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Neural stem and progenitor cells undergo an important transition
fromproliferation todifferentiation in theG1phaseof the cell cycle.
The mechanisms coordinating this transition are incompletely
understood. Cyclin D proteins promote proliferation in G1 and ty-
pically are down-regulated before differentiation. Here we show
that motoneuron progenitors in the embryonic spinal cord persis-
tently express Cyclin D1 during the initial phase of differentiation,
while down-regulating Cyclin D2. Loss-of-function and gain-of-
function experiments indicate that Cyclin D1 (but not D2) promotes
neurogenesis in vivo, a role that can bedissociated from its cell cycle
function. Moreover, reexpression of Cyclin D1 can restore neuro-
genic capacity to D2-expressing glial-restricted progenitors. The
neurogenic functionof CyclinD1 appears to bemediated, directly or
indirectly, by Hes6, a proneurogenic basic helic-loop-helix transcrip-
tion factor. These data identify a cell cycle-independent function for
Cyclin D1 in promoting neuronal differentiation, along with a po-
tential genetic pathway through which this function is exerted.
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The CNS develops from neuroepithelial progenitor cells that
generate a large variety of differentiated neuronal and glial

progeny (1–3). This process is controlled by complex regulatory
mechanisms that coordinate proliferation, fate specification, and
differentiation (4–6). A crucial transition, from proliferation to
differentiation, occurs during the G1 phase of the cell cycle (7–
10). The transition is closely coordinated with cell cycle arrest
(11–14), but the mechanisms mediating this coordination are
incompletely understood.
The G1 phase is positively regulated by the action of three

cyclin D proteins, which link extracellular mitogenic signals to
the core cell cycle machinery (15–18). In addition to their posi-
tive cell-cycle control function, Cyclin Ds have been implicated
in a number of other cellular activities (19), including direct
transcriptional regulation (20–22). Nonoverlapping expression of
Cyclin D1 and D2 has been reported in the developing mouse
forebrain neuroepithelium, suggesting that these isoforms may
differentially regulate proliferation and differentiation, re-
spectively (23). This hypothesis has not been tested, however.
Here we demonstrate, by loss-of-function (LOF) and gain-of-
function (GOF) manipulations in vivo, that Cyclin D1 positively
regulates neuronal differentiation in the embryonic spinal cord
in a manner independent of its cell cycle regulatory activity.

Results
Cyclin D1, but Not D2, Marks Neuronal Precursors in the Developing
Spinal Cord.We investigated the functional role of Cyclin Ds in the
developing spinal cord, where markers and mechanisms of neu-
rogenesis are well defined (24, 25). Analysis of Cyclin D expres-
sion between E9.5 and E13.5 by immunostaining indicated that
Cyclin D1 and D2 are expressed in the ventricular zone (VZ)
(Fig. S1 A–C), consistent with previous in situ hybridization data
(26–28). More detailed analysis was performed in the motoneu-
ron progenitors (pMN) domain, which sequentially generates
motoneurons (MNs) at E9.5–E11.5 and oligodendrocytes (29–33)
and which expresses the basic helix-loop-helix (bHLH) tran-
scription factor Olig2 (29, 34, 35) (Fig. 1). At E9.5, Cyclin D1 and

D2 were expressed in ∼45–50% of Olig2+ cells (Fig. S1 D, H, and
P), in a largely overlapping manner (Fig. S1A). By E10.0, the pro-
portion of Olig2+ cells expressing Cyclin D1 or D2 had decreased
by approximately half, to ∼20% (Fig. 1K and Fig. S1 E, I, and P)
and was mostly nonoverlapping (Fig. 1 A–C and L). However, the
magnitude of the small overlap (∼5%) was still significantly
greater than chance (3.4%; n = 4; P = 0.0071, paired t test).
The Cyclin D1- and D2-expressing populations also were spa-

tially distinct at E10.0. Virtually all Cyclin D2+ cells expressed
Olig2 and were located in the VZ, whereas almost 40% of Cyclin
D1+ cells were Olig2− and located in the adjacent marginal zone
(MZ) (Fig. 1D, arrows,G, andK), where differentiating neuronal
precursors are located. Indeed, 56% (± 2.8%, n = 6) of Ngn2+

precursors and ∼35% of HB9+ immature MNs (36) were Cyclin
D1+, whereas only ∼3% of HB9+ presursors were Cyclin D2+

(Fig. 1 E, arrows,H, and K). These data indicate that Cyclin D1 is
initially coexpressed with D2 in undifferentiated pMN precursors
at E9.5, but then segregates into differentiating MNs at E10
(Fig. 1J and Fig. S1 D–P).
To generalize this observation, we analyzed the expression of

Cyclin Ds throughout the developing spinal cord, using Ngn2 as a
marker for neurogenic precursors (32). At E11.5, 86.5% ± 2%
of Ngn2+ cells expressed Cyclin D1, whereas only 11% ± 2%
expressed Cyclin D2 (n = 7; P < 0.0001, paired t test). Further-
more, Cyclin D1, but not D2, expression could be observed in a
subset of differentiating Engrailed-1+ V1 interneurons, as well
as in TuJ1+ or NeuN+ proliferating cell nuclear antigen (PCNA)-
negative newborn neurons (Fig. S2). Thus, Cyclin D1 expression
persists in differentiating neurons throughout the spinal cord.
We next asked whether Cyclin D1 is eventually down-regulated

after neurogenesis, which in the pMN domain terminates by
E11.5 (31). Indeed, by E11.5, Cyclin D1 expression had virtually
disappeared from pMN (Fig. S1 F, G, and P) and became pro-
gressively restricted to the dorsal region of the spinal cord (Fig.
S1 A–C) following the ventral-to-dorsal gradient of maturation
and neurogenesis (37). Cyclin D2 expression persisted in pMN
through E13.5 (Fig. S1 H–K and P).

Cyclin D1 Regulates Neurogenesis Independent of the Cell Cycle In
Vivo. To test whether Cyclin D1 plays a causal role in promoting
neurogenesis in vivo, we performed LOF and GOF experiments
in the embryonic chick spinal cord. In situ hybridization for chick
Cyclin D1 (cD1) and cD2 mRNAs revealed a rough spatiotem-
poral correlation between Cyclin D1 expression and neuro-
genesis, as in the mouse (Fig. S3), although a more detailed
analysis was precluded by a lack of immune reagents.
We first performed LOF experiments using siRNAs to knock

down cDs. In ovo electroporation was performed in the E2
neural tube, using a replication-competent avian retrovirus vec-
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tor (RCAS) (38). The contralateral (nonelectroporated) side of
the same embryo and GFP-electroporated embryos served as
internal and external controls, respectively. The specificity and
efficacy of each siRNA was confirmed by coelectroporating an
epitope-tagged cD cDNA expression construct as a surrogate

target and performing immunostaining using an antibody to the
epitope tag. The effect of these manipulations on proliferation
was monitored by in ovo BrdU labeling and measurement of the
percentage of BrdU+/Olig2+ cells [labeling index (LI)] (Fig.
S4A). To quantify neurogenesis in pMN, we counted the pro-
portion of Olig2+ cells expressing Lim3 (39) or NeuroM (40, 41),
two neuronal precursor markers. To quantify generic neurogenesis
throughout the spinal cord, we measured the ratio of NeuN+ neu-
rons to PCNA+ proliferating cells.
cD1 down-regulation significantly reduced the proportion of

Lim3+ or NeuroM+ Olig2+ progenitors at cE4 (Fig. 2 A and B).
This phenotype was not observed using a mutant cD1 siRNA
(mt; Fig. 2 A and B) and was rescued by coelectroporation of
a siRNA-insensitive murine Cyclin D1 (mD1) cDNA. Rescue
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Fig. 1. Cyclin D1 and D2 expression in the E10.0 pMN domain of the de-
veloping mouse spinal cord. (A–C) Triple immunolabeling for Cyclin D1, D2,
and Olig2 in the pMN domain at E10.0. C shows a merged view of A and B,
with Olig2 omitted for clarity. (D–I) Triple-immunolabeling for HB9, Olig2,
and Cyclin D1 (D–F) or D2 (G–I). Dashed lines delineate the Olig2+ pMN do-
main (VZ) and the MZ containing newly generated HB9+ MNs. Arrowheads
indicate Cyclin D/Olig2 double-positive cells, and arrows indicate Cyclin D1/
HB9 double-positive cells. (J) Schematic summarizing the relative spatial
domains of expression of Olig2, HB9, Cyclin D2, and D1 at E10.0 in the pMN
domain. (K) Quantification of the relative proportion of different cell pop-
ulations, defined by Cyclin D1, D2, Olig2, and HB9 expression, at E10.0. Val-
ues are mean ± SEM of between four and six sections from three embryos:
*P < 0.05; **P < 0.01 (t test). (L) Quantification of the percentage of Olig2+

cells expressing Cyclin D1, D2, or both at E10.0 in the pMN domain. Values are
mean ± SEM of three or four sections from four embryos. D1×D2 indicates
predicted overlap assuming expression by independent populations.
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Fig. 2. Cyclin D1 expression is necessary for neurogenesis in the chick spinal
cord. Neurogenesis at cE4 (A and B) or cE5 (C and D), and precursor pro-
liferation (E) were analyzed after electroporation of siRNAs for cD1, cD2 or mt
mutant control of cD1 siRNA. mD1 and mD3 indicate murine Cyclin D1- and
D3-rescuing cDNAs, respectively. Values represent the percent change in the
average proportion ofmarker-positive cells on the electroporated side relative
to the controlateral (nonelectroporated) side× 100% (=%change(E/C)). Values
aremean± SEMof between four and eight sections from three to six embryos.
One-way ANOVA statistical analysis (Lim3, P = 0.0022; NeuroM, P < 0.0001;
#HB9/#Olig2, P = 0.0002; #NeuN/#PCNA, P < 0.0001; #PCNA, P < 0.0001) and
Newman–Keuls or Bonferroni posttest comparisons were performed.
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was not obtained by coelectroporation of mD3 cDNA (Fig. 2 A
and B), which on its own strongly promoted proliferation (Fig.
S4A). No significant reduction in neurogenic progenitors was
observed after cD2 knockdown (Fig. S5 D and E). However, both
cD1 and cD2 knockdown significantly reduced the LI in pMN, as
well as the total number of Olig2+ cells (Fig. S4 A and B).
In embryos analyzed at cE5, cD1 knockdown significantly

reduced the ratio of newly differentiated HB9+ MNs to
undifferentiated Olig2+ precursors (Fig. 2C). In contrast, knock-
down of cD2 increased this ratio (Fig. 2C), as would be expected
for a manipulation that facilitates cell cycle exit (42). Therefore,
the effect of cD1 knockdown in inhibiting MN differentiation at
cE5 is not likely due to reduced proliferation. Importantly, the
effect of cD1 knockdown at cE5 was fully rescued by coexpression
of an mD1 cDNA, but not by an mD3 cDNA (Fig. 2C). Thus,
knockdown of cD1 decreased both the proportion of MN pre-
cursors at cE4 and the proportion of differentiating MNs at cE5.
Both phenotypes were rescued by mD1 but not by mD3, and were
affected in the opposite direction by knockdown of cD2.
cD1 knockdown also reduced generic neurogenesis in the spinal

cord at cE5 (Fig. 2D), similar to the effect on MNs (Fig. 2C). In
contrast, cD2 knockdown significantly promoted generic neuro-
genesis (Fig. 2D). Both cD1 and cD2 knockdown also caused
a decrease in VZ size, as monitored by PCNA staining (Fig. 2E),
consistent with their effect to reduce to LI. Importantly, although
this VZ phenotype of cD1 knockdown was rescued equally well by
co-electroporation of mD1 or mD3 (Fig. 2E), the neurogenic
phenotype at cE5was rescued only bymD1 and not bymD3 (Fig. 2
C and D). These data suggest that both Cyclin D1 and D2 con-
tribute to positive regulation of proliferation, but that Cyclin D1
has an additional function to promote neurogenesis.
We next performed GOF experiments by overexpressing

different Cyclin Ds. Murine Cyclin D cDNAs were used, to dis-
tinguish their expression from that of endogenous cDs. Overex-
pression ofmD1 increased the percentage of Lim3+ andNeuroM+

neuronal progenitors at cE4, although the effect was modest and
did not reach significance (20–25%, P = 0.06) (Fig. S5 A and B).
However, overexpressionof a point-mutant formofmD1,mD1KE,
which lacks the ability to interact with CDKs (22, 43) and thus
cannot promote proliferation (Fig. S4A), yielded amore robust and
statistically significant increase in the percentage of neurogenic
progenitors (mD1KE; Fig. S5 A and B). Both WT mD1 and
mD1KE significantly enhanced generic neurogenesis in the spinal
cord at cE5 (Fig. S5C). The effect of mD1 and mD1KE over-
expression was only slightly less than that obtained by overex-
pression of Ngn2, a potent proneural gene (44, 45) (Fig. S5C).
Overexpression of mD1 also increased the LI by 25.8% (Fig.

S4A). Overexpression of mD2, which increased the LI by 21.4%
(Fig. S4A), did not increase neurogenesis, but rather showed a
trend toward a small decrease (Fig. S5 A–C). Overexpression of
mD3, which increased the LI more strongly (by 36.5%), signifi-
cantly decreased, rather than increased, neurogenesis (mD3; Fig.
S5 A and B). These data, along with the neurogenic effect of
mD1KE, suggest that the effect of mD1 in enhancing neuro-
genesis is independent of its effect in promoting proliferation,
consistent with the results of our LOF experiments.

Genetic Interactions Between Cyclin Ds and Notch Effectors. To
investigate the genetic pathways mediating the neurogenic func-
tion of Cyclin D1, we examined its relationship to Notch signal-
ing, which inhibits neurogenesis and maintains the stem cell or
progenitor cell state (46, 47). To do this, we analyzed the impact
of cD1 knockdown on Hes genes, which encode bHLH tran-
scription factors (48). We monitored the expression of both chick
Hes5 (cHes5), a transcriptional effector of canonical Notch sig-
naling, and cHes6, a noncanonical Notch effector that promotes
neurogenesis (49–51). In situ hybridization for Hes transcripts
(49) (Fig. 3 A–F and Fig. S6), in combination with PCNA

immunostaining (Fig. 3 A1–F1 and Fig. S6), revealed that cD1
knockdown caused a significant decrease in cHes6-2 expression
in the VZ relative to PCNA staining, but did not affect Hes5
mRNAs (Fig. 3G, cD1). In contrast, cD2 knockdown significantly
decreased Hes5 mRNAs, but not Hes6 mRNAs (Fig. 3G, cD2).
Differential cell death cannot explain these phenotypes, because
few caspase-3–activated cells were detected in electroporated
embryos at cE5 in any condition (Fig. S4C).
Given these observations, we asked whether overexpression of

Hes cDNAs could rescue the effects of cD knockdown on neu-
rogenesis. Indeed, coexpression of cHes6-2 with the cD1 siRNA
rescued the decreased number of NeuN+ cells (Fig. 3H, cD1/6–
2), whereas cHes5-1 had no effect (Fig. 3H, cD1/5–1). Con-
versely, coexpression of cHes5-1, but not of cHes6-2, rescued the
effect of cD2 knockdown to increase the proportion of NeuN+

neurons (Fig. 3H, cD2/5–1 vs. cD2/6–2). Thus, forced expression
of Hes genes is epistatic to the complementary effects of cD1 and
cD2 knockdown on neurogenesis in both directions.

Cyclin D1 Confers Neurogenic Capacity on Transplanted Gliogenic
Precursors. Spinal cord precursors normally undergo a time-depen-
dent restriction in their developmental capacity, in which they lose
neurogenic and retain gliogenic potential (52, 53). Using a het-
erochronic and heterospecific transplantation system (54), we
previously demonstrated that Olig2+ progenitors isolated from
murine E13.5 spinal cord have lost all neurogenic capacity (54).
Because Cyclin D1 is normally down-regulated in pMNs by
E13.5 (Fig. S1G and P), we asked whether forcing its expression
in purified E13.5 Olig2+ glial-restricted precursors was suffi-
cient to restore their neurogenic capacity, as assessed by in vivo
transplantation.
We transduced FACS-isolated E13.5 murine Olig2+ MMA+

spinal cord progenitors with retroviral vectors encoding either
Cyclin D-IRES-GFP or GFP alone, immediately before trans-
plantation into E2 chick neurogenic spinal cord (Fig. 4A). No cell
culture incubations were performed during these manipulations.
The status of GFP+-transplanted cells was assessed by immunos-
taining for NeuN at 3 d after transplantation (Fig. 4B). Less than
5% of control GFP-transduced, or mD2-transduced, Olig2+ cells
gave rise to neurons (Fig. 4C), consistent with the findings of our
previous studies using nontransduced cells (54). In contrast, 50%
of mD1-transduced E13.5 Olig2+ cells differentiated to neurons
after transplantation (Fig. 4C). These data indicate that forced
expression of Cyclin D1, but not of D2, in glial-restricted pre-
cursors is sufficient to confer neurogenic capacity on these cells.

Discussion
Cyclin D1 Promotes Neurogenesis in a Cell Cycle-Independent Manner.
Several lines of evidence presented here argue for a proneuro-
genic function for Cyclin D1 that is unique among the Cyclin D
family members examined and is independent of its cell cycle-
promoting effect. First, Cyclin D1, but not D2, is expressed by
differentiating neuronal precursors and newly generated neurons
in the developing spinal cord, consistent with previous observa-
tions in the embryonic forebrain (23). Second, knockdown of
endogenous cD1, but not of cD2, in the developing chick spinal
cord decreased both neuronal specification and differentiation.
This phenotype could be rescued by mD1, but not by mD3. Third,
overexpression of Cyclin D1 or D1KE enhanced neurogenesis,
whereas, conversely, overexpression of mD2 or mD3 inhibited
neurogenesis (to varying extents) and enhanced proliferation.
Finally, forced expression of Cyclin D1 in glial-restricted pro-
genitor cells restored neurogenic capacity, as assessed by heter-
ospecific in vivo transplantation (54). Although we did not test
D1KE in the transplantation assay, the fact that forced expres-
sion of Cyclin D2 had no effect suggests that this phenotype is
also not due to the proliferation-promoting effect of Cyclin D1.
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Directmeasurements of apoptosis andDNAsynthesis, aswell as
quantitative considerations, argue that the effects of manipulating
CyclinD1 levels in vivo are not likely due to a primary influence on
cell survival or proliferation. Selective death of neurogenic pre-
cursors due to Cyclin D1 down-regulation is unlikely, given the
small fraction (1%) of cells expressing activated caspase-3 at this
stage (Fig. S4C), as reported previously (55). Dilution of neuro-
genic precursors due to selective enhancement of nonneurogenic
(Lim3− Olig2+) precursor proliferation is inconsistent with the
overall decrease in the total number of Olig2+ cells and their rate
of proliferation (Fig. S4 A and B; SI Text 1). Similar calculations
argue that the mD1KE-induced increase in the proportion of
neurogenic precursors cannot be explained by a selective in-
hibition of nonneurogenic precursor proliferation (SI Text 1).
Taken together, these considerations argue for a direct effect

of Cyclin D1 manipulation on neurogenesis, independent of any
effect on proliferation or cell survival. Nevertheless, the magni-
tude of these effects was modest. In the case of LOF manipu-
lations, the partial inhibition of neurogenesis may reflect in-
complete knockdown of cD1 and/or redundant mechanisms. In
the case of GOF manipulations, the modest enhancement of
neurogenesis caused by overexpression of mD1KE (as well as
Ngn2) may reflect limits on the number of nonneurogenic pre-
cursors that can be recruited to produce additional neurons at
the stages examined. Consistent with this view, misexpression of
Cyclin D1 in a purified population of nonneurogenic Olig2+

precursors isolated from relatively later-stage murine embryos
caused a far more robust (ca. 10-fold) increase in neurogenesis.
Although the functional roles of Cyclin D1 and D2 in neural

development have been investigated in previous studies, a spe-
cific role for Cyclin D1 in promoting neurogenesis has not yet
been reported. Forced expression of either Cyclin D1 or D2 in
the chick spinal cord was observed to be qualitatively compatible
with terminal MN differentiation (27), but quantitative analysis
was not performed. In the developing mouse cerebral cortex,
coexpression of Cyclin D1 plus CDK4 has been found to stimulate
proliferation and to inhibit neuronal production (56). This ap-
parent inconsistency with our GOF results is most likely explained
by the fact that we did not include CDK. Indeed, the D1KE mu-
tant, which cannot associate with CDK, was more effective than
WT Cyclin D1 in promoting neurogenesis. This suggests that
interactions with CDKs may normally antagonize the proneuro-
genic function of Cyclin D1. If so, then overexpression of Cyclin
D1 may titrate out endogenous CDKs, yielding a pool of unbound
Cyclin D1 molecules that promote neurogenesis (57). Thus, the
transition of Cyclin D1 from a proliferative to a neurogenic role
may involve an increase in Cyclin D1 expression, liberation from
interactions with CDKs, or both.
Our results further suggest a division of labor between Cyclin

D2 and D1 in the developing spinal cord. The former promotes
proliferation and maintains the undifferentiated progenitor pool
for subsequent glial differentiation, whereas the latter may pro-
mote transient proliferation of neurogenic precursors and/or
neuronal differentiation (Fig. 4D and Fig. S7AI). However, our
data do not formally exclude the possibility that the two Cyclin
Ds function in distinct but intermingled neurogenic and non-
neurogenic lineages within pMNs (Fig. S7AII). If they indeed
function sequentially, then, given the dual roles of Cyclin D1 that
we have uncovered here, a transition in the control of proliferation
from Cyclin D2 to D1 might be a key step in neurogenic differ-
entiation. Moreover, at later (gliogenic) stages of development,
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Fig. 3. Genetic interactions between Cyclin Ds and Notch signaling com-
ponents. (A–F) FISH for chick Hes5-2 (A–C) or Hes6-2 (D–F) combined with
immunolabeling of PCNA on E5 spinal cord (A1–F1). Dashed lines delineate
the VZ, denoted by PCNA. Asterisks indicate reductions in Hes mRNAs. (G)
Quantification of the level of expression of chick Hes5-1, Hes5-2, Hes5-3, and
Hes6-2 mRNAs, normalized to the level of PCNA expression, in arbitrary units
(%change(E/C)). Values are mean ± SEM of four or five sections from 4–10
embryos. Embryos were electroporated with either GFP or the indicated
siRNAs. One-way ANOVA statistical analysis (cHes5-1: P = 0.0067; cHes5-2: P =
0.0010; cHes5-3: P = 0.0185; cHes6-2: P = 0.0011) and Newman–Keuls posttest
comparisons were performed. The effect of cD2 knockdown on cHes6-2 level
was not significant even on the t test (P = 0.0676). (H) Forced expression of
Hes cDNAs is epistatic to cD knockdown phenotypes. Here 6-2 and 5-1 in-
dicate coelectroporation of cDNAs for chick Hes6-2 and Hes5-1, respectively,

with the indicated siRNAs. The ratio of NeuN+ to PCNA+ cells was quantified
at cE5 (%change(E/C)). Values are mean ± SEM of three sections from three
embryos. One-way ANOVA analysis (P < 0.0001) and Bonferroni’s posttest
comparisons were performed.
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extinction of CyclinD1may be part of the developmental program
that restricts progenitors from a neuronal fate (54), as suggested
by our transplantation experiments.

Cyclin D1 Promotes Neurogenesis Through a Genetic Pathway
Involving Hes Genes. Our genetic epistasis data suggest involve-
ment of Hes6, a bHLH protein that facilitates neurogenesis (50,
51, 58) and antagonizes the Notch pathway (49), in the promotion
of neurogenesis by Cyclin D1. Because of the lack of antibodies to
cHes6, it is technically difficult to distinguish whether cD1
knockdown reduces Hes6 gene expression or reduces the pro-
portion of Hes6+ cells within the VZ population. However, the
rescue of the effect of cD1 knockdown by cHes6 to inhibit neu-
rogenesis is suggestive of an effect on gene expression (Fig. S7BI).
Nevertheless, we cannot exclude the possibility that this rescue
reflects a cellular or molecular “bypass” effect of Hes6 to pro-

mote neuronal precursor formation, rather than a role for Hes6
as a true effector of Cyclin D1’s proneurogenic activity (Fig.
S7BII; SI Text 2). Although indirect evidence suggests that Hes6
and Cyclin D1 are likely to be coexpressed, at least transiently
(51) (Fig. S8), a “molecular bypass” of cD1 knockdown by Hes6
could still occur within the same precursor population.
Despite these uncertainties, the fact that cD2 knockdown

decreases Hes5-2 expression while enhancing neurogenesis, and
that coexpression of Hes5 cDNAs (but not of Hes6) rescues this
phenotype, suggests that Cyclin D1 and Cyclin D2 may exert
their opposing influences on neurogenesis via regulation (either
direct or indirect) of Hes6 and Hes5, respectively. Such a model
would fit well with the fact that these two Hes factors antagonize
each other’s activity (49) and would link Cyclin D1 to regulation
of the Notch pathway.
The detailed molecular mechanisms through which Cyclin D1

promotes neurogenesis remain to be unraveled. Given the in-
creasing biochemical and molecular evidence indicating that
Cyclin D1 can regulate transcription (19–22, 47), it is attractive
to think that a transcriptional function underlies its neurogenic
influence. The identification of an experimentally tractable de-
velopmental system in which Cyclin D1 plays a clear role in
neuronal cell fate determination independent of its cell cycle
function should provide a valuable setting in which to investigate
the biological relevance of the transcriptional regulatory activi-
ties that have been uncovered for this multifunctional regulatory
protein (20). This in turn should lead to deeper insight into the
general mechanisms that control the balance between self-re-
newal and lineage commitment in stem cells and progenitor cells.

Materials and Methods
Generation of RCAS siRNA. siRNAconstructs directedagainst cD1and cD2were
generatedasdescribedpreviously (38). Specificity andefficiencywereassessed
by analyzing the down-regulation of a co-electroporated HA-tagged chick cD
and the impact on cell cycle kinetics (Fig. S4 A and B).

Chick Electroporation. Chicken embryos were electroporated at cE2 with
RCAS(B) replication-competent avian retroviruses using established methods
(30). For LI calculation, 50 μL of a 5-mg/mL BrdU-PBS solution was added
directly to the embryo at cE4, 30 min before fixation.

In Situ Hybridization. Nonradioactive FISH on frozen chicken embryos
was performed as described previously (30), and immunolabeling for PCNA
was performed sequentially. Double-FISH for cD1 and cD2 (15, 27) was
performed as described previously (59).

Immunohistochemistry. Immunohistochemistry analyses were performed on
frozen mouse and chick embryonic tissue. The antibodies used are listed in SI
Materials and Methods.

Microscopy and Quantification of Protein Levels. All pictures were obtained
using the Leica TCS SP confocal system. Further analysis of intensity levels was
done using Adobe Photoshop software.

In Vivo Transplantation of Single-Cell Suspensions. Olig2-GFP+ MMA+ pre-
cursors from E13.5 mouse spinal cord were FACS-isolated as described pre-
viously (54). Before being mixed with quail career cells and transplanted to
a cE2 spinal cord, FACS-isolated cells were incubated for 2 h at 32 °C with
ecotopic retrovirus Srα coding for mouse Cyclin D and/or nuclear GFP cDNA.
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