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Human wellbeing in modern societies relies on social cohesion,
which canbe characterized byhigh levels of cooperationanda large
number of social ties. Both features, however, are frequently
challenged by individual self-interest. In fact, the stability of social
and economic systems can suddenly break down as the recent
financial crisis and outbreaks of civil wars illustrate. To understand
the conditions for the emergence and robustness of social cohesion,
we simulate the creation of public goods among mobile agents,
assuming that behavioral changes are determined by individual
satisfaction. Specifically, we study a generalizedwin-stay-lose-shift
learning model, which is only based on previous experience and
rules out greenbeard effects that would allow individuals to guess
future gains. The most noteworthy aspect of this model is that it
promotes cooperation in social dilemma situations despite very
low information requirements and without assuming imitation,
a shadow of the future, reputation effects, signaling, or punish-
ment. We find that moderate greediness favors social cohesion
by a coevolution between cooperation and spatial organization,
additionally showing that those cooperation-enforcing levels of
greediness can be evolutionarily selected. However, a maladaptive
trend of increasing greediness, although enhancing individuals’
returns in the beginning, eventually causes cooperation and social
relationships to fall apart. Ourmodel is, therefore, expected to shed
light on the long-standing problem of the emergence and stability
of cooperative behavior.

Contemporary societies are complex systems that are perma-
nently challenged by the selfishness of their members. For

example, the recent financial crisis and subsequent turmoil il-
lustrate the vulnerability of modern socioeconomical systems.
However, the problem is not new. The history of civilizations
displays a recurrent pattern of development and collapse of both
medium-sized cultures and large empires. Different theories
have been proposed to explain why such systemic failures occur
again and again, despite experience gained in the past. Such
theories are based, for example, on the growing complexity of
societies during their evolution (1) or an overexploitation of the
environment (2).
Here, we will explore possible psychosocial reasons that may

underlie these processes of rise and fall, which are in close rela-
tionship with the emergence and stability of social cohesion. Al-
though cooperation and agglomeration provide the fabric that
allows civilizations to emerge and thrive (3), they are also subject to
strong destabilizing forces. We investigate a twofold operational
definition of social cohesion, comprising cooperation (4, 5) and
agglomeration (6). By cooperation, wemean contributions of work
or goods to achieve a common end (7, 8), and by agglomeration, we
mean the establishment of relationships between peers. Destabi-
lizing forces are modeled by means of social dilemma situations,
particularly public goods games (9, 10) (PGGs), which exemplify
the joint but discretionary contribution to a common good.
In our stylized formalization of societal enterprises, the well-

being of participants improves if they contribute to the public
good, but there is a free-rider problem: why contribute if one can
enjoy the benefits without bearing the costs, and why cooperate
if one may obtain a greater personal benefit by cheating? Hence,
game theory predicts for the Homo economicus (a strictly opti-

mizing egoist) a socially deficient outcome called the tragedy of
the commons, where nobody contributes. This paradigm of self-
ishness, however, seems to be challenged by a large number of
experiments (11). To explain this discrepancy, a number of ad-
ditional mechanisms have been proposed, such as a shadow of
the future or reputation effects. In particular, the punishment of
free riders by cooperators is able to sustain and enhance initial
levels of cooperation, which is observed in experimental iterated
PGGs (12, 13).
Another cooperation-supporting mechanism is spatial ag-

glomeration (14), particularly if strategy choices can coevolve with
spatial configurations as in migratory games (15). To account for
agglomeration as an emergent phenomenon in our model, some
freedom is needed in the choice of interaction partners for the
PGGs (16, 17). To this end, we embed our population in a spatial
network, allowing individuals to be mobile (15). As we will see,
agglomeration offers higher potential benefits to individuals, be-
cause it allows them to participate in a larger number of PGGs.
However, for our specification of PGGs, more populated groups
endanger the stability of cooperation. Although increasing levels
of cooperation and agglomeration provide the largest benefits to
society, they also make it more vulnerable to exploitation. This
problem establishes a dual social dilemma in our model society.
The particular relevance of our model resides in studying a ful-

ly experience-based, self-referential satisfying rule for the decision
making of individuals. This rule extends, among other models,
the learning model proposed by Macy and Flache (18) and the
win-stay-lose-shift rule of Nowak and Sigmund (19). To this end,
we posit a very low-information setting, which particularly avoids
greenbeard effects and the related capability to determine or guess
others’ payoffs and strategies. Such assumptions are typically made
by models based on imitation rules, which have been questioned
by recent experimental results for spatial games (20, 21). There-
fore, the exploration of mechanisms that can promote cooperation
seems to be more pressing than ever. Our results show that the
decision model that we propose is able to solve the dual dilemma
posed by social cohesion, sustaining both cooperation and social
agglomeration in an evolutionarily consistent and robust manner.

Model
A population of individuals is distributed over a spatial network
(14, 20, 22) like, for instance, a 2D square lattice with degree k=
8 (i.e., the number of neighbors of each node is eight). Because
the population density is lower than one, individuals can move
around and occupy any empty site within a certain range R.
Every player i is the center of a neighborhood with Ni in-

teraction partners, where Ni depends on the number of occupied
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sites around the player (0 ≤ Ni ≤ k). A PGG is held in each
neighborhood, and therefore, each individual i participates in
Ni + 1 PGGs, one in which she is the center of the neighborhood
and Ni others centered in her neighbors. SI Appendix, Fig. S1
provides an illustration of such spatially distributed PGGs.
In a PGG, contributing to the public good is voluntary. Hence,

we can distinguish two strategies, which are called cooperate (C)
if the player contributes or defect (D) otherwise. The quantity
contributed by each cooperator to each PGG is assumed to be
one. The total amount contributed by cooperators in the
neighborhood is then multiplied by a synergy factor r > 1, which
reflects the benefits reached by cooperation. Finally, the result-
ing amount is shared among all players, regardless of their
contribution. Therefore, if there are n cooperators among the N
participants (including the focal player), the payoffs per PGG of
a C player and a D player are, respectively (Eqs. 1 and 2),

πC ¼ r
n
N
− 1 and

πD ¼ r
n
N

:
[1 and 2]

It is clear that, for any positive value of the synergy factor r and
any number of cooperators in the neighborhood, defectors ob-
tain larger benefits than cooperators. For this reason, D is the
strictly dominant strategy of the game, and hence, the only
evolutionarily stable strategy (23). This finding implies that the
expected outcome of the game is no contribution by anybody. If
r > 1, a social dilemma arises, because then, full cooperation is
more profitable for everyone than full defection (everyone would
receive large benefits instead of no benefits); however, individual
self-interest seems to prevent this desirable outcome.
Given the dependence on the group size N in our definition of

PGGs (Eqs. 1 and 2), not only cooperation but also agglomer-
ation constitute a dilemma in our model. For any given PGG, the
benefit obtained per contribution decreases if the group size
increases, which makes cooperation benefits in larger groups
more dependent on others’ contributions and in consequence,
riskier (24). However, having more neighbors implies getting
involved in more PGGs, which enables larger potential benefits.
From the viewpoint of achievable payoffs, it is most promising to
be involved in the largest possible number of PGGs. In a lattice
of degree k, this finding means being surrounded by k neighbors
and thus, participating in k + 1 PGGs. The best-performing
society is, therefore, the one formed by individuals who behave
cooperatively and are densely connected through social inter-
actions. However, as stated before, it also increases the number
of people participating in the different PGGs, which raises the
risk of exploitation by free riders. In summary, a dual dilemma of
both cooperation and agglomeration exists in our model.
Concerning the behavioral update, individuals in our model

society are expected to maintain or change their strategy (C or D)
and/or their social relationships (position) depending on the pay-
offs obtained in the PGGs. A standard kind of decision rule is
constituted by the learning rules (18, 25–27), according to which
subjects have a tendency to repeat actions thatmaintain or improve
their current wellbeing and avoid those that reduce it (19). In our
model, individuals tend to change their strategy or social neigh-
borhood when they are dissatisfied with their current payoffs.
Hence, they follow a satisfying dynamic (28). Each player i has an
individual aspiration level ai, which determines her satisfaction si,
defined as (Eq. 3)

siðtÞ ¼ πiðtÞ− aiðtÞ þ ηiðtÞ: [3]

πi is the payoff in the current round of PGGs (which is accu-
mulated in all of the neighborhoods to which the player belongs),
whereas ηi represents a Gaussian noise with zero mean. If si > 0,

the player is satisfied and maintains strategy and position,
whereas if si ≤ 0, the player is dissatisfied and changes strategy
and/or location in a random and statistically independent way.
The probability of change is proportional to the amount of dis-
satisfaction |si| (si < 0). The amplitude of the noise ηi in Eq. 3 is
chosen to create a trembling hand effect (29), especially when
the subject is uncertain about the situation (i.e., when |si| ∼ 0).
In the low-information setting assumed in this study, individuals

are not aware of other subjects’ payoffs, and they do not know the
range of payoffs theoretically attainable from the PGGs, which is
in stark contrast to the quite extensive information requirements
of previously investigated migratory games (15). Players neither
know howmany neighbors they have nor realize others’ strategies.
Greenbeard effects (30, 31), which would allow players to identify
cooperative neighbors by a distinctive trait, are excluded. As a re-
sult, individuals cannot imitate successful strategies of others or
strictly optimize their own strategy. Instead, subjects attempt to be
satisfied, which seems to make sense particularly for new envi-
ronments and complex societies.
According to Eq. 3, the satisfaction of an individual is very much

influenced by her aspiration level ai. In our model, this aspiration
level depends on the subject’s greediness αi, as given by (Eq. 4)

aiðtÞ ¼ αiπi;maxðtÞ þ ð1− αiÞπi;minðtÞ: [4]

πi,min(t) and πi,max(t) denote the time-dependent minimum and
maximum payoff, respectively, as remembered by the subject,
who has a certain memory decay rate. The greediness of each
individual has a range of 0 ≤ αi ≤ 1, which allows the aspiration
level to vary between πi,min and πi,max. These extreme payoff
values correspond to the minimum and maximum payoffs that
the individual experiences in the successive rounds of PGGs, and
they are subject to a habituation effect. As a result, subjects
adjust their aspiration level according to their personal payoff
history and their individual greediness. Materials and Methods
has full details of the learning rule.

Results and Discussion
Fig. 1 presents the typical behavior of our model when individuals
are moderately greedy (αi = 0.3). Fig. 1A displays a snapshot of
the stationary state, and Fig. 1B shows the time evolution of the
following three population variables: (i) social instability (i.e., the
fraction of individuals who have changed strategy and/or social
neighborhood in the last time step), (ii) cooperation (the fraction
of cooperative individuals in the population), and (iii) agglom-
eration [the average value of the actual number of neighbors of an
individual divided by the maximum possible value (the degree k of
the underlying network)]. All three measures are bounded by the
range between zero and one. The evolution displayed in Fig. 1B
starts with a population of defectors only, randomly distributed
in the network (here, a regular square lattice). Interestingly, after
some time, cooperation and agglomeration emerge, reaching a
stationary state where clearly more than one-half of the pop-
ulation is cooperative and individuals tend to agglomerate and
form cooperative clusters. Note that the initial appearance of
cooperation is possible only because of the presence of noise in
the decision rule. Later on, cooperation and agglomeration are
rapidly promoted by the spatiotemporal dynamics in the pop-
ulation as individuals experience the possibility of higher payoffs
and try to realize them. It is also worth mentioning that the av-
erage number of behavioral changes is very low in the stationary
state, which implies that a large majority of subjects are satisfied
with their payoffs.
In stark contrast, high levels of greediness destabilize this well-

performing society. Fig. 2 explores the parameter dependence of
the stationary behavior of the model averaged over many real-
izations. The parameter space presented here is spanned by the
synergy factor r and the greediness α, which are the most relevant
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control parameters of the model (additional parameter de-
pendencies are discussed in SI Appendix). Our results reveal that,
when levels of greediness increase beyond a certain threshold,
society becomes unstable, with most individuals dissatisfied and
prone to change their strategy and social neighborhood.
In comparison, a model society of individuals with low levels of

greediness is unable to realize social benefits. It lacks the drive to
develop effective cooperation and agglomeration, because non-
greedy individuals become easily satisfied with whatever payoffs
they obtain and thus, maintain their strategy and position. In
consequence, neither cooperation nor agglomeration emerges in
such a society. On the contrary, moderate greediness causes
individuals’ dissatisfaction, making them explore other strategies
and/or positions and experience the benefits of being cooperative
in a cooperative neighborhood. As long as those benefits are
sufficient to satisfy individuals’ aspirations, cooperation and ag-
glomeration coevolve and create a stable population with a high
level of cohesion. At high levels of greediness, finally, individuals
are so difficult to satisfy that they keep exploring other locations
and strategies, thereby destroying cooperative clusters.
Another interesting insight resulting from Fig. 2 is that chal-

lenging PGGs with very low synergy factors (r ∼ 1) create a stable
society, but one that is locked in noncooperative behavior. De-
fection is, in this case, the only behavior that is compatible with the
aspirations of individuals, regardless of their level of greediness.

The most salient feature of our model is the emergence and
stability of a society with widespread cooperation and agglomer-
ation despite the low information requirements. It is important to
point out that this behavior is robust against changes of many
model details provided that some crucial properties are preserved,
namely a sufficient amount of habituation in the learning rule and
some amount of mobility. Habituation implies that improvements
or deteriorations in achieved payoffs are eventually forgotten,
which is equivalent in our learning model to individuals adapting
their expectations to the range of payoffs that they have experi-
enced recently. Materials and Methods and SI Appendix have full
implementation details and additional examples.
Our results, therefore, suggest that, as long as social dilemma

situations are not too severe, a main determinant of social sta-
bility and wellbeing is the greediness of individuals. Moderate
greediness promotes cooperation and the stability of dense social
relationships, whereas high levels of greediness destabilize the
social fabric, undermining cooperation and social agglomeration.
It is crucial to ask the following questions. What deter-

mines the greediness of individuals? Is it a matter of genetic
inheritance? Or is it driven by cultural forces (32, 33)? From our
perspective, prevalent levels of greediness in a population should
be those levels that provide subjects with an evolutionary ad-
vantage in the long run. To explore this idea, we introduced the
following extension to our model. Instead of specifying a fixed
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Fig. 1. Evolution of social cohesion in a model society with moderately greedy individuals. (A) Snapshot of the stationary state (cooperators are in blue and
defectors are in red). (B) Time evolution of three population variables (details in the text). The time dependence of the levels of cooperation and ag-
glomeration shows that the emergence of cooperation is based on a coevolution of prosocial behavior and spatial organization. The low level of social
instability indicates that changes of strategy and/or location are rare, which corresponds to a majority of satisfied individuals. All subjects are assumed to have
the same greediness of α = 0.3. The synergy factor of the PGGs was set to r = 5, and the underlying network was a half-occupied square lattice of size 104 with
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interactions) would be expected only for r > k + 1 = 9.
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value of greediness, as we did in the simulations underlying Figs.
1 and 2, we started with a certain initial distribution of individual
greediness levels. We then made these greediness parameters αi
evolve according to an endogenous evolutionary process. More
specifically, we implemented a selection of the greediness para-
meters αi using a Moran process (34, 35). After every individual
had the opportunity to update her strategy and her location, one
of them was selected proportionally to her payoff (her fitness in
evolutionary terms), and her greediness was copied by one ran-
domly chosen individual. This birth–death process was repeated
a number of times before another round of PGGs and behavioral
updates (strategy and position) took place. It is worth noting
that, in a given round, the behavioral updates are performed for
every individual in the population, whereas the Moran updates
only affect a few individuals per round.
Simulating cultural imitation, be it success-biased or not, would

require information about others’ behavior and eventually, per-
formance, which would make it incompatible with the fundamental
low-information assumptions of our model. In consequence, we
treat theMoran updates of greediness as evolution of a genetic trait
under natural selection. For this reason, we have chosen a number
of Moran updates between PGGs rounds, which allows the evolu-
tion of greediness to take place on a significantly slower time scale
than that of behavioral changes (36). Fig. 3A displays three exam-
ples of the evolution of greediness. One of them starts from a uni-
form initial distribution of greediness over the full range of possible
values, whereas the other two begin with extreme values and evolve
with the addition of a small mutation term. Remarkably, the sta-
tionary distribution of greediness converges to similar values in
all three cases, falling into the range that corresponds to the co-
operative and aggregated state of society (Fig. 2). This finding has
a very clear and interesting implication: levels of greediness that
promote a society with widespread cooperation and agglomeration
can be evolutionarily selected.
Finally, Fig. 3B illustrates the effect of maladaptations in the

evolution of subjects’ greediness. They can arise when past payoff
increases are associated with growing levels of greediness and
are projected into the future. To model this finding, let us assume
that a small positive drift biases the evolution of greediness, and
therefore, we add a small random positive term when the greedi-
ness of successful individuals is inherited by their offspring. At the

early stage of evolution, increasing greediness supports coopera-
tion and agglomeration. At some tipping point, however, the trend
reverses, and social cohesion breaks down, although no structural
change has taken place. From the viewpoint of the members of
this society, this turn of events comes completely unexpected; the
same growth of greediness that accelerated social development at
the beginning causes a disastrous effect on society later.
In summary, we have studied a minimalist model of society with

very low-information assumptions. Subjects simply aim to satisfy
their aspirations according to a trait that we call greediness. We
have shown that, even in the presence of social dilemma situations,
cooperation and agglomeration can flourish if individuals are
moderately greedy. It is remarkable that, in our model, subjects’
behavior is solely based on individual experience. There are no
greenbeard effects, which would allow individuals to distinguish
favorable neighborhoods from unfavorable ones in advance. Ad-
ditionally, there are no additional mechanisms known to support
cooperation, such as a shadow of the future, reputation, or pun-
ishment. Additionally, we have shown that a moderate level of
greedinessprovides individualswithaclearevolutionaryadvantage
given that it can be evolutionarily selected.We have also seen that
this beneficial influencemight lead tomaladaptations, because the
projectionof current growingpayoffs into the futurewould result in
an increase of greediness to levels at which social cohesion ulti-
mately breaks down. Our results strongly suggest that learning
rules,particularly self-referential factors indecisionmaking, canbe
a key component in the explanation of the emergence and stability
of cooperation and agglomeration in human societies.

Materials and Methods
Model Definition. In this section, we present additional details that complete
the definition of the model.

In each round of PGGs, each subject is assigned a probability of changing
behavior and/or location. To ensure an adequate range and scaling, this
probability is calculated as (Eq. 5)

pi ¼
�
tanhðjsi j=kÞ; if si < 0;

0; if si ≥ 0:
[5]

The term |si| is the amount of dissatisfaction of subject i, whereas k nor-
malizes it by the degree of the underlying network.

Concerning the maximum and minimum perceived payoffs πi,max and
πi,min, we assume that individuals are able to remember important improve-
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Fig. 3. Evolution of greediness (A) with selection performed by a Moran process and (B) in the case of maladaptation effects. (A) Evolutionary selection of
greediness when a Moran process is applied to the individual greediness parameters αi. The time scale of greediness evolution is 100 times slower than the
time scale of behavioral evolution (strategy and position changes). The remaining model parameters are the same those parameters used in Fig. 1. The
continuous lines show the population average of greediness 〈αi〉, and the dashed bars (black curve) display the 2σ range every 1,000 steps. The black curve
corresponds to a population initialized with randomly assigned values of αi in the interval of zero to one in a uniform distribution. The blue and red curves
represent the evolution of a population where all individuals start with αi = 0 and αi = 1, respectively, and there is random mutation implemented with the
addition of a term that follows a normal distribution with SD σ = 0.02. In all three cases, the average value of greediness ends up in a similar stationary state,
with a value that corresponds to a stable and cooperative society (Fig. 2). (B) Evolution of several population variables when a maladaptive trend biases the
evolution of greediness to higher values. At the beginning, all individuals are assigned low greediness, with a random uniform distribution in the interval of
0 to 0.2. All other model features and parameters are the same as in A, with the exception of the positive bias to rising values of greediness. The drift term
follows a half-normal distribution with SD = 0.01. Slowly increasing greediness is beneficial at the beginning of evolution, because it promotes social cohesion;
however, it eventually destabilizes the model society, damaging cooperation and agglomeration.
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ments or deteriorations in their experienced payoffs and that they also adjust
their expectations to recent payoffs (habituation), which altogether can be
interpreted as a memory effect. Therefore, we define πi,max in this way: at the
starting time (t = 0), πi,max is initialized with the first payoff that the player
obtains, and then, it is updated according to (Eq. 6)

πi;maxðt þ 1Þ ¼
8<
:

πiðtÞ; if πiðtÞ > πi;maxðtÞ;
πi;maxðtÞ þ μ

�
πiðtÞ− πi;maxðtÞ

�
;

if πiðtÞ ≤ πi;maxðtÞ :
[6]

In this manner, an outcome that exceeds the current maximum enters future
expectations immediately. Otherwise, the last maximum payoff is eventually
forgotten and becomes more similar to recent payoffs. The parameter μ, with
0 < μ < 1, determines the time scale of this exponential memory loss or
habituation effect. πi,min is analogously defined as (Eq. 7)

πi;minðt þ 1Þ ¼
8<
:

πiðtÞ; if πiðtÞ< πi;maxðtÞ;
πi;minðtÞ þ μ

�
πiðtÞ− πi;minðtÞ

�
;

if πiðtÞ≥ πi;minðtÞ:
[7]

On one hand, if μ were zero, there would be no forgetting, and πi,max (πi,min)
would monotonously increase (decrease) to the maximum (minimum)
achievable value. In practical terms, this limiting case converges to the one
with a fixed aspiration level (similar to the rule studied in ref. 18). Infinite
memory (or lack of habituation), however, does not support social cohesion
in our model. It turns out that a finite memory (or some habituation) is
required for the satisfaction of individuals. On the other hand, if μwere one,
previous maxima and minima would be immediately forgotten, and the
aspiration level would become equal to the last obtained payoff, which has
a strong destabilizing effect in the model. Therefore, to implement a re-
alistic habituation or memory effect, small nonzero values have to be chosen
(0 < μ << 1), such as μ = 0.01.

A round of PGGs and the subsequent updating are performed in the
following way. Every player participates in and collects payoffs from all of the
PGGs played in the neighborhoods towhich she belongs. The aspiration levels
of each player are updated, and their satisfactions are evaluated. Those
players who are dissatisfied are assigned a probability of changing strategy
and/or neighborhood. They do so according to two independent random

trials, one for the strategy and another for the location. The update order
among subjects is randomly assigned for each round. After these updates
have been performed for all of the individuals in the population, a new
round begins.

Model Parameters. Game theoretical evolutionary models may be quite
sensitive to implementation details (37). For this reason, we have thoroughly
checked the robustness of our results against changes in many different
aspects of the model. Specifically, we have considered different values or
options for (i) system size, (ii) population density, (iii) initial fraction of
cooperators, (iv) migration range, (v) network topology, (vi) definition of
the PGGs, (vii) aspiration noise, (viii) noise in the behavioral rule, (ix) imi-
tative perturbations of the behavioral rule, (x) ratio between the time scales
of migration and strategy change, and (xi) ratio between the time scales of
evolution of behavior and greediness when the latter evolves endogenously.
In all cases, the behavior of the model was qualitatively the same, and
therefore, our main findings remain unchanged within reasonable param-
eter variations and perturbations of the model (full details in SI Appendix).

Here, we give the values of the model parameters used for the simulations
reported here. The network was a 2D square regular lattice with degree k = 8
(Moore neighborhood). The network size was 104 nodes. The population
size was 5 × 103 individuals, which implied a density of 0.5. Players were
randomly located at initial time, all of them being defectors. The SD of the
aspiration noise was η = 0.1. The maximum range of migration was R = 10.
The memory parameter was μ = 0.01. Each cooperator contributed the same
quantity one to each PGG in which she participated. To evaluate the sta-
tionary state (Fig. 2), we simulated the model for 5 × 103 time steps, calcu-
lated the mean value over the last 500 steps, and averaged the results of 20
independent realizations. Test runs were made for much longer time peri-
ods, but this change did not affect the stationary state.
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