bacterial infections, patients with
HIGM syndromes are prone to develop autoimmune conditions,
suggesting that B-cell tolerance is not properly established or
maintained in the absence of functional CD40L or AID (6, 7).
Although developing autoreactive B cells are properly counter-
selected in the bone marrow of CD40L-deficient patients, their
mature naive B cells express a high proportion of autoreactive
antibodies, including antinuclear antibodies (ANAs), suggesting
that CD40/CD40L interactions are essential for peripheral but
not central B-cell tolerance in humans (8). The defective pe-
ripheral B-cell tolerance checkpoint in CD40L-deficient patients
correlated with decreased regulatory T cell (Treg) numbers and
elevated serum B-cell activating factor (BAFF) concentration,
corroborating data from transgenic mouse models (8–11). The
importance of Treg cells in the establishment or the maintenance
of peripheral tolerance is demonstrated in foxp3-deficient mice
and humans, who experience a severe autoimmune syndrome
associated with the secretion of autoreactive antibodies (12–14).
In addition, increased BAFF concentration inhibits the coun-
terselection of autoreactive new emigrant/transitional B cells
that failed to be removed from the B-cell population (15, 16).
Hence, the elevated serum BAFF concentration and decreased

Treg cell numbers in CD40L-deficient patients are likely to
contribute to the accumulation of autoreactive mature naive B
cells in the blood of these patients (8).
In contrast to CD40L-deficient patients, it is not known why

AID-deficient subjects as well as AID-KO mice often suffer from
autoimmune conditions (6, 17, 18). We report herein that AID
deficiency affects both central and peripheral B-cell tolerance
checkpoints, resulting in the accumulation of large numbers of
autoreactive B cells that secrete autoreactive IgM antibodies
detected in the serum of all AID-deficient patients.

Results
Defective Central B-Cell Tolerance in AID-Deficient Patients. Central
B-cell tolerance is achieved by the removal of most developing
B cells that express highly polyreactive and ANAs in the bone
marrow (19). To assess if this checkpoint is affected by AID
deficiency, we cloned antibodies expressed by single CD10++

CD21loIgMhiCD27− new emigrant/transitional B cells from AID-
deficient patients (SI Appendix, Table S1) and tested their reactivity
by ELISA (20). Patients were either homozygote or compound
heterozygote for autosomal recessive AID mutations, preventing
AIDexpression inmost cases (21).Thefirst evidence suggesting that
central B-cell tolerance was not established properly in the absence
ofAIDexpressioncame from theanalysis of the Ig repertoire of new
emigrant/transitional B cells from seven AID-deficient patients
(SI Appendix, Table S1). Pooled heavy-chain gene sequences from
AID-deficient new emigrant/transitional B cells revealed a VH
repertoire strongly enriched in the VH4-34 gene segment com-
paredwith that of healthy donors (Fig. 1A). The frequency ofVH4-
34, which is known to encode intrinsically self-reactive cold ag-
glutinin antibodies that recognize carbohydrate antigens on
erythrocytes (22, 23), exceeded 20% in some AID-deficient
patients, but averaged only 4.2% in transitional B cells from
healthy donors (P = 0.0093; Fig. 1B), suggesting an abnormal se-
lection of developingB-cell precursors in the absence ofAID.New
emigrant/transitional B cells from AID-deficient patients also
displayed a significantly higher frequency of long IgH complemen-
tarity determining regions 3 (CDR3s), a feature that favors antibody
self-reactivity (Fig. 1C) (20, 24). However, the frequency of strongly
positively charged IgH CDR3s, a feature also associated with
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autoreactive antibodies, was not significantly different between
healthy donor and AID-deficient new emigrant/transitional B cells
(Fig. 1D). Moreover, despite a similar D and JH gene segment
repertoire in control and AID-deficient new emigrant/transitional
B cells (SI Appendix, Fig. S1 and Tables S2–S25), we found that
some commonly used D gene family members were used in a dif-
ferent reading frame in AID-deficient patients, which encoded
hydrophobic residues known to favor self-reactivity (SI Appendix,
Fig. S2) (25–27).
The reactivities of antibodies expressed by new emigrant/

transitional B cells from four AID-deficient patients were then
compared with their counterparts in healthy donor controls and
CD40L-deficient patients with HIGM syndrome (Fig. 2 A–C) (8,
20, 27, 28). We found that polyreactive new emigrant/transitional
B cells were significantly increased in AID-deficient patients
(25.0–42.1% of the clones) compared with healthy controls (5.0–
11.1%) or CD40L-deficient patients (4.3–9.5%; Fig. 2 A and B)
(8, 20, 27, 28). Antibodies from AID-deficient new emigrant/
transitional B cells predominantly recognized cytoplasmic struc-
tures, and only two of 70 clones, neAID-def.4 λ41 and neAID-
def.5 κ03, bound nuclear antigens (Fig. 2 C and D), suggesting
that the early counterselection of antinuclear expressing B cells,
which requires IRAK-4 and MyD88 (29) may not be AID-
dependent. Thus, the abnormal Ig repertoires and the increased
frequency of polyreactive clones in new emigrant B cells from
AID-deficient patients demonstrate that central B-cell tolerance
is dependent on functional AID.

AID Gene Transcription in Human Immature B Cells. The analysis of
patients with diverse primary immunodeficiencies revealed that
central tolerance seems to be mostly controlled by B-cell–
intrinsic factors regulating B-cell receptor or Toll-like receptor
(TLR) signaling (27, 29). Although AID expression was pre-
viously believed to be restricted to activated B cells and GCs, it
has now been observed in immature B cells from mice and
humans, pointing to an earlier role for AID during bone marrow
B-cell development (30–33). In agreement with these reports, we
detected AID transcripts by quantitative PCR in CD19+CD10++

IgM+ immature B cells from fetal liver and bone marrow (Fig.
3A) (30–33). The AID gene was three to five times more tran-

scribed in immature B cells than CD19+CD10++IgM− early
B-cell precursors, whereas AID transcripts were not amplified in
more mature B-cell fractions isolated from fetal spleen or tonsils
(Fig. 3 A and B). However, CD19+CD10++IgM+ immature B
cells expressed approximately 20 to 25 times fewer AID transcripts
than freshly isolated tonsillar GC B cells, bringing into question
whether such low levels of AID transcription might be relevant to
central tolerance (Fig. 3). Nonetheless, fetal bone marrow im-
mature B cells were able to up-regulate in vitro AID transcription
after TLR9 triggering by CpG for 2 d, similarly to mature naive B
cells (Fig. 3B) (31). Hence, human developing immature B cells
might up-regulate AID transcription after TLR9 triggering, po-
tentially after binding DNA-containing self-antigens.

Defective Peripheral B-Cell Tolerance in AID-Deficient Patients. A
secondB-cell tolerance checkpoint eliminates autoreactive B cells
in the periphery before they enter the CD19+CD10−CD21+

IgM+CD27− mature naive B-cell compartment (20). As a conse-
quence, the frequency of B cells expressing IgH CDR3s with two
or more positively charged residues (a characteristic feature of
autoreactive clones) decreases in healthy donors between the
transitional (21.7% average) and mature naive (15.8% average)
B-cell stages (Figs. 1D and 4A). In contrast, we found that the
proportion of B cells expressing highly positively charged CDR3s
failed to significantly decrease between new emigrant/transitional
and mature naive B-cell compartment of all AID-deficient
patients (25.3% vs. 22.2%, respectively), suggesting B-cell selec-
tion defects (Figs. 1D and 4A). In addition, VH4-34 gene segment
usage continued to be significantly higher in mature naive B cells
from AID-deficient patients than in their healthy donor coun-
terparts (Fig. 4B and SI Appendix, Fig. S3). Additional changes in
the VH segment and D reading frame use of mature naive B cells
from AID-deficient patients further suggest an alteration of the
peripheral B-cell tolerance checkpoint in the absence of func-
tional AID (SI Appendix, Figs. S3 and S4 and Tables S2–S25) (25–
27). The full impact of AID-deficiency on the peripheral B-cell
tolerance checkpointwas assessed by characterizing the reactivity of
antibodies expressed by mature naive B cells from AID-deficient
patients by using an ELISA to screen for binding to antigens
expressed by the HEp-2 cell line (20). The frequency of HEp-2 re-
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Fig. 1. AID-deficient new emi-
grant/transitional B cells display
an unusual IgH repertoire. (A) VH
gene-usage frequencies in new
emigrant/transitional B cells are
represented for 11 healthy control
subjects and seven AID-deficient
patients. Sequences from 353
healthy control and 189 AID-
deficient single transitional B cells
werepooled. (B) The increasedVH4-
34 gene usage in AID-deficient new
emigrant/transitional B cells is fur-
ther analyzed. The frequencies of
long IgH CDR3s (>14 aa) and IgH
CDR3s containing two or more
positively charged aa are repre-
sented inC andD, respectively. Each
diamond represents an individual;
the average is shown with a bar.
Statistically significant differences
are indicated.
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active mature naive B cells was significantly increased (44.4–57.1%)
in AID-deficient patients compared with healthy donors (16.7–
23.3%) and was similar to that previously reported for CD40L-de-
ficient patients (Fig. 4C) (8). AID-deficient mature naive B cells
were also enriched in polyreactive clones compared with healthy
controls (Fig. 4D). In agreement with the enrichment of clones
expressing highly positively charged IgH CDR3s, we found an in-
creased proportion of mature naive B cells expressing ANAs in all
AID-deficient patients, further suggesting the existence of selection
defects between transitional and mature naive B cells (Fig. 4 E and
F). Indeed, whereas ANA-expressing B cells were almost absent in
AID-deficient new emigrant B cells, their frequency significantly
increased to 7.1–14.3% (total of eight of 73 clones) in the mature
naive B-cell compartment (Fig. 4F). ANAs expressed by AID-de-
ficient mature naive B cells displayed diverse nuclear staining pat-
terns and the presence of chromatin-reactive antibodies was
confirmed by the identification of clones recognizing the kinetoplast
ofCrithidia luciliae (Fig. 4E andG).We conclude that the absence of
functional AID alters the peripheral B-cell tolerance checkpoint and
results in the accumulation in the mature naive B-cell compartment
of large numbers of B cells expressing autoreactive antibodies in-
cluding ANAs in AID-deficient patients.

Decreased Treg Cell Frequencies and Increased Serum BAFF Con-
centrations in AID-Deficient Patients. The emergence of ANA-
expressing B cells was previously observed in CD40L-deficient
patients and correlated with decreased Treg frequencies and
increased concentrations of serum BAFF (8). We found that
CD4+CD25hiFoxp3+ Treg cell frequency was significantly de-
creased in AID-deficient patients, who displayed, on average,
approximately half the Treg cells as healthy controls (Fig. 5 A–C).
The phenotype of the AID-deficient and control Treg cells was
further confirmed by low levels of IL-7 receptor/CD127 expres-
sion on CD4+CD25hiFoxp3+ cells (Fig. 5B) (34, 35). This de-
creased Treg cell frequency in CD40L- and AID-deficient
patients might reveal an involvement of isotype switched memory

B cells missing in both types of HIGM patients in the generation
or maintenance of some Treg cells in humans. The impact of B
cells on Treg cells is further suggested in patients with X-linked
agammaglobulinemia (XLA), who virtually lack B cells (36) and
display decreased frequencies of Treg cells (Fig. 5C and SI Ap-
pendix, Fig. S5). Serum BAFF concentrations were significantly
(twofold) increased in AID-deficient patients, averaging 2,272 pg/
mL compared with 1,226 pg/mL in healthy donors (P < 0.0001)
and 4,009 pg/mL and 11,739 pg/mL in CD40L-deficient patients
and those with XLA, respectively (Fig. 5D). The increased con-
centrations of BAFF in patients with XLA likely result from the
virtual absence of B cells in these patients. However, it is unclear
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Fig. 2. Defective central B-cell tolerance check-
point in AID-deficient patients. (A) Antibodies
from new emigrant/transitional B cells from a
healthy donor and AID-deficient patients were
tested by ELISA for reactivity against dsDNA, in-
sulin, and lipopolysaccharide (LPS). Dotted lines
show ED38-positive control and solid lines show
binding for each cloned recombinant antibody
(20, 26). Horizontal lines define cutoff OD405 for
positive reactivity. The frequencies of polyreactive
(B) and antinuclear (C) new emigrant/transitional
B cells are compared between controls and CD40L-
and AID-deficient patients, and statistically signif-
icant differences are indicated. (D) Autoreactive
antibodies from AID-deficient new emigrant B
cells show various patterns of HEp-2 staining.
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how AID and CD40L deficiencies impact serum BAFF concen-
trations because AID- and CD40L-deficient patients display
normal numbers of B cells in their blood. Nevertheless, increased
BAFF concentrations in AID-deficient patients are likely to in-
terfere with the counterselection of autoreactive transitional B
cells, as evidenced in mouse models (15, 16). Hence, decreased
Treg cell frequencies and increased serum BAFF concentrations
correlate with an altered peripheral B-cell tolerance checkpoint in
both AID- and CD40L-deficient patients.

AID-Deficient Patients Display Serum IgM ANAs. We assessed
whether tolerance was further breached in the periphery of AID-
deficient patients by analyzing their sera for autoreactive anti-
bodies. We found that eight of eight AID-deficient patients
displayed autoreactive antibodies in their serum. These anti-
bodies recognized many HEp-2 cell structures and the kineto-
plast of C. luciliae, indicating the presence of anti-dsDNA
autoantibodies in AID-deficient patients (Fig. 5E). Staining
specificity was restricted to IgM antibodies and no IgG auto-
reactive antibodies were identified as expected for AID-deficient
patients (Fig. 5E). A similar HEp-2 staining pattern was ob-
served for IgM autoantibodies in the serum of a patient with
systemic lupus erythematosus, whereas the IgG staining pattern
was clearly nuclear. In contrast, none of five CD40L-deficient
patients and six healthy donors we tested displayed any anti-

bodies that recognized HEp-2 cells or C. luciliae in their serum
(Fig. 5E). We conclude that B-cell tolerance is further breached
in AID-deficient patients compared with CD40L-deficient
patients, leading to the secretion of autoreactive antibodies in-
cluding anti-dsDNA in the serum of all AID-deficient patients.

Discussion
The identification of defective central and peripheral B-cell
tolerance checkpoints in AID-deficient patients demonstrates an
important role for AID expression in the removal of developing
autoreactive B cells. The mechanisms by which AID affects
central B-cell tolerance are currently unknown, but because the
mechanisms that ensure human central B-cell tolerance seem to
be mostly controlled by intrinsic B-cell factors, AID expression in
immature B cells might be relevant to tolerance induction (19,
37, 38). For instance, AID might induce DNA lesions that
eventually lead to cell death and the elimination of autoreactive
clones; AID-deficient B cells may therefore be less sensitive to
apoptosis, a mechanism involved in central B-cell tolerance, as
recently reported in mice (39). AID deamination of methylated
cytidines might also induce DNA demethylation potentially re-
quired for the epigenetic regulation of gene expression [and
perhaps V(D)J recombination and receptor editing (40)]. AID
expression was previously believed to be restricted to GCs, but it
has now been reported in ES cells (41, 42) as well as in immature B
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cells from mice and humans (30–33), suggesting an earlier role for
AID during bone marrow B-cell development. We also detected
AID transcripts in human immature B cells, but 20 to 25 times
lower than in GC B cells. Although AID transcription may be up-
regulated in immatureB cells after TLR9 triggering, these lowAID
transcript levels may not be relevant to immature B-cell physiology
and the removal of developing autoreactive B cells. Alternatively,
early B-cell tolerance alteration observed in AID-deficient
patients may not result from intrinsic B-cell defects but perhaps
from a failure to control intestinal microflora (43). Indeed, in-
testinal inflammation and microflora changes may result in the
alteration of Treg cell frequencies and serum BAFF concen-
trations in AID-deficient patients, thereby inducing peripheral B-
cell tolerance defects similar to those reported in CD40L-deficient
patients (8, 43, 44). Moreover, the lack of isotype-switched mem-
ory B cells in patients with both types of HIGM and XLA might
also contribute to Treg cell alterations because B cells have been
reported to be involved in T-cell activation and expansion (45–47).
Treg cell frequencies were further decreased in CD40L-deficient
patients compared with AID-deficient patients, probably because
disruption of CD40/CD40L interactions between Treg cells and
APCs such as dendritic cells, which are known to control Treg cell
development (48), contributes to an evenmore pronounced defect
in the induction or maintenance of Treg cells. Although both
CD40L- and AID-deficient patients display high frequencies of
autoreactive mature naive B cells, including ANA-expressing
clones in their blood, an additional breach in B-cell tolerance is
revealed in AID-deficient patients by the detection of ANAs and

autoreactive IgM antibodies in their serum, which may favor the
development of autoimmune disorders in these patients. It also
demonstrates that ANA clone production and secretion can occur
in the absence of somatic hypermutation despite its documented
importance in the production of ANAs (49, 50). Interestingly,
AID-deficient animals display B-cell tolerance defects similar to
those reported herein, further attesting a conserved role for AID
during early B-cell development in mice and humans (51). In
conclusion, AID plays a major and previously unsuspected role in
the establishment of both central and peripheral B-cell tolerance.

Materials and Methods
Patients and Donor Controls. AID-deficient patients’ information is included
in SI Appendix, Table S1. CD40L-deficient and XLA patients, as well as age-
matched healthy donors, were previously reported besides HD12 (29-y-old
white female), HD13 (31-y-old white male), HD14 (59-y-old white male),
HD15 (53-y-old Hispanic female), and CD40L-deficient patients 8 and 9, who
are two Hispanic brothers 11 and 14 y of age, respectively, who have an
entire deletion of their CD40L gene (8, 20, 27–29, 52). Organs from two
fetuses (109 and 120 d old, respectively) were obtained from the tissue
collection and distribution program from the Laboratory of Developmental
Biology at the University of Washington. Tonsil samples were obtained from
the Yale/New Haven Hospital. All samples were collected in accordance with
institutional review board-reviewed protocols.

Cell Staining and Sorting, cDNA, RT-PCR, Antibody Production, ELISAs, and
Indirect Fluorescence Assays. Peripheral B cells were purified from the blood
of patients and control donors by positive selection by using CD20-magnetic
beads (Miltenyi). Single CD21loCD10++IgMhiCD27− new emigrant/transitional
and CD21+CD10−IgM+CD27− peripheral mature naive B cells from patients
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Fig. 5. Low Treg cell frequency and increased
serum BAFF concentrations and autoantibodies
in AID-deficient patients. Treg cell frequencies
among peripheral CD4+ T cells were assessed by
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Dot plots representative of a healthy control, a
CD40L-deficient patient, and two AID-deficient
patients. (B) CD127 expression was further ana-
lyzed by gating as indicated. (C) Treg cell fre-
quencies from all patients were significantly lower
than those in healthy controls (P < 0.0001 for
CD40L-, AID-deficient, and XLA patients). (D) Sig-
nificantly elevated serum BAFF concentrations (in
pg/mL) in CD40L-, AID-deficient, and XLA patients
were measured by ELISA (P < 0.0001 for each group
of patients). (E) AID-deficient patients display se-
creted autoreactive IgM antibodies in their serum.
Sera from six healthy donors, a patient with sys-
temic Lupus erythematosus, four CD40L-deficient
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and control donors were sorted on a FACSVantage device (Becton Dickinson)
into 96-well PCR plates, and antibody reactivities were tested as previously
described (8, 20, 27–29, 52). For Treg cell analyses, peripheral mononuclear
blood cells were stained with FITC anti-CD4, PECy7 anti-CD25, and APC-anti-
CD127 (Biologend), and intracellular Foxp3 stainings were performed
according to the manufacturer’s instructions (eBioscience). Serum BAFF
concentrations were determined by ELISA according to the manufacturer’s
instruction (R&D Systems).

Real-Time Quantitative RT-PCR. Mature naive B cells were enriched from the
blood or tonsils of donors by negative selection by using the Naive B Cell
Isolation Kit II (Miltenyi). CD38+IgD− GC B cells were enriched from negatively
selected tonsillar B cells by using total B Cell Isolation Kit (Miltenyi) and
depletion of IgD+ B cells after phycoerythrin anti-IgD staining and anti-
phycoerythrin magnetic bead treatment (Miltenyi), followed by positive se-
lection by using FITC-anti-CD38 and anti-FITC magnetic bead isolation
(Miltenyi). CD19+CD10++IgM−CD27− early B-cell precursors and CD19+CD10++

IgM+CD27− immature B cells from the liver and bonemarrow of 109- and 120-
d-old fetuses were sorted by flow cytometry after enrichment for B cells by
using CD20 magnetic beads (Miltenyi). CD19+CD10++IgM+CD27− new emi-
grant and CD19+CD10−IgM+CD27− mature naive B cells were also isolated

from the spleen of the same fetuses by using a similar approach. Total RNA
was extracted from B cells using the Absolutely RNA MicroPrep kit (Stra-
tagene), followed by cDNA synthesis with SuperScript II RT (Gibco BRL). Real-
time quantification was performed with an iCycler IQ5 thermal cycler
(BioRad) by using Evagreen (BioRad) and the following primers: sense CD79B,
ccaggctggcgttgtctcctg; antisense CD79B, aggcgctgttcatgtagcagtg; sense AID,
agacactctggacaccactatg; and antisense AID, ggaggaagagcaattccacgtg.
Quantification of the gene of interest was analyzed by ΔCt method with
CD79B used as the reference gene. Relative expression equals 2-(CTgene-CTactin).
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