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 Introduction 

 Given genetic marker and trait data on sets of related 
individuals, or members of pedigree structures, a key 
concern has been the computation of probabilities of 
these observed data under appropriate models. These 
probabilities are likelihoods for the models, and thus un-
derlie all inferences about these models. In particular, un-
der a model of genetic linkage between a trait locus and 
a genetic marker locus (or, indeed, any two loci), the base-
10 log-likelihood difference between the linkage model 
having maximum likelihood and the same marginal 
model in the absence of linkage between the two loci is 
the lod score. This lod score, first defined by Smith  [1]  and 
then established by Morton  [2]  as the primary statistic for 
genetic linkage detection and estimation, has stood for 
over 50 years as the fundamental tool for linkage analysis 
 [3] , and for construction of genetic maps  [4] .

  As genetic marker linkage maps have become well es-
tablished, the usual focus is that of mapping genes affect-
ing a trait of interest under a genetic marker map which 
is assumed known. In this case we have a lod score for the 
location,  � , of the trait locus, which is the base-10 log-
likelihood difference between the model when the trait 
locus is at position  �  within the marker map and the same 
model when the trait locus is unlinked to any marker loci 
included in the analysis. This lod score for the location  �  
of a trait locus is known as the map-specific multipoint 
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 Abstract 

 There are three assumptions of independence or condition-

al independence that underlie linkage likelihood computa-

tions on sets of related individuals. The first is the indepen-

dence of meioses, which gives rise to the conditional inde-

pendence of haplotypes carried by offspring, given those of 

their parents. The second derives from the assumption of 

absence of genetic interference, which gives rise to the con-

ditional independence of inheritance vectors, given the in-

heritance vector at an intermediate location. The third is the 

assumption of independence of allelic types, at the popula-

tion level, both among haplotypes of unrelated individuals 

and also over the loci along a given haplotype. These three 

assumptions have been integral to likelihood computations 

since the first lod scores were computed, and remain key 

components in analysis of modern genetic data. In this pa-

per we trace the role of these assumptions through the his-

tory of linkage likelihood computation, through to a new 

framework of genetic linkage analysis in the era of dense ge-

nomic marker data.  Copyright © 2011 S. Karger AG, Basel 
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lod score  [3] , since it is specific to the assumed known 
map of the multiple marker loci. It should not be confused 
with the location score  [4] , which is this lod score multi-
plied by the constant 2 log e (10).

  The first computational method for obtaining proba-
bilities of data observed on members of extended pedi-
grees was developed by Elston and Stewart  [5] . Ott  [6]  
developed the same approach for data at two loci, provid-
ing the first method for computing lod scores on the basis 
of pedigree data. These methods, as with all subsequent 
approaches, rely heavily on conditional independence as-
sumptions. Most fundamentally, it is assumed that geno-
typic dependence derives only from identity-by-descent 
(ibd). The copies of a single segment of genome that has 
descended within the pedigree from a common ancestor 
to current individuals are ibd. The allelic types on such 
current segments are dependent; indeed, they are identi-
cal with very high probability. The allelic types of genome 
segments that are not ibd are usually assumed indepen-
dent. This ignores both structure at the population level 
leading to dependence among genomes of founders of 
pedigrees, and also allelic association among tightly 
linked loci (linkage disequilibrium; LD), except where a 
small set of such loci is treated as a non-recombining unit 
 [7] . These assumptions can be avoided through the use of 
Monte Carlo methods such as importance sampling re-
weighting  [8] , but this approach can become computa-
tionally prohibitive.

  With ever increasing amounts and density of genetic 
marker, simple models are computationally necessary 
and scientifically sufficient for the marker data. For com-
plex traits of interest, however, simple models will often 
not suffice. In this paper we explore the conditional inde-
pendence assumptions, and the consequent computa-
tional approaches, that have been used in exact computa-
tion of lod scores from the early work  [5, 6]  to the present 
day of dense genomic marker data. Finally, we propose a 
modification of current computational methods, and 
new software to implement it, that makes practical  genetic 
linkage analysis using pedigree data for mapping com-
plex traits against a genomic array of genetic  markers.

  Genotypes as Latent Variables 

 Meiosis is the process of inheritance by which DNA is 
copied from parents to offspring. The independence of 
meioses leads to the independence of genotypes of indi-
viduals, conditional on the phased multilocus genotypes 
of intervening pedigree members. Haldane and Smith  [9]  

were probably the first to compute probabilities of ob-
served data on 3-generation pedigrees by conditioning on 
the genotypes of the connecting 2nd-generation pedigree 
member. Elston and Stewart  [5]  formalized the frame-
work, defining the three model components still familiar 
today: (1) a population model provides probabilities, 
P( G  i ), for genotype  G  i  of founder  i ; (2) a transmission (or 
meiosis) model provides probabilities, P( G  i   �   G  M  (  i  ) ,  G  F  (  i  ) ) 
for the genotype of offspring,  i , given those of parents, 
 M  (  i  )  and  F  (  i  ) , and (3) a penetrance model provides prob-
abilities, P( Y  i   �   G  i ), of observed data  Y  i  on individual  i , giv-
en  i ’s underlying genotype.

  Under the assumption of independence of founder 
genotypes, the probability of observed data  Y  = { Y  i  ;  i  ob-
served}, or the likelihood of any model parameters  � , is 
given by 

P ; P

P P , P  i i M i F i i i
i i i

L | P

G G |G G Y |G

G

G

Y Y G G� �         

(1)

 where F, N and O denote the sets of founders, non-found-
ers, and observed individuals, respectively. 

 The probability structure of equ. 1, specified through 
the conditional independence of offspring genotypes giv-
en the genotypes of parents, more generally implies that 
data on disjoint parts of the pedigree are conditionally 
independent given the genotypes of individuals in a cut-
set dividing these parts. For example, in  figure 1 , the two 
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  Fig. 1.  Genotypic peeling on pedigree structures. The two black-
shaded individuals form a cutset. Conditional on the (phased) 
genotypes of these two individuals, data on observed individuals 
 A ,  B ,  J ,  K ,  V ,  W , and  U  in the right half of the pedigree are inde-
pendent of data on observed individuals  D ,  F ,  E ,  H ,  C , and  L  in the 
left half of the pedigree. 
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black-shaded individuals form a cutset dividing the left 
and right parts of the pedigree. Conditional on the geno-
types of these two individuals, phenotypes on individuals 
in the left part of the pedigree are independent of those 
on individuals on the right. This independence structure 
led to the computational method of pedigree peeling pro-
posed by Elston and Stewart  [5]  for simple pedigrees, and 
soon generalized to arbitrary pedigrees  [10]  and more 
complex models  [11] . The procedure, now well known in 
the area of latent-variable problems and graphical models 
 [12] , involves the sequential summing out of latent geno-
types, and the computational complexity is basically that 
of the largest number of possible genotype configurations 
on any cutset in the sequence.

  The model framework of Elston and Stewart  [5]  is not 
restricted to single genetic loci, and Ott  [6]  very early ap-
plied it to two loci, developing the first general-purpose 
linkage analysis program LIPED for computing linkage 
lod scores on extended pedigrees. The LIPED program is 
still in use today, over 35 years later; this must be a record 
in almost any area of science. As genetic marker maps 
became more available, the need to consider more than a 
single marker and a single trait locus arose, and Ott and 
colleagues developed the LINKAGE software  [4] .

  The structure underlying the linkage model and the 
computation of linkage likelihoods using the LIPED or 
LINKAGE software is shown in  figure 2 , for a trait locus 
and three marker loci. In this and similar figures, models 
are represented by boxes, latent variables by circles, and 
observable data by diamonds. For the founder members 
of the pedigree, the population model specifies the prob-
abilities of the allelic types of DNA and hence also their 
genotypes. The transmission model specifies the proba-
bilities of meiotic events, and hence the descent of DNA 
and thence the genotypes of all members of the pedigree. 
The penetrance model specifies the probability of data 
observations given the genotype.

  A key feature of the genetic model underlying the 
LINKAGE software, in which the latent variables are the 
phased genotypes of individuals, is its generality. The 
population model provides probabilities for the pair of 
haplotypes in each founder. Allelic association (LD) can 
be accommodated as well as departures from the Hardy-
Weinberg equilibrium at the population level. Likewise 
the transmission model is general, allowing not only for 
different probabilities for different meioses (e.g. different 
male/female recombination rates) but also for genetic in-
terference. Finally, the penetrance model is general. Al-
though shown in  figure 2  as the usually assumed separate 
model at each locus, in principle this could also be a joint 
model across loci. Even within each locus, penetrance 
models are general. For some markers, such as  M  1 , we 
may assume genotypes are observed, leading to a deter-
ministic relationship between latent genotype  G  M  1  and 
the marker phenotype  Y  M  1  of any observed individual. 
However, accommodating a marker error model (e.g. 
marker  M  2 ) or a more general genotype/phenotype rela-
tionship (e.g. marker  M  3 ) is computationally no more in-
tensive. The data observations,  Y  T  , may be qualitative or 
quantitative, and the penetrance probability may depend 
on other covariate information on the individual, such as 
age, sex, or geographic location.

  The disadvantage of the structure of  figure 2  is also 
apparent, in that the latent variables are multilocus hap-
lotypes, and the number of these increase exponentially 
with the number of loci. Joint analysis of more than a few 
loci is computationally prohibitive.

  From Genotypes to Inheritance 

 As genetic linkage maps developed and multiple 
mapped DNA markers became available  [13] , a new 
framework was needed for analyses using these multiple 
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  Fig. 2.  The genotypic structure of genetic linkage data. The popu-
lation model provides probabilities of founder haplotypes. The 
transmission (or meiosis) model then provides probabilities for all 
haplotypes in the pedigree, and the penetrance model for genetic 
markers or traits provides probabilities of observable data. 
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marker loci jointly. This was provided by Lander and 
Green  [14] , who used indicators of meiosis as the latent 
variable. For each meiosis  i  in the pedigree,  i  = 1, ...,  m  and 
for multiple loci  j  along a chromosome,  j ,  j  = 1, ...,  l , we 
define

   S  i  ,  j  = 0 if DNA transmitted in meiosis  i  at locus  j  is
      parent’s maternal DNA
        = 1 if DNA transmitted in meiosis  i  at locus  j  is
      parent’s paternal DNA. (2)

  The array S = { S  i  ,   j } now become the latent variables and 
for convenience we define a meiosis vector,  S  i  , �  , for each 
meiosis and an inheritance vector,  S    � ,   j   [14] , for each locus: 

    S  i  , �   = { S  i  ,   j  ;  j  = 1, ...,  l },  i  = 1, ...,  m 
   S    � ,   j  = { S  i  ,   j  ;  i  = 1, ...,  m },  j  = 1, ...,  l .

  The independence of meioses is equivalent to the inde-
pendence of vectors  S  i  , �  . 

 At any locus  j , the genotypes of individuals are a de-
terministic function of the allelic types A ( j 

F )  of founders 
F, together with the inheritance vector  S    � ,    j . Hence these 
variables jointly determine, via a penetrance model, the 
probabilities of observed phenotypes determined by ge-
notypes at marker or trait locus  j . However, in order to 
place the likelihood in a computationally tractable form, 
assumptions must be made. First, we assume a Hardy-
Weinberg equilibrium and the absence of allelic associa-
tion (LD): the allelic types of founder genomes are then 
independent over (haploid) genomes and over loci. Sec-
ond, we assume the absence of genetic interference; the 
components of  S  i  , �  , and hence inheritance vectors  S    � ,   j , 
then have a Markov conditional independence structure 
over loci  j . The likelihood becomes 

, , ,1 , , 1
1 2

P P

P P
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j j j j
j j

P |

Y |S S P S |S
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(3)

 which may be compared with equ. 1. 
 The structure of the problem when  S  are considered 

the latent variables is shown in  figure 3 . The meiosis mod-
el becomes primary, providing the probabilities of each 
meiosis vector  S  i  , �  . The population model provides the al-
lelic types of founder genomes, A (F) , and the penetrance 
model relates, at each locus  j , the inheritance vector  S    � ,   j  
and allelic types A ( j 

F )  to the data  Y   � ,   j  observed on the ped-
igree. Under the Markov assumption for  S    � ,   j   (the absence 
of genetic interference) and the independence of allelic 
types across loci (the absence of LD), standard hidden 
Markov model (HMM) computational methods apply 
 [15] . In fact, since meioses are independent, the structure 

is that of a factored HMM  [16] . Nonetheless, computation 
is exponential to the number of meioses in the pedigree, 
and the generality of the model underlying equ. 1 is lost 
in equ. 3. Additionally there is the requirement, at every 
locus  j , to compute  P ( Y   � ,   j   �   S    � ,   j ) for every inheritance vec-
tor  S    � ,   j  (see also the next sections).

  Realization of Inheritance at Marker Loci Given 

Marker Data 

 Let  �  denote a specific linkage model for trait data  Y  T  
and marker data  Y  M , and let  �  0  denote the same model 
but with the absence of linkage between trait and marker 
loci. The linkage lod score is then 
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log ,        
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  Fig. 3.  The HMM inheritance structure of genetic linkage data. 
The meiosis model determines the probabilities of meiosis indica-
tors  S  which have a Markov dependence over loci. The population 
model at each locus provides the probabilities of allelic types A (F)  
of founders F. Then  S  and A (F)  together determine the genotypes 
of individuals and hence probabilities of phenotypes. 
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 since the marginal probabilities of Y M  and Y T  are the 
same under models  �  and  �  0 , and, in the absence of link-
age, trait and marker data are independent. 

 Further partitioning  �  into part  �  M  relating to the 
marker data  Y  M  and part  �  T  relating to trait data  Y  T , we 
have 

P ; P ; P ;

E P ; .             

M

M

T M T M T M M M

T M T M

| | |

| |
S

Y Y Y S S Y

Y S Y�

� � �

�

                         

(5)

 where S M  denotes the inheritance vectors at all marker 
locations. 

 Lange and Sobel  [17]  used the lod score in the form of 
equ. 4, and used equ. 5 to develop a Monte Carlo approach 
to the estimation of linkage lod scores. In this approach 
Markov chain Monte Carlo (MCMC) is used to sample 
realizations of  S  M  conditional on marker data. For each 
realization, P( Y  T    �    S  M  ;  �  T ) is computed by a version of 
pedigree peeling (equ. 1), in which probabilities of off-
spring trait-locus genotypes given those of the parents are 
conditioned on the inheritance vectors at flanking mark-
er loci. These values of P( Y  T   �   S  M  ;  �  T ) are averaged over 
the MCMC realizations to provide a Monte Carlo esti-
mate of P( Y  T   �   Y  M  ;  � ) (equ. 5) and hence of the lod score 
(equ. 4).

  Over the last 20 years, there have been several MCMC 
approaches to the realization of latent inheritance pat-
terns given marker and/or trait data  [18–22] . All ap-
proaches include computations following the form of 
equ. 1 and/or equ. 3 as part of the MCMC sampling pro-
cess. However, at each stage of sampling, the computa-
tions are performed only for a single locus or a small 

number of meioses. For our current discussion, the ap-
proach of Lange and Sobel  [17]  has several advantages. 
First, as noted by these authors, for a given marker mod-
el MCMC needs to be performed only once. This single 
set of multiple realizations of  S  M  provide Monte Carlo 
estimates of linkage lod scores for multiple trait-locus 
models and multiple hypothesized trait-locus locations. 
Second, since the MCMC is performed only to obtain 
realizations of  S  M  given the marker data  Y  M , the proba-
bilities P( Y   � ,  j   �   S    � ,  j ) of equ. 3 are required only for marker 
loci. For single-locus marker genotypes observed with-
out error, there are very efficient ways to compute this 
probability  [18, 22, 23] . However, this no-error limitation 
places another restriction on the HMM framework of 
 figure 3  relative to that of the LINKAGE package shown 
in  figure 2 .

  From Inheritance to Identity-by-Descent 

 The inheritance vector  S    � ,   j  at locus  j  determines the 
pattern of gene ibd among observed individuals, and this 
pattern is key to computation of the probability P( Y   � ,   j   �   S    � ,   j ) 
of observed trait or marker phenotypes.  Figure 4  shows 
again the example pedigree of  figure 1 , but now with the 
founder genomes labeled 1 through 18. The larger icons 
labeled with letters denote observed individuals, and a 
specific inheritance vector is assumed. Under this inher-
itance pattern, it is assumed that the observed individu -
 als receive, at this locus, the founder genome indicated in 
the right-hand graph, the founder-genome-label (FGL) 
graph. That is,  A  received 2 and 9, his sisters  B  and  J  re-
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  Fig. 4.  The ibd graph as a function of in-
heritance. The ibd graph (right) shows the 
FGLs received by the observed individuals 
in the pedigree (left) under a particular 
pattern of inheritance.         
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ceived 2 and 13, and so on. Individual  C  received two cop-
ies of founder genome labeled 6.

  The probabilities of observed data dependent on geno-
types at locus  j  can be computed using the FGL graph, not 
only for marker data observed without error  [18, 23] , but 
also for any general trait or marker phenotype  [22, 24] . 
We assume only that the allelic types of distinct founder 
genomes are independent; suppose the allelic type of 
FGL label  k  is A( k ) with population frequency  q (A( k )). 
Suppose also that observed individual  i  with phenotype 
 Y  i  carries FGL  k  1 ( i ) and  k  2 ( i ). Then the probability of the 
observed data  Y  = { Y  i ;  i  observed} is 

1 2

P FGL graph

P ,  i
i k

|

Y | k i k i a k

Y                         

(6)

 where the sum is over all assignments of allelic types to 
the FGL appearing in the FGL graph. 

 Equ. 6 may be compared with equ. 1 and 3. All three 
equations share the same structure of a sum over product 
terms which involve only a few elements. Precisely the 
same peeling computations over the graph apply. In fact, 
since FGL components are usually considerably smaller 
than the pedigrees from which they derive (see for ex-
ample the two graphs of  fig. 4 ), computations on the FGL 
graph are usually considerably faster than on a pedigree. 
On the other hand, these are conditional probabilities 
given the FGL graph.

  Another feature of the FGL graph is that the founder 
gene labels are irrelevant. It is the version of the graph with 
unlabeled nodes that specifies the pattern of ibd among 
the observed individuals at this locus, and determines the 

probability of trait phenotypes given the graph (equ. 6). 
We will refer to the unlabeled version as the ibd graph.

  Of course, as we consider different locations along a 
chromosome, the ibd graph will change as a result of re-
combination events that change the pattern of ibd among 
observed individuals. For example, a recombination in 
the paternal meiosis of individual  K  (see  fig. 4 ) might give 
the change in the ibd graph from the previous one shown 
as locus 1 in  figure 5  to that of locus 2. Individual  K  gains 
ibd with his aunt  G  and cousins  D  and  F , and at locus 2 
there is one fewer distinct genome present among the ob-
served individuals. Next a recombination in the maternal 
meiosis of individual  J  would lead to  J  no longer sharing 
both her haplotypes ibd with her sister  B , but instead hav-
ing, as her maternal genome, one not previously present 
(locus 3 in  fig. 5 ). From locus 2 to locus 3, some ibd is lost, 
and at locus 3 there is one extra distinct genome present 
among the observed individuals. Note that in  figure 5  the 
FGL labeling of nodes has been retained. This is for vi-
sual clarity only: only the unlabeled ibd graph is required 
for computation.

  There are two important features of these changing 
ibd graphs. The first is that since, in any meiosis, recom-
bination occurs at an average rate of order 10 –8  per base 
pair (bp), changes in the graph are few. The graph typi-
cally remains constant over millions of bp or over several 
cM. The second is that the disjoint components of the ibd 
graph are typically small. Thus even when the pheno-
types of individuals are affected by genotypes at two loci, 
or allelic types at four nodes, computation of joint pheno-
type probabilities (equ. 6) on the combined graph often 
remains feasible.

13 2 9

6 4 8

17

B, J A

E D G D G D G

C

FH

L

VU

13

6

17

B, J A A

E

C

FH

L

K

WWK

VU

13

6

3

1715 15 1571 7 710 10 10

J B

E

C

FH

L

K

W

VU

2 9 2 9

4 8 4 8

Locus 1 Locus 2 Locus 3

  Fig. 5.  ibd graphs changing as a result of recombination events. The three graphs show the ibd among the ob-
served individuals (edges labeled with letters), at three loci along the chromosome. Each change is the result of 
a single recombination event in the ancestry of an observed individual (see text for details).         
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  Separating Marker and Trait Analyses 

 As marker data become ever more numerous, infer-
ence of inheritance from marker data becomes computa-
tionally more challenging. On the other hand, as trait 
data and models become more complex, trait data them-
selves contribute little to the inference of this inheri -
 tance. Additionally, it may be desirable to analyze mul-
tiple traits, and/or multiple trait models, using the same 
marker data. Thus the formulation of Lange and Sobel 
 [17]  separating marker and trait data in the computation 
of lod scores (equ. 5) becomes the method of choice.

  However, we take this separation further, generating 
patterns of inheritance across the genome from SNP 
marker data, and outputting these for use in trait analy-
ses. These are generated by the MORGAN-3 program  
gl_auto   [25]  which uses the MCMC methods of Tong and 
Thompson  [26]  to sample inheritance patterns at all 
marker locations conditional on all marker data observed 
in the pedigree data set. The basic output required is a list 
of realizations of FGL of all individuals at all marker loca-
tions across a chromosome. Typically, we generate 1,000 
such realizations, sampled at a spacing in the MCMC run 
such that the realizations are weakly correlated and such 

that total MCMC run provides good mixing. Clearly, out-
putting this information in raw format would be prohib-
itive. However, most importantly, changes in FGL are few, 
and only changes need be recorded. Thus each chromo-
some is output with the initial FGL, the number of chang-
es in FGL, and then a set of pairs indicating the marker 
or bp location of a change, and the identity of the next 
FGL. In this format, marker density does not have an im-
pact on the size of the output file, and an output of 1,000 
realizations on a sizeable data set is practical. This FGL 
output then determines the ibd graph, D, at any location 
on the chromosome.

  Where dense markers are used to realize the ibd struc-
ture over a chromosome, linkage resolution is such that a 
computation of lod scores is required only at some (often 
quite small) subsets of marker locations  [27] . At these lo-
cations, the ibd structure, D, must be as for that marker. 
In fact, it is a reduction of that ibd structure, since for the 
trait computation we require only the ibd graph for indi-
viduals O T  observed for trait  T . Given the multiple real-
izations of this ibd structure provided by the  gl_auto  out-
put, the analysis of trait data can then proceed condition-
ally only on these realizations.

  The computation and inference structure becomes 
that of  figure 6 , which may be compared with that of  fig-
ure 3 . Again the meiosis process is the prior model for the 
meiosis indicators  S , now considered only at marker loci 
 M . The meiosis indicators at marker loci  S  M  determine 
the ibd graph D M  at all marker loci. The marker popula-
tion model provides probabilities of allelic types A M  at 
marker loci, and marker haplotypes  G  M  are determined 
by D M  and A M . In principle, using the ibd graph computa-
tion of equ. 6, a general relationship (e.g. a genotype error 
model) could be imposed between (phased) marker geno-
types  G  M  and marker phenotypes  Y  M . On a genome-wide 
basis this will not be computationally practical, and stan-
dard methods of eliminating aberrant SNPs and cluster-
ing SNPs in LD  [7]  will continue to be used. However, in 
a small region of the genome of interest, including addi-
tional SNPs while allowing an error model may increase 
the power to detect or resolve linkage. In any event, the 
right-hand part of the graph permits the realization of  S  M  
and hence D M  conditional on marker data  Y  M .

  The left-hand part of  figure 6  relates to the trait. The 
ibd graphs, D T , reduced from the realizations of D M  by 
restricting to the observed individuals O T , at any loca-
tion(s) of hypothesized trait loci are directly put into trait 
data analyses. The contribution to the lod score for each 
D T  is again a computation of the form of equ. 6. The trait 
population model determines probabilities of allelic 
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  Fig. 6.  Structure of genetic data with modern dense SNP marker 
data (M) for analysis of trait data  T . The right half of the figure 
shows the structure for realization of ibd graphs D M  at marker 
locations, conditional on all marker data. The left part shows the 
structure for analysis of trait data, using the realized D M  (see text 
for details).         
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types A T  , which together with D T  determine trait geno-
types  G  T . These, in turn, via the penetrance model, give 
probabilities of data  Y  T  given each D T  and hence given 
each realization of  S  M . These are combined to give a lod 
score estimate as in the Lange-Sobel approach (equ. 4, 5).

  Examples of ibd Graph Equivalence 

 The FGL format described in the previous sections as 
the output of the MCMC  gl_auto  program is a com -
 pact and easily constructed output of the marker-based 
MCMC. However, it is not directly well suited to trait data 
analyses. First, for each particular location, the ibd graph 
D must be reconstructed from the FGL change-point in-
formation on the two chromosomes of each individual. 
Second, recall that it is the unlabeled structure of the ibd 
graph that is relevant to trait data analyses; many appar-
ently different FGL labelings give rise to the same ibd 
graph. (A small example is given below.) Third, where 
marker data are informative as to gene ibd among ob-
served individuals, many of the realized ibd graphs may 
be identical. A method to identify and count the equiva-
lent graphs is required, in order that trait likelihood com-
putations are computed only once for each distinct graph. 
Finally, particularly on smaller pedigrees, graphs may be 
constant over a substantial marker range. Where the 
graph is constant, so is also the trait likelihood contribu-
tion under any given trait model, and recomputation is 
unnecessary for that component pedigree.

  Software has been implemented to determine the ibd 
graph equivalence over all markers or at a specific mark-
er  [28] . This IBDgraph software is described briefly by 
Koepke in the online supplementary material (www.
karger.com/doi/10.1159/000313555) and is also available 
for download  [29] .  Figure 7  shows a very small example 
of ibd graph equivalence. For a nuclear family within the 
Ped47 pedigree of the example below, the software identi-
fied two pairs of graphs as equivalent over a marker range; 
the figure shows the graphs at only the first marker in the 
range. The individuals are two parents  M , carrying ge-
nomes  x  and  y , and  F , carrying genomes  w  and  z , and 
their four offspring  A ,  B ,  C , and  D . It can be seen that 
graphs I and II are equivalent through the within-parent 
interchanges  x   }   y  and  w   }   z , while III and IV are equiv-
alent through the single interchange  x   }   y . If  M  and  F  are 
unobserved for the trait, only the ibd graph of the four 
offspring  A ,  B ,  C  and  D  is relevant. Specifying that only 
these four individuals are to be included, the IBDgraph 
software immediately identifies all four graphs as equiv-

alent, since, for example, II is transformed to III via the 
interchanges  x   }   w  and  y   }   z : that is interchange of the 
now unobserved  M  and  F .

  Two examples of the output of the IBDgraph software 
at single marker locations are summarized in  table 1 . The 
first relates to two sets of 1,666 realizations of the FGL 
output from the  gl_auto  program run on a 4-generation, 
26-member pedigree that is part of a real linkage analysis 
study (Wijsman, pers. commun.). The second example 
uses a simulated data set for which the 6-generation 
47-member pedigree is shown in  figure 8 . This pedigree 
and marker data set is available as part of the MORGAN 
Tutorial Examples  [30] . Ped31 is the 5-generation, 31-
member, left-hand part of Ped47, and Ped14 is the 3-gen-
eration, 14-member, right-hand part. For this example, 
the  gl_auto  output is a single set of 1,000 FGL realiza-
tions. The program was run using the multiple-meiosis 
sampler  [26] , and realizations were generated at a spacing 
of 30 MCMC scans.

  Each row of  table  1  results from a single run of the 
 IBDgraph software, which groups the realizations into 
equivalence classes across the entire chromosome. Each 
run of the software takes less than 5 s on a MacBook Pro 
laptop. Shown in  table 1  are the results of the IBDgraph 
software at a marker of interest in Ped26 and at a typical 
marker location for Ped47. In the first columns of  table 1  
are the case identifier, the number of individuals on 
whom marker data are available, and the number of indi-
viduals to be included in assessing the ibd graph equiva-
lences. In real-data analyses the latter would be the indi-
viduals whose trait data are to be included in the lod score 
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  Fig. 7.  Equivalence of ibd graphs under relabeling. When all indi-
viduals are observed, graphs I and II are equivalent, as are III and 
IV. When  M  and  F  are unobserved, all four graphs are equivalent.             
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computation. For example, for Ped31 there are marker 
data on 19 individuals ( fig. 8 ); in the first run of the IBD-
graph software all 31 individuals were included in the 
analysis, and in the second only the 19 for whom marker 
data were available. Next in  table  1  is shown the total 
number of FGL graphs analyzed (1,666 or 1,000), the 
number of equivalence classes, and the mean and median 
size of the equivalence class of a random FGL realization. 
So, for example, for Ped31 including only the 19 individ-
uals on whom there are marker data, the 1,000 realiza-
tions fall into 162 equivalence classes, and the mean and 
median sizes of the class into which a random one of the 
1,000 realizations falls are 21.1 and 13, respectively.

   Table 1  shows that, where marker data are informative, 
the large number of FGL realizations fall into relatively 
few equivalence classes. For example, for Ped26 on chro-

mosome A where 22 of the 26 individuals have marker 
data, the 1,666 realizations fall into 24 equivalence class-
es; at this marker position only 24 lod-score contributions 
need to be computed. Moreover, the vast majority of the 
realizations fall into just 8 classes, as can be seen by the 
mean and median class sizes of  1 200. If these 8 lod-score 
contributions comprising 1,645 of the 1,666 realizations 
show no evidence of linkage, it may even be unnecessary 
to compute the contributions from the remaining 16 
classes (21 total realizations). Unfortunately, on chromo-
some B, a 6-member branch of Ped26 has no marker data. 
If the ibd graph is to include all 26 pedigree members, the 
1,666 realizations fall into 277 classes, and the typical re-
alization is equivalent to only 10 or 11 others. However, 
even this provides for an order of magnitude reduction
in lod-score computation. Moreover, if the 6-member 

Table 1. S ummary of the output of the IBDgraph software at single marker locations, for three outputs of the gl_auto program

Pedigree Indi vid u als
with marker

Indi vid u als
in ibd graph

FGL
graphs

Equivalence
classes

Mean size
over FGL

Median size
over FGL

Ped26-ChrA 22 26 1,666 24 208.3 218
Ped26-ChrB 18 26 1,666 277 11.2 12
Ped26-ChrB 18 20 1,666 14 648.7 730

Ped47 27 47 1,000 829 1.5 1
Ped47-obs 27 27 1,000 370 8.0 5
Ped31 19 31 1,000 386 6.1 4
Ped31-obs 19 19 1,000 162 21.1 13
Ped14 8 14 1,000 16 362.0 413
Ped14-obs 8 8 1,000 10 759.4 865

T wo sets of 1,666 realizations were obtained from running gl_auto on Ped26 on two chromosomes here denoted ChrA and ChrB. 
A single set of 1,000 realizations was obtained from running gl_auto on Ped47. Ped31 and Ped14 are two subsets of Ped47.

  Fig. 8.  Pedigree Ped47 used for the simu-
lated data analysis. The black-shaded indi-
viduals are those for whom marker data 
are available; on these individuals 5% of 
the marker genotypes are missing at ran-
dom.                 
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branch is excluded from the ibd graph assessment, there 
are only 14 equivalence classes, a reduction of the 1,666 
by two orders of magnitude. Also, over 1,460 realizations 
fall into just 2 classes.

  To understand the results more fully,  table 1  also shows 
the results for the 1,000 FGL realizations on Ped47 ( fig. 8 ) 
at a single typical marker location on the chromosome. 
Since only 27 members of the pedigree have marker data 
and there are almost no data on the first three genera-
tions, when all 47 individuals are included very few of the 
ibd graphs are equivalent. There are 829 distinct classes 
among the 1,000 realizations. Even when the graphs are 
restricted to the 27 individuals having marker data, there 
are still 370 classes, with the typical realization being 
equivalent to only 5–10 others. Relative to Ped26, this re-
flects the larger number of possible inheritance patterns 
on this 47-member pedigree, the larger proportion of in-
dividuals with no marker data, and the fact that the mark-
ers in this simulated data set are less informative than 
those used in the real-data study (Wijsman, pers. comm.). 
Even when the ibd graphs are restricted to the 19 ob-
served members of Ped31 (the 31-member left-hand part 
of Ped47;  fig. 8 ), there are still 162 classes with the typical 
FGL realization being equivalent to only 20 others on av-
erage. However, even this represents an order-of-magni-
tude reduction in lod-score computational cost. Where 
pedigrees have less depth, the number of possible inheri-
tance patterns is reduced. For example, for the 3-genera-
tion, 14-member, right-hand part of Ped47, we again 
achieve computational reductions of two orders of mag-
nitude. In fact, when the ibd graphs are restricted to the 
8 individuals having marker data, 865 of the 1,000 real-
izations fall into a single class ( table 1 ).

  Overall, we see that for an IBDgraph run taking only 
a few seconds, we can reduce the subsequent lod-score 
computational cost by as much as two orders of magni-
tude. Additionally, trace plots of the equivalence classes 
of successive FGL realizations can be used to assess the 
mixing performance of the MCMC with regard to accu-
racy of lod score estimation. For the examples of this pa-
per, these plots show that the MCMC samples taken at a 
spacing of 30 scans are well mixed (results not shown). 
This indicates also that if a user chooses to use more FGL 
realizations to estimate lod scores, the computational 
savings of using the IBDgraph software would be even 
greater. For example, if the length of the MCMC  gl_auto  
run and hence the number of FGL realizations in the first 
Ped26-ChrA example ( table 1 ) were doubled, a few new 
ibd graphs might be generated. However, as for the first 
1,666 realizations, over 98% of the new FGL realizations 

will have ibd graphs in one of the 8 major equivalence 
classes and for these the lod-score contributions are al-
ready computed.

  In part, the real-data Ped26 example is included to 
demonstrate the advantages of the approach in terms of 
data confidentiality. To run the MORGAN  gl_auto  pro-
gram, pedigree and marker data are required, but there 
are no trait data involved. Then, to run the IBDgraph 
software, no pedigree, marker, or trait data are required. 
One needs only the indices in the  gl_auto  output of the 
subset of the pedigree members whom the researcher 
wishes to include in their ibd graphs. The researcher may 
then use the IBDgraph output to significantly reduce the 
computational costs of their trait-data analyses.

  Conclusion 

 Computation or estimation of linkage lod scores re-
mains a key tool in the genetic mapping of traits. The 
same principles of conditional independence that under-
lie the still useful and still used 35-year-old LIPED pro-
gram  [6]  extend to linkage computations for current 
complex traits of interest and to current marker data. 
However, despite increases in computer speed of the or-
der of millions, computation remains a challenge, since 
the density of marker data has increased by a comparable 
factor. Further, the dependence structure of data among 
markers is a factor that is not relevant for 2-point linkage 
computations, but is the breaking point for many multi-
point approaches.

  With increasingly large amounts of marker data, and 
with trait data that are often complex and do not in them-
selves provide clear evidence of ibd among relatives, the 
separation of marker and trait computations in the form 
first proposed by Lange and Sobel  [17]  becomes the 
 approach of choice. It enables a single marker-based com-
putation of ibd probabilities, or a single sample of mark-
er-based ibd realizations, to be used for many trait phe-
notypes, trait models, and hypothesized trait-locus 
locations.

  In our recent software, we have gone further than 
the within-program separation implied by equ. 5 and 
used earlier MORGAN lod score programs  [25]  such as 
 lm_markers   [31] . Our new program,  gl_auto , analyzes 
only the marker data, outputting realizations of the FGL 
of individuals in a compact format where only recombi-
nation breakpoints are recorded. Since these are very few 
for any meiosis and on any chromosome, even for large 
data sets and (say) 1,000 realizations, the files are man-
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ageable. These output files can then be used for multiple 
trait analyses. Moreover, since the connected compo-
nents of the FGL graph are often small, trait analyses for 
models jointly involving more than a single trait locus 
become practical.

  However, this format is not computationally efficient, 
particularly when only a subset of the individuals are ob-
served for the trait or when marker data provide clear 
information about the probable patterns of ibd. More-
over, ibd patterns may remain constant over large chro-
mosome segments on many subcomponents of the over-
all FGL graph. Where this equivalence of ibd patterns 
over realizations and their constancy over chromosome 
segments can be recognized, much recomputation can be 
avoided. To achieve this, IBDgraph software has been im-

plemented  [29] , and is described in the online supplemen-
tary material. Examples have shown this can reduce sub-
sequent lod-score computational costs by up to two or-
ders of magnitude. This approach of first creating ibd 
graphs in a compact and efficient format, and then using 
these in complex trait analyses seems to provide a way 
forward in the era of dense SNP data and even potential-
ly of sequence data.
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