
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper 

 Hum Hered 2011;71:234–245 

 DOI: 10.1159/000328842 

 A Dimension Reduction Approach
for Modeling Multi-Locus Interaction
in Case-Control Studies 

 Saonli Basu    a     Wei Pan    a     William S. Oetting    b   

  a    Division of Biostatistics, University of Minnesota, and  b    Department of Experimental and Clinical Pharmacology, 

College of Pharmacy and Institute of Human Genetics, University of Minnesota,  Minneapolis, Minn. , USA 

estimates the direction of association of each SNP with the 

disease and provides an estimate of the average effect of the 

group of SNPs positively and negatively associated with the 

disease in the given SNP set. We illustrate the proposed mod-

el on simulated and real data, and compare its performance 

with a few other existing approaches. Our proposed ap-

proach appeared to outperform the other approaches for 

independent SNPs in our simulation studies. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Genetic mapping of a trait involves implementation of 
a number of statistical strategies to identify relative 
position(s) of gene(s) influencing the trait in the genome. 
Many complex traits of medical relevance such as diabe-
tes, asthma, and Alzheimer’s disease are controlled by 
multiple genes. Interaction between genes, low pene-
trance, and environmental factors make the gene discov-
ery difficult for these complex traits. A common study 
design for genetic mapping of a trait is a case-control 
study design where genotype data on a large number of 
single nucleotide polymorphisms (SNPs) are collected 
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 Abstract 

 Studying one locus or one single nucleotide polymorphism 

(SNP) at a time may not be sufficient to understand complex 

diseases because they are unlikely to result from the effect 

of only one SNP. Each SNP alone may have little or no effect 

on the risk of the disease, but together they may increase the 

risk substantially. Analyses focusing on individual SNPs ig-

nore the possibility of interaction among SNPs. In this paper, 

we propose a parsimonious model to assess the joint effect 

of a group of SNPs in a case-control study. The model imple-

ments a data reduction strategy within a likelihood frame-

work and uses a test to assess the statistical significance of 

the effect of the group of SNPs on the binary trait. The pri-

mary advantage of the proposed approach is that the di-

mension reduction technique produces a test statistic with 

degrees of freedom significantly lower than a multiple logis-

tic regression with only main effects of the SNPs, and our 

parsimonious model can incorporate the possibility of inter-

action among the SNPs. Moreover, the proposed approach 
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on a number of cases and controls to study the associa-
tion between these SNPs and the trait, with the goal of 
identifying SNPs that are associated with the outcome. 
The usual strategy to assess the effects of the SNPs on the 
trait is to perform a univariate logistic regression with 
each SNP as a predictor, and rank the SNPs based on 
their p values from the univariate logistic regression 
analyses. The top significant SNPs which satisfy the ge-
nome-wide threshold of multiple testing are reported by 
the studies.

  In general, the single SNP association analysis, which 
takes only SNPs as basic units of association analysis, has 
a few serious limitations. Many disease-susceptibility 
variants typically have only mild effects [Lesnick et al., 
2007]. They might be difficult to detect due to the high 
threshold of being genome-wide significant. The com-
mon disease often arises from the joint action of multiple 
genes within a pathway. If we consider only the most sig-
nificant SNPs, the genetic variants that jointly have sig-
nificant risk effects but individually make only a small 
contribution will be missed. Moreover, attempting to un-
derstand and interpret a number of significant SNPs 
without any unifying biological theme can be challeng-
ing and demanding and thus might lead to poor repro-
ducibility in the validation studies.

  As an alternative strategy, one could group the SNPs 
together into SNP sets along the genome and perform 
genome-wide tests for individual SNP sets instead of in-
dividual SNPs. The SNPs could be assigned to SNP sets 
on the basis of some meaningful biological criteria (ge-
nomic features), e.g. genes or pathways. Then, tests for the 
association between each genomic feature and a disease 
phenotype can be performed. This gene- and pathway-
based association analysis could allow us to gain insight 
into the functional basis of the association and facilitates 
to unravel the mechanisms of complex diseases [Peng et 
al., 2009]. Moreover, by looking at a gene or pathway as a 
unit of analysis, one might have better chance of detect-
ing association since this reduces the number of tests sub-
stantially compared to the genome-wide single SNP anal-
ysis. In addition, testing the simultaneous effects of mul-
tiple SNPs by considering them jointly might improve 
power: individual-SNP analysis considers only the mar-
ginal effect of each SNP and therefore fails to accommo-
date epistatic effects.

  Standard methods to evaluate the association of mul-
tiple markers with disease status are based on either sin-
gle-marker analyses of the selected group of markers or 
multi-marker multivariate analyses. For single-SNP 
analysis, it is common to compare the allele frequencies 

of each marker between cases and controls by use of a test 
such as Armitage’s test for trend [Sasieni, 1997] or Fisher’s 
exact test and report a test statistic representative of the 
extent of association of the group of SNPs with the dis-
ease. Peng et al. [2009] discussed several such choices of 
test statistics. We need to adjust for multiple testing by 
use of either the Bonferroni correction or a permutation 
p value for the reported test statistic. A more comprehen-
sive modeling approach would be to model the joint effect 
of the group of SNPs and test for association between the 
selected group of SNPs and the disease of interest.

  However, using multiple logistic regression with the 
SNPs as predictors to model the relationship between dis-
ease status and the SNPs has some obvious limitations. 
As each additional main effect is included in the model, 
the number of possible interaction terms grows exponen-
tially. Due to the sparseness of the data in high dimen-
sions, parameter estimates often tend to have large stan-
dard errors, making it difficult to detect interaction. Po-
tential model instability has led many researchers to 
adopt variable reduction schemes (such as backward and 
forward selection) to decrease the number of variables 
included in the model. Although this approach can be 
more powerful than testing each marker separately 
[Longmate, 2001], it still suffers from weak power because 
of the large number of degrees of freedom. To reduce the 
degrees of freedom, a set of multi-marker tests that com-
pare pairwise genetic similarity with pairwise trait simi-
larity among individuals were proposed by Schaid et al. 
[2005], Wessel and Schork [2006] and Mukhopadhyay et 
al. [2010]. More recently, Wu et al. [2010] proposed a com-
putationally efficient logistic kernel-machine (KM) test 
that scores the similarity among individuals through dif-
ferent choices of the kernels and proposes a score test to 
detect association between the SNP set and the disease. 
They considered several choices of kernels such as linear 
(KM-Linear), identity-by-descent (KM-IBS), quadratic 
(KM-Quad), and two-way (KM-2way) kernels which 
could capture the non-linear or epistatic effects of the 
SNPs. We have compared the performance of our ap-
proach with the KM-approach extensively through simu-
lation studies.

  In this paper, we present a new methodology for mod-
eling the joint effects of a group of SNPs in a case-control 
study. The proposed approach employs a parsimonious 
model to capture the effect of a group of interacting SNPs 
on the disease. This model is motivated by the approach 
adopted by Basu et al. [2009], which classifies the 2 f  
founder alleles in a pedigree as high-risk or low-risk al-
leles, and thus avoids having separate parameter for each 
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founder allele and thereby reduces the number of param-
eters from 2 f  to 2. In the proposed approach, we have used 
two different scoring systems to classify the SNPs into 
high-risk and low-risk groups, but the flexibility of this 
new methodology is that many other scores can be pro-
posed in order to capture the joint effect of the SNP set 
on the disease. We have also proposed a test to assess the 
statistical significance of the effect of the group of SNPs 
on a binary trait. Moreover, unlike Wu et al.’s [2010] ap-
proach, our approach could provide the estimated best 
model that explains the relationship between the SNPs 
and the disease and an estimate of the average effect of 
the high-risk and the low-risk SNPs for the selected best 
model. We have compared the performance of our ap-
proach with Wu et al. [2010] through extensive simula-
tions and have demonstrated the superiority of the pro-
posed approach in detecting higher-order interaction 
among the SNP sets.

  Methods 

 A Latent Variable Multi-Locus Model (LVMM) 
 Here, we propose a parsimonious latent variable model to 

identify the association between a group of  p  ( p   6  2) SNPs and 
the trait. The model employs the data reduction strategy as origi-
nally proposed in Basu et al. [2009] that tries to address the issue 
of estimating large number of parameters with comparatively 
smaller sample size. The model also allows to incorporate the in-
teraction among the SNPs. This approach is a likelihood-based 
approach and we propose a formal statistical test for the signifi-
cance of the effect of the group of SNPs on the risk of a disease. 
Below we illustrate our model for a balanced case-control study.

  Consider  n  individuals with binary trait data  Y  and marker 
data  X  on a group of  p  SNPs. We model the minor allele of each 
SNP. Each individual can have 0, 1 or 2 copies of the minor allele 
of each SNP. Assume that the ( i ,  j )-th entry of the matrix  X  repre-
sents the number of copies of the minor allele of the  j -th SNP in 
the  i -th individual ( i  = 1, ...,  n  and  j  = 1, ...,  p ). We assume that the 
minor allele of each SNP can be either one of the two types, such 
as ‘high-risk’ or ‘low-risk’, thereby classifying all the SNPs essen-
tially into two categories. The low-risk allele means that the minor 
allele is associated with the decrease in risk, whereas high-risk 
implies that the allele is associated with the increase in risk of the 
disease. We label the high-risk SNP by 1 and the low-risk SNP by 
0 ( table 1 ).

  A priori, we do not know if a minor allele is a high-risk or a 
low-risk allele. Hence, for  p  SNPs, there will be 2 p  possible alloca-
tions of risk statuses. If A denotes a risk-label allocation to the 
minor alleles, then there are 2 p  possible values of A, where each A 
is a vector of 1’s and 0’s denoting the risk statuses of the  p  SNPs. 
This allocation of risk labels to the SNPs is equivalent to the dif-
ferent choices of models for the SNPs ( table 1 ). For  p  SNPs, there 
are 2 p  different choices of the models or different allocation of risk 
labels A to  p  SNPs. Under the null hypothesis, if there is no asso-
ciation between the SNPs and the trait, all these allocations would 

be equally likely. The biggest advantage of assigning ‘0’ and ‘1’ 
statuses to the SNPs is that the approach does not require a sepa-
rate parameter for each SNP, rather it classifies all the SNPs into 
two groups. In order to assess the effect of the SNPs on the trait, 
one then requires just two parameters to represent these two 
classes, thereby essentially reducing the degrees of freedom re-
quired to model the effect of a group of SNPs, for example SNPs 
within a pathway.

  For each allocation of risk statuses, one could assign a score 
associated with each risk class. For example, the score could be 
the total number of minor alleles in each class for each individual. 
In that case, define  Z  1  = total number of alleles in the high-risk 
group and  Z  2  = total number of alleles in the low-risk group. We 
call this score M-score. The following model (equation 1) is then 
used to assess the effect of the group of SNPs on the trait for a 
specific choice of risk allocation A.

 1

1 1 2 2

1

Pr X,
log ,    

1 Pr X
Y |

Z Z
Y | ,

� �
A

A A
A

                      
(1)

  where  Y  is the binary trait data on individuals,  X  is the design 
matrix corresponding to the group of  p  SNPs and Pr 1  is the con-
ditional probability of  Y  given  X  and A under the alternative hy-
pothesis of association between  p  SNPs and the trait  Y . The char-
acteristic of the high-risk group is defined by the coefficient  �  1 (A) 
which is restricted to be non-negative. The characteristic of the 
low-risk group is defined by the coefficient  �  2 (A) which is re-
stricted to be non-positive. In other words, by restricting  �  1 (A) to 
take non-negative values, we ensure that the SNPs in that group 
are associated with the increase in risk of the disease. Similarly, 
by restricting  �  2 (A) to take non-positive values, we ensure that the 
SNPs in that group are associated with the decrease in risk of the 
disease. A priori, we do not know if a minor allele is a high-risk or 
a low-risk allele, but misclassification of an SNP in a high-risk or 
a low-risk group would reduce the likelihood in equation 1 for a 
given dataset. Therefore, our goal is to find the optimal allocation 
A that maximizes the likelihood in equation 1 and construct a test 
for association between the group of markers and the disease. For 
each possible allocation of risk statuses (A) to the minor alleles, 
we can determine the values of  Z  1  and  Z  2  for each individual giv-
en the marker data  X . 

Table 1. A llocations of risk labels to the minor alleles of 3 SNPs 
and the corresponding probability under the null hypothesis of 
no association between the SNPs and the trait

Allocation Configuration Probability

A1 0 0 0 0.125
A2 0 0 1 0.125
A3 0 1 0 0.125
A4 1 0 0 0.125
A5 0 1 1 0.125
A6 1 0 1 0.125
A7 1 1 0 0.125
A8 1 1 1 0.125
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 Each allocation A and the corresponding M-score is equiva-
lent to a multiple logistic regression model with main effects of 
the SNPs and a specific choice of the direction of effect for each 
of the  p  SNPs. For example, let us consider two allocations, A 1  = 
(1, 0, 0, ..., 0) and A 2  = (1, 1, 0, ..., 0). Now, if we consider the full 
logistic regression main-effect model

1

1 1 2 2

1

Pr X
log ,

1 Pr X p p

Y |
X X X

Y |
� � � �               (2)

   then allocation A 2  and M-score is equivalent to choosing  �  1  =
 �  2  =  �  1 (A 2 ) and  �  3  =  �  4  = ... =  �  p  =  �  2 (A 2 ) and allocation A 1  equiv-
alent to choosing  �  1  =  �  1 (A 1 ) and  �  2  =  �  3  = ... =  �  p  =  �  2 (A 1 ). We 
select the allocation between A 1  and A 2 , which provides a higher 
likelihood of the data. 

 We adopted a forward selection scheme to calculate our final 
test statistic in equation 4 to test the null hypothesis of no as-
sociation between the SNPs and the disease. We illustrate our 
scheme for a 3-SNP model.  Table 1  illustrates the possible risk 
allocations for 3 SNPs. We start by computing the likelihood in 
equation 1 for the allocation where every minor allele belongs 
to the low-risk category, that is the allocation number 1 in  ta-
ble 1 . Next, we change the group membership of the first SNP 
and see if the likelihood has increased. If the Likelihood in-
creases, we modify the risk status of that SNP, otherwise we 
keep it the same. Then, we move to the next SNP and repeat the 
same process as with the first SNP. Thus, we finally select the 
model A that maximizes the test statistic specified in equation 
4, among all models considered in this forward selection 
scheme. The motivation behind this selection scheme is that if 
there is an affinity among the group of low-risk alleles, chang-
ing the group membership of an allele would cause a decrease 
in the likelihood. On the other hand, if an allele has more affin-
ity towards the high-risk group, changing the membership from 
low-risk to high-risk would increase the likelihood in equation 
1. According to our forward selection scheme, we browse 
through ( p  + 1) different allocations for  p  SNPs. The test statis-
tic (equation 4) is obtained by maximizing over the parameters 
from these ( p  + 1) different sets of allocations and for each al-
location, there is the coefficient  �  1 (A) restricted to [0,  G ) and 
the coefficient  �  2 (A) restricted to ( –  G , 0]. We used the glm() 
function in R [R Development Core Team, 2005] to implement 
our model. In order to ensure that the two coefficients  �  1 (A) and 
 �  2 (A) are of opposite signs, we added an intercept  �  1 (A) +  �  2 (A) 
to the model in equation 1. For a balanced case-control study, 
the intercept will be zero, which ensures the opposite signs of 
the coefficients in equation 1.

  If there is no association between the SNPs and the trait, it is 
equally likely to observe these different risk allocations. In other 
words, all models are equally likely under the null hypothesis. 
Hence, under the null hypothesis, Pr 0 [ Y  �  X , A j ] = Pr 0 [ Y ],    C  j  where-
as Pr 1 [ Y  �  X , A j ] would be different from Pr 0 [ Y ] for at least one A j 
( j  = 1, 2, ... ( p  + 1)) under the alternative hypothesis, where Pr 0 [ Y ] 
is the probability distribution of the trait  Y  under the null hypo-
thesis.

  In terms of the parameters, the null hypothesis of no associa-
tion between the group of SNPs and the trait will be equivalent
to test H 0 :  �  1 (A j ) = 0,  �  2 (A) = 0  C  j  against the alternative H 1 :
 �  1 (A j )  6  0 or  �  2 (A j )  ̂   0 for at least one  j  = 1, 2, ..., ( p  + 1). For 

each allocation A, we calculate the corresponding likelihood-ratio 
statistic (equation 3) given by

1 2, 1

0

max Pr X,
LR 2log .        

Pr

Y |
Y

� �A A A
A

                         
(3)

  Note that, under the null hypothesis, Pr 0  does not depend on the 
risk allocation A. We used the maximum likelihood estimates 
   �  ̂   1 (A) and  � ̂     2 (A) to estimate the parameters  �  1 (A) and  �  2 (A) of 
the probability distribution Pr 1 [ Y  �  X , A]. As mentioned before, a 
priori, we do not know which minor allele can be classified as 
high-risk or low-risk. So we adopted the forward selection scheme 
mentioned above and went through the ( p  + 1) allocations. The 
final test statistic  T  is computed by taking the maximum of the 
individual likelihood-ratio statistic for each allocation A: 
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  We estimated the distribution of the test statistic under the null 
hypothesis through extensive simulations and for  p  SNPs, the dis-
tribution was well approximated by a  �  2  distribution with  p /2 de-
grees of freedom for all different numbers of SNPs considered in 
our simulation study.

  One important advantage of this proposed approach is the 
flexibility in the choice of scores. For example, one could select a 
score that captures the higher-order interaction among the group 
of SNPs while keeping the degrees of freedom of the test statistic 
the same. Here, we have proposed such a score, the P-score that 
captures the interaction among the SNPs. One important thing to 
note here is that one could use a more advanced scoring system 
such as least-squares KM scorings that have been recently de-
scribed for gene-level and pathway-level analyses of both expres-
sion and SNP data that allows to estimate the joint effects of SNPs 
[Liu et al., 2007, 2008; Kwee et al., 2008;]. For a specific value of A, 
our P-score is calculated as the total number of pairs of alleles 
within each risk group from the marker data  X . Define  Z  1  = num-
ber of pairs of alleles in the high-risk group and  Z  2  = number of 
pairs of alleles in the low-risk group. The idea behind this choice 
of score is that it provides a way to incorporate higher-order in-
teraction in the model. For example, if there is a three-way inter-
action associated with the increase in risk of the trait, then the 
allocations A j  which assign these three SNPs to the high-risk 
group would give a high value of  Z  1  and the likelihood Pr[ Y  �  X , A j ] 
would show deviation from the likelihood under no association 
of the SNPs and the trait. Our scoring scheme is motivated by He 
et al. [2010], where we showed that pair-wise scoring can signifi-
cantly improve the sparsity issue faced by the MDR approach 
[Ritchie et al., 2001] in high-dimensional contingency tables.

  In the following section, we have performed a number of sim-
ulations to compare the performance of our approach in detecting 
association between a set of SNPs and a disease. We have com-
pared the power of our approach with Wu et al.’s [2010] approach. 
We have also conducted a number of simulations to study the per-
formance of our approach in detecting association between a 
group of SNPs which are in LD with the causal SNPs. We applied 
our approach on a real dataset and noticed a significant difference 
in the findings between our approach and the single-SNP asso-
ciation analysis.
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  Results 

 Simulation 1 
 We simulated data on 200 cases and 200 controls for a 

different number of SNPs. We assumed that there is no 
LD among the SNPs. We simulated data on 3, 4, 6, and 10 
SNPs under the null hypothesis that none of the SNPs are 
associated with the trait. We simulated 1,000 datasets for 
each scenario and computed the distribution of the test 
statistic in equation 4. We then compared the distribu-
tion of the statistic for  p  SNPs with the distribution of a 
 �  2  random variable with  p /2 degrees of freedom.  Figure 
1  shows the comparison of the empirical cumulative dis-
tribution function (CDF) of the observed test statistic and 
the CDF of the  �  2  random variable. The estimated em-
pirical distribution of the test statistic in equation 4 of the 
proposed gene-set approach matched closely with the 
distribution of the corresponding  �  2  statistic with  p /2 de-
grees of freedom ( fig. 1 ).

  Simulation 2 
 We simulated 1,000 datasets from two different alter-

native models of phenotype-genotype association for 200 
cases and 200 controls. For this simulation study, we con-
sidered multiple independent SNPs with only marginal 
(main) effects on the disease. We considered a 4-SNP 
main-effect model and a 6-SNP main-effect model for 
this simulation study. Each SNP had a minor allele fre-
quency randomly drawn from a uniform distribution be-
tween 0.05–0.30. We used an additive genetic model for 
each SNP in this simulation study. The software PLINK 
[Purcell et al., 2007] was used to simulate the phenotype 
and the genotype data on the individuals. For the 4-SNP 
model, we considered SNP1 with a disease odds ratio of 
1.1, SNP2 with a disease odds ratio of 0.4, SNP3 and SNP4 
with a disease odds ratio of 0.6. For the 6-SNP model, 4 
SNPs had a disease odds ratio of 1.2, 1 with an odds ratio 
of 0.3 and the 6th SNP had an odds ratio of 0.7 ( fig. 2 ).

  We compared our approach with the KM regression 
model proposed by Wu et al. [2010]. We also fitted a mul-
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    Fig. 1.  Figure shows the empirical distribu-
tion of the test statistic for  p  SNPs (equa-
tion 4) for the proposed LVMM approach 
under the null hypothesis. The dashed line 
shows the expected CDF of the  �  2  statistic 
with  p /2 degree of freedoms. The solid line 
shows the empirical CDF of the test statis-
tic for 3, 4, 6 and 10 SNPs, respectively. 
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tiple logistic regression with the main effects of each of 
the 8 SNPs and performed a Wald test for the null hy-
pothesis that none of the SNPs are associated with the 
disease (MLR approach).  Figure 2  shows the performance 
of our LVMM P-score and LVMM M-score and the dif-
ferent scores proposed by Wu et al. [2010] to detect asso-
ciation for the 4-SNP and the 6-SNP model mentioned 
above. We reported the empirical power of all these ap-
proaches. We calculated the 95th, 99th and 999th percen-
tile from the null distribution of each of the test statistics. 
The power was computed as the number of times out of 
1,000 simulations. The observed test statistic under the 
alternative model was higher than the empirical cut-offs. 
As shown in  figure 2 , the M-score of our LVMM ap-
proach outperformed marginally the other approaches. 
They all had very similar power, but the added advantage 
of our LVMM approach is that it also provided the alloca-
tion A that maximized the likelihood of the observed 
data. Out of 1,000 simulations, the M-score identified the 
allocation ‘1000’ 986 times. In other words, even with an 
odds ratio of 1.1, most of the times it identified the first 
SNP as high-risk SNP. It also correctly identified SNP3 
and SNP4 as the low-risk SNPs. For the 6-SNP model, we 
noticed again that the LVMM M-score approach per-
formed marginally better than the other approaches. 
Moreover, the LVMM M-score identified the allocation 
‘111100’ 512 times, the allocation ‘101100’ 212 times and 
the ‘110100’ 224 times out of 1,000 simulations. As ex-
pected, the performance of the LVMM M-score approach 
was better the LVMM P-score approach since the under-
lying model was a main-effect model without any inter-
action among the SNPs. Moreover, the power of the 
LVMM M-score approach was quite close to the main-

effect model with a separate parameter for each SNP. 
Among the KM approaches, the performance of the KM-
IBS approach was better than that of the other three ker-
nels.

  Simulation 3 
 We simulated data under three different three-way in-

teraction models. For each model, we simulated 1,000 da-
tasets. Each dataset contained 400 samples (200 cases and 
200 controls) and 3 SNPs. We considered the following 
three models of interaction for simulation ( fig. 3 ):

  1. Model 1:
logit(p) = –5 + 3 I(SNP1 = Aa, SNP2 = Bb, SNP3 = Cc) 

+ 3 I(SNP1 =   AA, SNP2 = BB, SNP3 = CC) (minor allele 
frequency 0.1)

  2. Model 2:
logit(p) = –5 + 1.2 I(SNP1 = AA, SNP2 = BB) + 1.5 

I(SNP2 = BB,   SNP3 = CC) + 1.8 I(SNP1 = AA, SNP3 = 
CC) (minor allele frequency 0.3)

 3. Model 3:
logit(p) = –5 + 4 I(SNP1 = AA, SNP2 = BB, SNP3 = CC) 

(minor allele frequency 0.3)
 Among these 1,000 simulations, we checked how 

many times our LVMM P-score approach identified the 
correct allocation, that is all three SNPs in the high-risk 
group. The proportion of times our approach selected the 
allocation (1, 1, 1) as the best allocation (i.e. it maximized 
the likelihood in equation 3) was 0.954, 0.812 and 0.479 
for Model 1, 2 and 3, respectively. For Model 3, 623 out of 
1,000 times our approach identified at least 2 SNPs in the 
high-risk group out of these 3 SNPs. We also compared 
the performance of our approach with Wu et al.’s [2010] 
approach and the MLR approach in terms of detecting 

0.05 0.01 0.001

0

0.2

0.4

0.6

0.8

1.0

alpha

P
o

w
e

r

0.05 0.01

LSM (M-score)

MLR

LSM (P-score)

KM (Linear)

KM (2way)

KM (Quad)

KM (IBS)

0.001

0

0.2

0.4

0.6

0.8

1.0

alpha

P
o

w
e

r

  Fig. 2.  The power of the KM regression 
[Wu et al., 2010], the MLR approach and 
the LVMM approach for detection of in-
teraction under three different main-ef-
fect models (Simulation 2 in section 3.2). 
The power of each approach to detect the 
association was presented for different val-
ues of the type I error.   
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this set of 3 SNPs associated with the disease.  Figure 3  
shows the power to detect association for our LVMM ap-
proach and Wu et al.’s [2010] KM regression model for 
various choices of the kernel. Our approach with the P-
score generally outperformed the KM regression ap-
proach for all these 3 models. The power of the LVMM 
approach was substantially higher for the pair-wise inter-
action model (Model 2).

  Simulation 4 
 We performed a simulation study to compare the per-

formance of the approaches when the causal SNP(s) is 
(are) not observed, but in LD with the observed set of 
SNPs. We followed similar set-ups as given in Wang and 

Elston [2007] and Pan et al. [2010] with k = 10 marker 
SNPs and a sample size of 400 (200 cases and 200 con-
trols). First, we generated a latent vector of length 10 from 
a multivariate normal distribution with mean 0 and vari-
ance 1 and the covariance structure AR-1 with the cor-
relation  �  ij  = 0.8  �   i   –   j   �  . We then discretized each variate of 
this simulated latent vector with values 0, 1 and 2 if the 
absolute value of the variate was  ! Z 0.9 , between  Z  0.9  and 
 Z  0.98  and  6  Z  0.98 , respectively, where  Z  0.9  and  Z  0.98  are the 
90th and 98th quantile of the standard normal distribu-
tion, respectively. Each of these transformed variates rep-
resented an SNP. The correlation structure introduced 
LD among these 10 SNPs. Our simulation also ensured 
the HWE and an expected allele frequency of 0.2 for each 
SNP. We then simulated the phenotype data from a mul-
tiple logistic regression with SNP1 and SNP8 as the caus-
al SNPs. We considered an additive genetic model for the 
SNPs. The following model was used for the simulation 
of the phenotype data ( table 2 ):

  logit( p ) = –4 + 2 SNP1  !  SNP8. (5)

  We then removed these 2 causal SNPs and analyzed 
the dataset of 200 cases and 200 controls with 8 SNPs. We 
considered three different approaches for testing if the 
SNP set is associated with the disease. We ran a single-
SNP analysis with these 8 SNPs and used Bonferroni cor-
rection to adjust the p values of these SNPs. We consid-
ered the minimum of these Bonferroni adjusted p values 
(minP approach); in  table 2,  the number of times the p 
value was  ̂  5  !  10 –3 , 5  !  10 –4  and 5  !  10 –5  out of 1,000 
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  Fig. 3.  The power of the KM regression [Wu et al., 2010], the MLR approach and the LVMM approach for detec-
tion of interaction under three different 3 SNP interaction models (Simulation 3 in section 3.3). The power of 
each approach to detect the association was presented for different values of the type I error. 
  

Table 2. T he power of KM-Linear, KM-Quad, KM-IBS, KM-2way, 
LVMM M-score, LVMM P-score, minP and MLR approach to 
detect 8 SNPs in LD at different level of type I errors

Type I error 5 ! 10–3 5 ! 10–4 5 ! 10–5

KM-Linear 0.992 0.982 0.955
KM-Quad 0.995 0.988 0.960
KM-IBS 0.991 0.982 0.953
KM-2way 0.995 0.988 0.958
LVMM M-score 0.964 0.872 0.705
LVMM P-score 0.979 0.909 0.773
minP 0.971 0.849 0.651
MLR 0.958 0.863 0.702
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simulations is shown. We also performed our LVMM ap-
proach with M-score and P-score. In  table 2 , we show the 
asymptotic p value of the test statistic by comparing it 
with  �  2  distribution with four degrees of freedom. We 
also used the kernel logistic regression approach [Wu et 
al., 2010] to test for the significance of joint effect of these 
8 SNPs on the disease.  Table 2  shows how many times out 
of 1,000 simulations the p value of each test was  ̂  5  !  
10 –3 , 5  !  10 –4  and 5  !  10 –5 . We also fitted a multiple lo-
gistic regression with the main effects of each of the 8 
SNPs and performed a Wald test for the null hypothesis 
that none of the SNPs are associated with the disease 
(MLR approach). In  table 2 , the number of times the p 
value of the Wald test was  ̂  5  !  10 –3 , 5  !  10 –4  and 5  !  
10 –5  out of 1,000 simulations is shown. Both the MLR ap-
proach and the LVMM M-score model the main effects 
of all the SNPs. The power of the MLR approach was very 
similar to that of the LVMM M-score approach. The KM 
approach generally performed better since it takes into 
account the LD among the SNPs and adjusts the degrees 
of freedom accordingly. The LVMM P-score performed 
well and had significantly better power than the MLR ap-
proach. All the approaches that model the joint effect of 
the SNPs had better power than the minP approach.

  Simulation 5 
 In this simulation study, we simulated data from a 

HAPMAP CEU population. We selected the CYP3A4 
gene from the ADME (absorption, distribution, metabo-
lism and excretion) pathway for our simulation study, 
which is one of the genes we studied in our real data anal-
ysis. This gene, CYP3A4, encodes a member of the cyto-
chrome P450 superfamily of enzymes. The cytochrome 
P450 proteins are monooxygenases which catalyze many 
reactions involved in drug metabolism and synthesis of 
cholesterol, steroids and other lipids. We considered a to-
tal of 18 tag SNPs from this CYP3A4 gene for our simula-
tion study. We first simulated genotypes on all 18 SNPs 
using HAPGEN2 (http://www.well.ox.ac.uk/zhan/hapgen/
hapgen2.html) and then considered an interaction mod-
el specified in Marchini et al. [2005] and used the R pack-
age simulateDiscretePhenotypes in HAPGEN2 to simu-
late phenotype data. We used the twoSnpInteraction-
Model2() function to simulate interaction between two 
SNPs. We then removed these two SNPs from the SNP 
list and considered an SNP set of 16 SNPs for our simula-
tion. We simulated 200 cases and 200 controls for this 
comparison.

  We compared the performance of all the methods 
mentioned in Simulation 4 by simulating 1,000 datasets 

under this 2-SNP interaction model. The power of all the 
methods at various levels of type I error is shown in  ta-
ble 3 . The KM approach performed well in this simula-
tion study as well. In general, the minP approach per-
formed better than the MLR approach. The LVMM ap-
proach was affected by the LD in the dataset and had 
lower power than the KM approach, but the performance 
of the LVMM M-score approach was substantially better 
than the MLR approach and the KM-2way approach had 
similar performance as the LVMM M-score approach ( ta-
ble 3 ).

  Real Data Analysis 
 The limitation of many existing approaches for path-

way-based analysis [Wang et al., 2007; Inada et al., 2008; 
Peng et al., 2009] is that they only focus on the main ef-
fects of the SNPs and do not incorporate the interaction 
among the multiple SNPs within each pathway. More-
over, these approaches are completely nonparametric and 
hence cannot evaluate the significance of the joint effect 
of the group of SNPs within each pathway. Our parsimo-
nious model in equation 1 provides an alternative ap-
proach to conduct a pathway-based analysis. The param-
eters  �  1 (A) and  �  2 (A) in equation 1 for the LVMM M-
score approach measure average effect size of a high-risk 
SNP and a low-risk SNP, respectively, within each path-
way. The following illustrates an implementation of path-
way-based analysis using our proposed approach. We 
also implemented the KM approach, the minP approach 
and the MLR approach described in Simulation 4 to com-
pare the findings of these approaches on a real dataset.

  We studied the performance of the above mentioned 
approaches to detect genetic association of acute rejection 
(AR) in kidney transplant patients. Whole blood was ob-

Table 3. T he power of KM-Linear, KM-Quad, KM-IBS, KM-2way, 
LVMM M-score, LVMM P-score, minP and MLR approach to 
detect the 8 SNPs in Simulation 5 at different level of type I errors

Type I error 0.01 0.005 0.001

KM-Linear 0.695 0.607 0.419
KM-Quad 0.650 0.486 0.409
KM-IBS 0.724 0.602 0.452
KM-2way 0.635 0.482 0.412
LVMM M-score 0.620 0.510 0.392
LVMM P-score 0.614 0.474 0.359
minP 0.615 0.506 0.372
MLR 0.520 0.461 0.308
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tained with informed consent and DNA isolated from 271 
kidney allograft recipients, 136 of whom had AR within 
6 months of transplant, and 135 of whom did not have any 
detectable AR after at least 8 years post-transplant. All 
received Ab induction and CNI, with either MMF or si-
rolimus. DNA variants were genotyped using a Affyme-
trix custom genotyping chip containing 3,590 SNPs, 
many of which are thought to be functional variants 
within biologically relevant genes to AR including genes 
in pathways associated with immunity, cell signaling, 
ADME, cell growth and proliferation [Van Ness et al., 
2008]. Genotyping was performed using the Affymetrix 
GeneChip Scanner 3000 Targeted Genotyping System 
(GCS 3000 TG System), which utilizes molecular inver-
sion probes to simultaneously identify the 3,404 pre-se-
lected SNPs. Methods for genotyping have been previ-
ously described and were performed in strict adherence 
to the manufacturer’s protocol [Hardenbol et al., 2003]. 
For this comparison study, we constructed a balanced 
case-control study by randomly selecting 120 Caucasian 
patients with AR within 6 months of transplant, and 120 
Caucasian patients without any detectable AR after at 
least 8 years post-transplant.

  Of the 3,404 SNPs typed, 80 SNPs had no data and 
were hence excluded from the analysis. Of the remaining 
3,324 SNPs, the call rate was 98.6%. Our goal here was to 
detect any evidence of interaction among the SNPs asso-
ciated with AR in kidney allografts. Among these SNPs, 
we excluded those SNPs which have minor allele frequen-
cy  ! 5%. We also excluded those SNPs which have more 
than 10% missing values. We then imputed the missing 
data for each SNP from the observed genotype distribu-
tion. For the remaining SNPs, we did Fisher’s exact test 
and selected only the SNPs with p value  ! 0.1 for the in-
teraction detection purpose. Among these 340 SNPs, we 
only considered the SNPs in ADME pathways.

  A major advancement in reducing the risk of AR in 
kidney allograft recipients was the introduction of im-
munosuppressant drugs including cyclosporine A and 
tacrolimus, both calcineurin inhibitors, and sirolimus, 
which binds to the mammalian target of the rapamycin 
complex 1 (mTORC1) [Kaufman et al., 2004; Meier-
Kriesche et al., 2006]. How well these drugs protect the 
recipient from AR is due largely to how the patient ab-
sorbs and metabolizes the drug. These drugs demon-
strate large inter-patient variation in pharmacokinetic 
(PK) parameters [Press et al., 2009]. Variation in the PK 

Table 4. T he significant subgroups of the ADME pathways reported by the different approaches

Pathway
sub-group

�̂1

(SD)
�̂2

(SD)
SNP
n

LVMM 
M-score
(asym.)

LVMM 
M-score
(permutation)

LVMM 
P-score
(asym.)

LVMM P-
score
(permutation)

KM-Linear KM-Quad KM-IBS KM-2way minP MLR

ATP-binding
cassette, 
subfamily B
(MDR/TAP)

0.176
(0.03)

–0.265
(0.05)

10 0.002 3 ! 10–4 0.003 1 ! 10–4 1 !10–4 4.69 ! 
10–5

4.66 !
10–6

2.57 !
10–5

0.005 0.001

ATP-binding
cassette, 
subfamily C
(CFTR/MRP)

0.535
(0.03)

–0.248
(0.04)

16 0.124 0.022 0.302 0.144 0.085 0.530 0.002 0.531 0.485 0.246

Cytochrome
P450, family 17,
sub-family A

0 –0.498
(0.02)

3 0.029 0.009 0.052 0.011 0.009 0.009 0.008 0.010 0.032 0.067

Cytochrome
P450, family 1,
sub-family A

0 –0.510
(0.04)

4 0.091 0.037 0.152 0.008 0.018 0.032 0.024 0.032 0.059 0.077

Cytochrome
P450, family 2,
sub-family E

0.282
(0.03)

–0.515
(0.06)

6 0.078 0.021 0.103 0.025 0.008 0.009 0.013 0.009 0.09 0.13

UDP glycosyl-
transferase 1
family

0.280
(0.01)

–0.239
(0.04)

5 0.021 0.001 0.088 0.007 0.004 0.010 0.0009 0.010 0.006 0.010
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of these drugs can result in altered serum concentrations 
that can reduce drug efficacy or result in toxicity. There 
are various proteins that alter absorbance and metabo-
lism and are members of the ADME pathways. Few mem-
bers of this pathway have been associated with immuno-
suppressant PK variation [Wang et al., 2009]. According 
to Kuypers et al. [2008], these members include hepatic 
cytochrome P450 3A5 (CYP3A5) and an ATP-driven ef-
flux pump (multidrug resistance 1; MDR1) ( table 4 ).

  We implemented all the approaches on 44 different 
subgroups of SNPs in the ADME pathway. In  table 3 , only 
the subgroups with a reported p value  ̂  0.01 by at least 
one of the approaches are shown. For the LVMM ap-
proach, we reported the p values from the  �  2  approxima-
tion with appropriate degrees of freedom. We also con-
ducted a permutation test with 10,000 permutations and 
the p values are shown in  table 3 . The LVMM approach 
performed substantially better than the minP and the 
MLR approach. We also reported the average effect sizes 
of a high-risk and a low-risk SNP within each SNP set as 
produced by the LVMM M-score approach. The KM ap-
proaches also performed really well on this real dataset. 
Their findings were in strong agreement with the LVMM 
approach. For the significant pathways, the p values of the 
KM approaches were generally lower the LVMM ap-
proach.

  The subgroup ATP-binding cassette (sub-family B) 
showed a significant association with AR. The sub-fam-
ily B of the ATP-binding cassette had genes such as 
ABCB1 and ABCB11. Both ABCB1 and ABCB11 are in-
volved in small molecule transport and have broad sub-
strate specificity [Sharom, 2008]. These proteins are also 
involved in the transport and distribution of immuno-
suppressants used in kidney transplantation, and reports 
have shown that variation within these proteins is associ-
ated with kidney transplant outcomes, especially when 
calcineurin inhibitors are used [Naesens et al., 2009].

  Discussion 

 Common diseases often arise from joint action of mul-
tiple genes within a pathway. A pathway consists of a 
group of interacting components acting in concert to per-
form specific biological tasks. Although each single SNP 
may confer small disease risk, their joint actions will play 
a significant role in the development of disease. If we only 
consider the most significant SNPs, the genetic variants 
that jointly have significant risk effects, but individually 
make only a small contribution, will be missed. We have 

proposed a new methodology for assessing joint effects of 
a group of SNPs, incorporating the possibility of interac-
tion among SNPs. We have implemented the data reduc-
tion strategy [Basu et al., 2009] within a likelihood frame-
work and used a test to assess the statistical significance 
of a group of SNPs. The proposed approach appeared to 
outperform other existing approaches for independent 
SNPs in our simulation studies. Moreover, our proposed 
approach provides an estimate of average effect of the 
high-risk alleles in the SNP set and an estimate of the av-
erage effect of the low-risk alleles in the SNP set. Our ap-
proach also provides the best allocation or model that 
explains the relationship between the SNP set and the 
disease.

  One big assumption for this LVMM approach is that 
it assumes that all the SNPs within each risk group have 
the same effect size. We investigated the performance of 
our proposed approach through simulation studies when 
this assumption is violated. In our simulation studies, for 
example Simulation 2, the proposed approach performed 
quite well as compared to the multiple logistic regression 
model with separate parameters for each SNP effect. 
Moreover, our proposed approach is computationally 
faster and would certainly be more useful when one deals 
with a large group of SNPs.

  The proposed approach is designed to test for joint ef-
fects of a group of SNPs with a disease. It would get af-
fected if there are a lot of null SNPs within the group. 
Hence, we need to use a pre-screening technique, for ex-
ample restricting the SNP set to the SNPs below certain 
p value cut-offs before implementing our approach. All 
methods would be affected to certain degree if there are 
a lot of null or nearly-null SNPs in the dataset. We have 
investigated the effect of the null SNPs on the LVMM ap-
proach (simulations not shown here) and it appears that 
this approach is more sensitive to the inclusion of null 
SNPs as compared to the KM approach. We intend to in-
vestigate this further and propose a data-adaptive ap-
proach which would better deal with null SNPs.

  The asymptotic null distribution of our proposed test 
statistic for p SNPs seemed to be well approximated by a 
 �  2  distribution with  p /2 degrees of freedom in our simu-
lation studies. We intend to explore this more to theo-
retically derive the asymptotic null distribution of the 
proposed test statistic. Another possible approach would 
be to propose a test statistic by averaging over all alloca-
tions rather than taking the maximum over the alloca-
tions. This would be similar to model averaging and the 
advantage of this approach is that if there are multiple 
possible allocations that explain the nature of association 
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between the SNP set and disease, the test statistic would 
gain power by averaging over all the allocations.

  The proposed LVMM approach assigns the SNPs into 
high-risk and low-risk groups and provides an estimate 
of the average effect of each group. This strategy might be 
useful to model the rare variants where, due to low fre-
quency of each SNP, it is not possible to estimate indi-
vidual SNP effect.

  When applying the methods for detection of multi-
locus effects, the presence of missing observations reduc-
es the number of observations available in the analysis. 
The most appropriate approach at present is to use only 
subjects with complete observations. However, as the 
number of genotypes increases, the number of subjects 
with complete observations decreases rapidly. Currently, 
there are several approaches to handle missing data and 
they can be used to implement any method to detect 
gene-gene interaction in presence of missing data [Nam-
kung et al., 2009]. One solution to handle this situation is 
to impute missing observations, which we did for our real 
data analysis.

  The proposed null distribution of the test statistic  T  
( �  2  with  p /2 degrees of freedom for  p  SNPs) can be con-
servative if the  p  SNPs within an SNP set are correlated, 
i.e. if there is LD among them. In Simulation 4, we see the 
impact of LD among SNPs on the power of the LVMM 
approach. To address this issue, one could perform a per-
mutation test or some re-simulation-based approach to 
estimate the null distribution of the test statistic, as we 
did in our real data analysis. It is computationally very 
feasible to perform a permutation test within our LVMM 
framework, but in the worst situation, the null distribu-
tion approximation ( �  2  with  p /2 degrees of freedom for  p  
SNPs) can be used as a screening procedure to speed up 
the process of SNP-set selection in pathway-based ge-
nome-wide association studies.
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