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 Introduction 

 To date, approximately 150 nonsyndromic hearing 
impairment (NSHI) genes have been localized, and about 
90 of them display autosomal recessive (AR) inheritance. 
Fourty-one genes have been identified for ARNSHI (see 
also the Hereditary Hearing Loss Homepage). The dis-
covery of new NSHI genes should improve our under-
standing of the mechanism of hearing as well as aid in the 
development of diagnostic and therapeutic interventions 
for hearing impairment (HI).

  This article describes the mapping of the DFNB90 
 locus to chromosome 7p22.1-p15.3 in a multigeneration-
al consanguineous Pakistani family with ARNSHI.  Al-
though already seven ARNSHI loci have been mapped
to chromosome 7 for which three genes have been iden-
tified,  SLC26A5   [1]  (MIM 60493),  SLC26A4   [2]  (MIM 
605646) and  HGF   [3]  (MIM 142409), there is no overlap 
between this new locus   and previously reported loci.
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 Abstract 

 A novel locus DFNB90 was mapped to 7p22.1-p15.3 by carry-

ing out a genome scan in a multigenerational consanguine-

ous family from Pakistan with autosomal recessive nonsyn-

dromic hearing impairment (ARNSHI).   DFNB90 is the eighth 

ARNSHI locus mapped to chromosome 7. A multipoint

LOD score of 4.0 was obtained at a number of SNP marker 

loci spanning from rs1468996 (chromosome 7: 5.7 Mb) to  
 rs957960 (chromosome 7: 18.8 Mb). The 3-unit support inter-

val and the region of homozygosity for DFNB90 spans from 

markers rs1553960 (chromosome 7: 4.9 Mb) to rs206198 

(chromosome 7: 20.3 Mb). Candidate genes  ACTB, BZW, OCM, 
MACC1, NXPH1, PRPS1L1, RAC1  and  RPA3 , which lie within the 

DFNB90 region, were sequenced and no potentially causal 

variants were identified.  Copyright © 2011 S. Karger AG, Basel 
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  Materials and Methods 

 The Institutional Review Boards of the Quaid-I-Azam Univer-
sity and the Baylor College of Medicine and Affiliated Hospitals 
approved the research protocol prior to study initiation. Informed 
consent was obtained from all family members who participated 
in this study. Family 4437 is a multigenerational consanguineous 
kindred which displays clear evidence of ARNSHI ( fig. 1 ). The 
ARNSHI in this family is bilateral, symmetric and prelingual. An 
audiogram from individual IV-1 displays severe-to-profound im-
pairment at all frequencies ( fig. 2 ). Careful physical examination, 
including Romberg testing, gait assessment and fundoscopy, were 
performed to rule out vestibular or syndromic features. Perinatal, 
maternal and personal medical history regarding infections, oto-
toxic drug use, traumas and noise exposure did not indicate a pos-
sible environmental cause for HI.

  Venous blood was obtained from ten family members, includ-
ing four individuals who are hearing-impaired. Genomic DNA 
was extracted following a standard protocol  [4] . A whole genome 
scan was carried out at the Center for Inherited Disease Research 
(CIDR) using the Illumina HumanLinkage-12 panel which con-
tains 6,090 SNP marker loci.

  The genotype data were screened for Mendelian incompatibili-
ties using PEDCHECK  [5] , while MERLIN  [6]  was used to assess 
the data for occurrence of double recombination events over short 
genetic distances, which are most likely due to genotyping error. 
MLINK of the FASTLINK package  [7]  was used to perform a two-
point linkage analysis, while ALLEGRO1.2c  [8]  was used for a mul-
tipoint linkage analysis. An AR mode of inheritance with complete 
penetrance and a disease allele frequency of 0.001 were used in the 
analysis. Marker allele frequencies were estimated from observed 
and reconstructed genotypes of founders from pedigree 4437 and 
50 additional Pakistani families that underwent a genome scan at 
the same time at the CIDR. For the multipoint analysis, genetic 
map distances were based on the Build 36 version of the Rutgers 
combined linkage-physical map of the human genome  [9] . For 
those SNP loci which were not included on the Rutgers map, the 
sequence-based physical map (Build 36) was used as a reference to 
determine the physical positions of SNP marker loci and then in-
terpolation was used to determine the genetic map distance.

  In addition to carrying out a multipoint linkage analysis using 
ALLEGRO1.2c, a linkage analysis was also carried out using 
MERLIN, due to concerns that the multipoint LOD score might 
be inflated due to intermarker linkage disequilibrium (LD). 
MERLIN was used to analyze clusters of markers that had no in-
termarker recombination using haplotype frequencies that were 
estimated from family 4437 and 50 additional families which 
were genotyped at the same time. Haplotype reconstruction was 
performed using SIMWALK2  [10, 11] .

  Primers were designed to cover the exons and 5 �  promoter
region of eight genes  (ACTB ,  BZW ,  OCM ,  MACC1 ,  NXPH1 ,  
PRPS1L1 ,  RAC1  and  RPA3)  using Primer3 software  [12] . DNA sam-
ples from one hearing (III-1) and two HI (IV-3 and IV-6) pedigree 
members ( fig. 1 ) were diluted, PCR-amplified, then purified with 
ExoSAP-IT (USB Corp., Cleveland, Ohio, USA). Sequencing of ex-
ons and splice site regions was performed with the BigDye Termi-
nator v3.1 Cycle Sequencing Kit and Applied Biosystems 3730 
DNA Analyzer (Applera Corp., Foster City, Calif., USA). The DNA 
sequences were assembled and analyzed through the Sequencher 
software V4.9 (Gene Codes Corp., Ann Arbor, Mich., USA).

  Results 

 No genotyping errors were detected through the oc-
currence of Mendelian inconsistencies or double recom-
bination events occurring over short genetic map dis-
tances. A maximum two-point LOD score of 2.5 ( �  = 0) 
was observed at marker rs957960 (chromosome 7: 18.84 
Mb) ( table 1 ). Using ALLEGRO1.2c, a maximum multi-
point LOD score of 4.0 was obtained for 20 marker loci 
located on chromosome 7 (see  table 1 ). Incorporating LD 
in the analysis using MERLIN did not change the results. 
The 3-unit support interval, which spans 26.5 cM, lies 
between markers rs1553960 (4.87 Mb) and rs206198 
(20.34 Mb) and contains 15.47 Mb of sequence ( table 1 ).

  The region of homozygosity overlaps with the 3-unit 
support interval. A recombination event between SNP 
markers rs1553960 and rs1468996 was observed in the af-
fected child IV-4, which delimited the upper boundary of 
the region of homozygosity. The lower boundary of the 
region of homozygosity is delimited by the recombina-
tion event between SNP markers rs714392 and rs206198 
in child IV-5. The region of homozygosity resides be-
tween the markers rs1553960 (4.87 Mb) and rs206198 
(20.34 Mb;  fig. 1 ). The locus DFNB90 was designated by 
the HUGO Nomenclature Committee.

  Within the region of homozygosity, there are 72 genes 
which include hypothetical proteins. No functional se-
quence variants were identified in the eight sequenced 
candidate genes.

  Discussion 

 Six ARNSHI loci have been mapped to the long arm of 
chromosome 7 (7q): DFNB4 (7q31)  [13] , DFNB13 (7q34-
q36)  [14] , DFNB14 (7q31)  [15] , DFNB17 (7q31)  [16] , 
DFNB39 (7q11.22-q21.12)  [17] , and DFNB61 (7q22.1)  [1] . 
Extending from the short to the long arm of chromosome 
7 lies DFNB44 (7p14.1-q11.22)  [18] , which is 17.2 Mb cen-
tromeric to DFNB90 ( fig. 3 ). For these ARNSHI loci, only 
the genes  SLC26A5  for DFNB61  [1] ,  SLC26A4     for DFNB4 
 [2]  and  HGF  for DFNB39  [3]  have been identified. Addi-
tionally, on chromosome 7p lies the autosomal dominant 
(AD) locus DFNA5, which is centromeric to DFNB90 by 
4.4 Mb, and on chromosome 7q is DFNA50  [19] , which 
lies between DFNB17 and DFNB13. The gene for DFNA5 
has been identified and bears the same name,  DFNA5  
 [20] . For DFNA50, the microRNA miR-96  [21]  was shown 
to be responsible for progressive ADNSHI. Mapping of 
ARNSHI in family 4437 to the 7p22.1-p15.3 makes 
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  Fig. 1.  Pedigree drawing of family 4437 with ARNSHI. Closed   symbols represent individuals with ARNSHI. 
Open   symbols denote hearing subjects. Informative SNP marker genotypes are placed beneath each symbol of 
the corresponding individual. The SNP markers for each genotype are listed in the left-hand column. The mark-
ers shown in bold delimit 3-unit support interval. 
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  Fig. 2.  Audiogram of individual IV-1 of 
family 4437. Air conduction testing is 
marked using circles for the right ear and 
crosses for the left ear. HI was bilateral, 
symmetric and severe-to-profound in-
volving all frequencies. 
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Table 1. L OD scores for the DFNB90 locus

SNP markera, b Genetic
positionc

Physical
positiond

Multipoint
LOD scoree

T wo-point LOD score at �

0.00 0.01 0.05 0.10 0.20 0.30 0.40

rs1543985 1.94 1,179,653 –G –G –1.6 –0.4 –0.0 0.2 0.1 0.0
rs1553960 8.10 4,866,621 –G –G 0.5 1.0 1.0 0.8 0.4 0.1
rs1468996 10.40 5,700,983 4.0 2.4 2.4 2.2 1.9 1.3 0.7 0.2
rs4560 10.40 6,029,809 4.0 1.0 1.0 0.9 0.8 0.6 0.4 0.2
rs1299548 12.54 7,268,818 4.0 1.1 1.1 1.0 0.9 0.6 0.4 0.2
rs1882600 12.54 7,328,048 4.0 1.1 1.0 1.0 0.8 0.6 0.4 0.2
rs37995 14.73 7,995,659 4.0 1.6 1.6 1.4 1.3 0.9 0.6 0.2
rs1558557 14.73 8,275,518 4.0 1.4 1.3 1.2 1.1 0.8 0.5 0.2
rs1032873 18.81 9,618,805 4.0 1.7 1.6 1.5 1.3 1.0 0.6 0.2
rs1013719 19.78 10,521,275 4.0 0.9 1.0 0.8 0.7 0.5 0.3 0.1
rs1012123 19.78 10,652,456 4.0 1.0 1.0 0.9 0.8 0.6 0.3 0.1
rs12666416 21.94 12,008,942 4.0 1.6 1.6 1.4 1.3 0.9 0.6 0.2
rs2908740 21.94 12,025,775 4.0 1.6 1.6 1.5 1.3 0.9 0.6 0.2
rs769111 21.94 12,026,331 4.0 1.6 1.6 1.5 1.3 0.9 0.6 0.2
rs6460985 23.73 12,890,081 4.0 1.5 1.5 1.3 1.2 0.9 0.5 0.2
rs1367781 26.18 14,529,570 4.0 1.9 1.8 1.7 1.5 1.0 0.6 0.3
rs917440 27.97 15,690,278 4.0 1.5 1.5 1.8 1.2 0.9 0.5 0.2
rs726395 27.97 15,701,240 4.0 1.5 1.5 1.4 1.2 0.9 0.5 0.2
rs2030972 27.99 16,025,705 4.0 1.2 1.1 1.0 0.9 0.6 0.4 0.1
rs1723804 29.05 16,750,469 4.0 1.8 1.8 1.7 1.4 1.0 0.6 0.3
rs1375237 30.05 17,532,778 4.0 1.4 1.3 1.2 1.9 0.8 0.5 0.2
rs957960 31.19 18,843,933 4.0 2.5 2.5 2.2 2.0 1.4 0.8 0.3
rs714392 32.23 19,577,674 3.8 1.1 1.1 1.0 0.9 0.6 0.4 0.1
rs206198 34.63 20,338,283 –4.5 1.9 1.9 1.8 1.7 1.2 0.8 0.3
rs4142216 34.64 20,707,692 –1.4 1.0 1.0 1.0 0.8 0.6 0.4 0.7

a M arkers shown in bold flank the region of homozygosity. b Uninformative SNP markers are not displayed. c Genetic map position 
from the Rutgers combined linkage-physical map of the human genome, Build 36. d Physical map position from Build 36 of the human 
reference sequence. e Multipoint LOD scores obtained from ALLEGRO1.2c.
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DFNB90 the tenth NSHI locus to be localized to chromo-
some 7.

  Among the eight genes which were sequenced within 
the DFNB90 region, the  PRPS1L1  gene encodes a high-
ly homologous protein Phosphoribosyl Pyrophosphate 
Synthetase 1-Like 1 (MIM 611566) to the two subunits
of Phosphoribosyl Pyrophosphate Synthetase 1 ( PRPS1 ; 
MIM 311850) .   PRPS1  is the cause of X-linked NSHI 
( DFN2)   [22] ; Charcot-Marie-Tooth disease 5  [23] , a syn-
dromic form of auditory and optic neuropathy; Arts syn-
drome  [24] , which is characterized by mental retardation, 
motor problems, optic atrophy and hearing impairment; 
and phosphoribosyl pyrophosphate synthetase superac-
tivity  [25] , for which the phenotype includes gout from 
hyperuricemia and neurodevelopmental abnormalities 
including sensorineural deafness.

  The Metastasis-Associated gene in Colon Cancer 1 
( MACC1 ; MIM 612646) is believed to be a key regulator 
of the hepatocyte growth factor  (HGF ; MIM 142409) and 
the HGF receptor ( HGFR  or  MET ; MIM164860) pathway 
 [26] .  HGF  was reported to be the gene responsible for the 
ARNSHI locus DFNB39  [3] .

  Six of the sequenced genes (Actin, Beta ( ACTB ; MIM 
102630), Basic Leucine Zipper and W2 Domains 2 
 (BZW2) , Neuroxophilin ( NXPH1 ; MIM 604639), Onco-
modulin ( OCM ; MIM 164795), Replication Protein A3 
( RPA3 ; MIM 179837) and RAS-related C3 botulinum 
toxin substrate 1 ( RAC1 ; MIM 602048)) have all been 
shown to be expressed in the fetal human cochlea  [27] . 
Additionally, the  ACTB  gene was reported to cause a 
form of juvenile-onset dystonia that is accompanied by 
sensorineural hearing loss  [28, 29] . The sequence of the 
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  Fig. 3.  Designated genetic interval of 
DFNB90 and other DFNB/DFNA genes 
and loci on chromosome 7. 
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