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Abstract

Background: The key epidemiological difference between pandemic and seasonal influenza is that the population is largely
susceptible during a pandemic, whereas, during non-pandemic seasons a level of immunity exists. The population-level
efficacy of household-based mitigation strategies depends on the proportion of infections that occur within households. In
general, mitigation measures such as isolation and quarantine are more effective at the population level if the proportion of
household transmission is low.

Methods/Results: We calculated the proportion of infections within households during pandemic years compared with
non-pandemic years using a deterministic model of household transmission in which all combinations of household size
and individual infection states were enumerated explicitly. We found that the proportion of infections that occur within
households was only partially influenced by the hazard h of infection within household relative to the hazard of infection
outside the household, especially for small basic reproductive numbers. During pandemics, the number of within-
household infections was lower than one might expect for a given h because many of the susceptible individuals were
infected from the community and the number of susceptible individuals within household was thus depleted rapidly. In
addition, we found that for the value of h at which 30% of infections occur within households during non-pandemic years, a
similar 31% of infections occur within households during pandemic years.

Interpretation: We suggest that a trade off between the community force of infection and the number of susceptible
individuals in a household explains an apparent invariance in the proportion of infections that occur in households in our
model. During a pandemic, although there are more susceptible individuals in a household, the community force of
infection is very high. However, during non-pandemic years, the force of infection is much lower but there are fewer
susceptible individuals within the household.
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Introduction

The emergence [1] and global spread [2,3] of a novel human strain

of influenza A during 2009 highlighted the need for a strong evidence

base to support health policy during the early stages of global

infectious disease outbreaks. Even though the burden of illness was

substantial [4], the 2009 strain was much less severe than previous

pandemics [5], in particular compared to 1918 [6]. From a policy

perspective, a less severe pandemic was challenging because costly

interventions could not be justified. With hindsight, the 2009

pandemic served mainly to highlight the need for the scientific

community and public health planners to rapidly and accurately

assess the severity of an emerging respiratory disease. However,

despite the mild recent pandemic, it seems likely from the initial

public response that more expensive interventions such as household

quarantine and antiviral prophylaxis would be implemented in many

countries during any future moderate or severe pandemics.

The efficacy of household-based mitigation strategies depends

on the proportion of infections that occur within households

during a pandemic [7]. If this proportion is high, then the overall

force of infection experienced by the community at large will be

much reduced by effective household isolation or quarantine. If

the proportion is low, then household-based mitigation strategies

will be less effective. Unfortunately, estimating the proportion of

infection that actually does occur within households is challenging.

Current estimates that approximately 30% of transmission

events occur between members of the same household [8–9] are

based on studies of non-pandemic influenza. In the absence of any

empirical studies from 2009 or earlier pandemic, we conducted a

theoretical study of factors that could contribute to substantial

differences between the proportion of infections that take place

within households during pandemic and non-pandemic years. For

example, the distribution of susceptible individuals in households is

different in the two scenarios. During a genuine pandemic, all

individuals are susceptible and there is no clustering in households.

However, during non-pandemic years, some individuals are

immune due to prior infection or vaccination and their

distribution by household is likely to be clustered: immune
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individuals are more likely to have been infected by a fellow

household member during a previous year than another random

member of the population. One would thus expect susceptible

individuals to be clustered away from immune individuals. Also, the

duration and absolute magnitude of the force of infection from the

community, which is defined as the hazard of infection experienced

by one susceptible individual, is different during a pandemic season

than during a non-pandemic season. The community force of

infection should last longer and be greater during a pandemic.

In the study described here, we used deterministic mathematical

models of influenza transmission over multiple seasons to

investigate the trade-off between changes in the clustering of

susceptible individuals within households and changes in the

absolute force of infection from the community. Specifically, we

sought to test the hypothesis that there could be substantial

differences between the proportion of infections that occur within

a household during pandemic and non-pandemic years even if a)

the underlying transmissibility of influenza is constant and b) the

infectiousness of individuals within the household relative to their

infectiousness outside the household is constant.

Methods

First, we used a compartmental SEIRS model [10,11,12] to

simulate how individuals could be infected with influenza over

multiple decades (Model A). In our simulation study, pandemic

influenza occurred in the first year and non-pandemic influenza

was assumed to be is the first year of a regular annual cycle of

infection. The main dynamic difference between the two types of

influenza season was that the entire population was susceptible in

pandemic whereas was immunity in a proportion of individuals in

the population during non-pandemic years. We defined N as the

total number of individuals in the population, S(t) as the number

who were susceptible to infection from the current strain at day t,
E(t) as the number who had been infected but were not yet

infectious, I(t) as the number who were infectious, and R(t) as the

number who recovered and were presumed to be immune to the

current strain. The force of infection is the hazard of infection

experienced by a single susceptible individual. In our model

we defined it to be l(t)~b(t)I=N, where b(t)~bbase 1z½
A cos tz182ð Þp=182f g� [12], bbase is a fundamental unit of

transmission, and A is the amplitude of seasonal forcing which is

used to capture the seasonal oscillations in incidence by changing

the effective transmission rate of the virus. This formulation

implemented a season-based year of 52 seven-day weeks which is

equivalent to 364 days per year with t~0 being the start of the first

week at which the potential for influenza transmission is lowest:

i.e., the middle of temperate summer.

Solutions were initiated at the midpoint of the summer before a

pandemic winter. We assumed that when t~0, there was a single

individual infectious with the pandemic strain (I~1) and all other

individuals were susceptible (S~N{1). The rate of change of

susceptible individuals was defined as _SS(t)~vR(t){l(t)S(t),
where v was the reciprocal of the average effective duration of

immunity to influenza in days. Similarly, _EE(t)~l(t)S(t){aE(t),
where a was the reciprocal of the average duration of the latent

period in days; _II(t)~aE(t){cI(t), where c was the reciprocal of

the duration of infection; and _RR(t)~cI(t){vR(t). The solutions

to the model equations were obtained numerically [13].

Non-household Model A was refined by household-based

Model B using methods similar to those of [14]. We let ns,e,i,r(t)
be the number of households at time t in which s individuals were

susceptible, e were exposed and incubating but not yet infectious, i
were infectious, and r had recovered and were presumed to be

immune. For example, the variable value n2,0,1,0(10)~120:5
indicates that at day 10 there were an expected 120.5 households

of size 3 in which 2 people were susceptible and 1 was infectious.

We considered populations made up of households of sizes 1::H,

with the size of households of type ns,e,i,r equal to szezizr.

Using standard nomenclature for combinations, the total number

of state variables required to describe all possible disease states for

all household sizes was
Pr~H

r~1

C4zr{1
r where Cn

r is the number of

possible outcomes by drawing r objects from n objects.

To illustrate the model further, consider the special case of a

population is composed entirely of households of size 1 or 2. There

are 4 combinations for singleton households: n1,0,0,0 , n0,1,0,0 ,

n0,0,1,0 and n0,0,0,1 and C5
2 for households with size 2. Hence, for

populations with household sizes up to 6, this model formulation

required 209 variables of type ns,e,i,r(t). Note that the number of

households at size 5 or above was collapsed as one number from

Hong Kong census and statistics department. We assumed that the

number of households at size 5 or above as the number of

households at size 5. We defined the set of all possible household

types (combinations of s,e,i,r) for a given H to be xH , which

allowed us to express the values of individual state variables S(t),
E(t), I(t), and R(t) in terms of ns,e,i,r(t), e.g.

S(t)~
X

(s,e,i,r)[xH

sns,e,i,r(t):

Therefore, the community force of infection is driven entirely by

the sum of the household variables, i.e. there is no separate set of

variables for the community dynamics,

ls,e,i,r(t)~b(t)
I(t)

NInd
z

hi

(szezizr{1)d

� �
:

Parameter d determined the degree to which household

transmission was genuinely mass action compared with the degree

to which it is pseudo-mass action. If transmission within

households was genuinely mass action (d~0), then members of

very large households had the same chance of being infected by a

single infectious individual as did members of very small

households. If transmission was pseudo-mass action (d~1), then

the expected number of true secondary cases within a single fully

susceptible household is the same for both large and small

households: i.e. infectivity is shared evenly amongst those present.

Parameter h was the scaling ratio for the force of infection within

households relative to that that between households and does have

a direct intuitive interpretation if we consider a special case in

which d = 1 and, for one household in our population, the

proportion of infectious individuals within the household is equal

to the proportion of infectious in the community. Under these

circumstances, if h were less than 1, then the force of infection

from the community would be greater than the force of infection

from the household. If h were greater than 1, the balance of

infectious hazards would be reversed.

The dynamic model for a population of households was defined

by a master equation for the time derivative of ns,e,i,r,

dns,e,i,r

dt
~

(iz1)cns,e,iz1,r{1 z (ez1)apns,ez1,i{1,r z

(rz1)vns{1,e,i,rz1 z (sz1)lsz1,e{1,i,rnsz1,e{1,i,r {

sls,e,i,rzeaziczrvð Þns,e,i,r

in which the first four terms corresponded to a different event

(recovery, becoming infectious, loss of immunity and infection). We

Influenza Infections within Households
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assumed that ns,e,i,a,r~0 if the sum szezizr was less than 1 or

greater than H or if any s, e, i or r was less than 1 or greater than H.

Note that Model A is a nested sub-model of Model B: if either the

maximum household size is 1 (H~1) or there was no transmission

within households (h~0), the two models were equivalent.

In general, the basic reproductive number for household models

of infectious disease transmission is difficult to define precisely in a

closed form [15,16]. To ensure that our results were comparable

with those from previous studies of influenza transmission (e.g.

[7,12,17,18,19]), we constrained the cumulative attack rate to be

57.9% in the first year even in the presence of seasonal forcing.

Based on the simple relationship between the attack rate (AR) and

basic reproductive number (Ro) for a mass action system,

R0~
{ ln(1{AR)

AR
, this was equivalent to a basic reproductive

number R0 of 1.5 in Model A [20] .

Some parameter values such as the average duration of the latent

period 1=a and the average duration of the infectious period 1=c
(Table 1) can be assumed with reasonable confidence from empirical

studies. The value R0&1:5 is consistent with a number of analyses of

the 2009 pandemic ([2]; [21]). We adopted R0~1:5 for our baseline

and 1.8 as one of our sensitivity analyses. To capture the behaviour of

severe pandemic as in Scandinavian cities in 1918 pandemic

influenza [22], we examined other plausible value such as 5.4.

However, there is still considerable uncertainty over the most

appropriate values for some parameters in Model A: the average

duration of effective immunity 1=v and the amplitude of seasonal

forcing A. Therefore, we used solutions to Model A (Figure 1) to

choose values for these parameters so that the resulting dynamics

exhibit three characteristics typical influenza A epidemiology in

temperate and subtropical climates. First, the fundamental frequency

of the system falls close to annual cycles [12] within a short period

after a pandemic. Second, the amplitude of seasonal forcing

sufficiently strong that there is a genuine off-season with very little

transmission. Third, the amplitude of seasonal forcing is weak enough

that the system settles down into regular annual cycles: if seasonal

forcing is too strong, there are frequently years with no infections.

Although it would be desirable to estimate these unknown parameters

using unbiased type-specific laboratory confirmed incidence data,

such data are not currently available. Our exercise of parameterisa-

tion calibration was similar a recent exploratory analysis of influenza

seasonality [23]. Also, our estimate of 1=v was also consistent with

the estimate of the appearance of antigentic distinct clusters of other

studies, ranged from 2–8 years[24,25].

Results

We used household Model B to investigate the relationship

between the relative infectivity within households h, the proportion

of infections that occurred within households during pandemic

years aPH , and the proportion of infections that occurred within

households during non-pandemic years aNH (Table 2). The first

equilibrium non-pandemic year which is the first year to produce

regular annual cycle of infection attack rate, by inspection, was

year 15 in our baseline solution (see Figure 1). As h increased from

0.4 to 1.0, so did the proportion of infections that occurred in

households (during both pandemic and non-pandemic years).

However, the magnitude of the increase was not excessive. For

example, doubling h from 0.5 to 1.0 only increased the proportion

of infections in households during pandemics from aPH = 26.1% to

aPH = 37.0%, and in non-pandemic years from aNH = 25.1% to

aNH = 35.3%.

We tested the sensitivity of our key findings to the nature of the

force of infection within households not being genuinely pseudo-

mass action (i.e. d=1, Figure 2). Small values of d generated more

infections within the household. Within the confidence bound for

current estimates of d, [0.46,1.21] [8], a large range of values of h
is consistent with a ,30% annual attack rate in equilibrium years.

In addition, the discrepancy between the proportion of infections

that occur within the home during a pandemic year compared

with an equilibrium year increases as the value of d decreases.

Increasing the basic reproductive number R0 did alter the

amplitude of the difference between pandemic and non-pandemic

years. For size 5 households with R0 = 1.5, ,47% had more than

3 susceptible individuals in non-pandemic years. With Ro values of

1.8 and 5.4 (Figure 3d and 3f), 28% and 1% of households,

respectively, had more than 3 susceptible individuals. This implies

that there would be less immunity in typical households of infected

individuals with low R0 and more immunity in those with high R0

during non-pandemic years. This balancing results in a similar

proportion of household infection across different R0 in non-

pandemic years given similar proportions of household infection in

pandemic years.

To reduce the sensitivity of our results to specific parameter

choices, we also calculated some additional supporting model

solutions (Tables 3 and 4). A sensitivity analysis on a and c was

performed by doubling and halving the values we used (1/a = 1.4

and 1/c = 1.2) in Table 1. With 30% within-household attack rate

in non-pandemic year, the percentage point differences in within

house attack rate in non-pandemic years and non-pandemic years

were very similar across different household sizes in Table 3.

Further, different combinations of the seasonal forcing A and

reciprocal of average duration of immunity 1/v could produce

similar within house attack rates in non- pandemic years. We

incorporated three different levels of seasonal forcing on our

dynamic transmission model. Thus, v was estimated such that the

regular annual cycle of infection was observed. With 30% within-

Table 1. Assumed values for transmission models.

Parameter Value(s) Notes

R0 Basic reproductive number 1.5 Midpoint of estimates from [2], consistent with intervals from [19] and [18]

a Reciprocal of average duration
of latent period (days21)

1/1.4 Analysis of a 2009 influenza A (H1N1) pandemic at a New York City school [27]

c Reciprocal of average duration
of infectiousness (days21)

1/1.2 A generation time of 2.6 days [18] [28] and a latent period of 1.4 days
implies an infection duration of 1.2 days for this SEIRS-type model [29]

v Reciprocal of average duration
of immunity (days21)

1=(2:5|364) See Figure 1 and main text.

A Amplitude of seasonal forcing 0.03125 See Figure 1 and main text.

doi:10.1371/journal.pone.0022089.t001
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household attack rate in non-pandemic year, the percentage point

differences in within house attack rate are not substantial across

different household sizes in three different scenarios (Table 4).

As a final observation, we note that differences in the

distribution of susceptible individuals within households during

non-pandemic years compared with pandemic years has impor-

tant implications for the design of clinical trials of household-

based interventions against influenza, especially those that recruit

households via already infected members. In a population in

which the transmission dynamics were well described by the

scenario h~0:7 and d~1, on average, the households of already

infected individuals recruited after seeking health care would have

few additional susceptible members. For example, using the

steady-state solution of Model B with the abovementioned

parameter values, we would expect only ,57.5% of households

of size 3 to have more than one susceptible individual (Figure 3).

Discussion

We defined a plausible transmission scenario for an influenza

pandemic and subsequent non-pandemic equilibrium seasons

using a non-household mathematical transmission model (Model

A). We then extended this to a model in which all household types

were explicitly enumerated (Model B) and found that the

proportion of infections which occurred in households during

pandemics was similar to the proportion that occurred during non-

pandemic years. Although this difference was somewhat sensitive

to the nature of within-household transmission (pseudo-mass-

action verses mass-action), the magnitude of the difference was not

substantial for small values of R0 (say 1.4, 1.8). The sensitivity

analysis on R0 (say R0 = 5.4) shows that higher R0 in pandemic

year would show the difference of within household attack rate in

pandemic and non-pandemic years.

The population-level efficacies of pandemic household-based

mitigation strategies are sensitive to the proportion of infections

that occur within households. Mitigation strategies are more

effective when higher proportions of infections occur. It is thus

reassuring that increased community force of infection did not

generate a much lower proportion of infection within households

during pandemics in our model, otherwise, the likely efficacy of

household-based interventions in controlling a pandemic would be

much reduced.

Figure 1. The impact of average immunity duration and the amplitude of seasonal forcing on the dynamics of pandemic and non-
pandemic influenza. a–c show the proportion of the population that was resistant. d–e show the daily incidence as a proportion of the population
(with the y-axis restricted so that the initial peak of incidence in the pandemic is not shown). a and d show the unforced dynamics (A~0) of the
system with an average duration of immunity of 1=v~6:8 years (the average time between two cluster emergence events since the last pandemic in
1968, with clusters defined by [25]. The frequency of oscillations is still less than annual cycles 30 years after a pandemic. b and e show the unforced
dynamics of the system with an average duration of immunity of 1=v~2:5 years. The frequency of oscillations increases to annual cycles within 10
years, but the lack of forcing results in flat non-seasonal incidence shortly afterwards. Note that the reduction of 1=v from 6.8 years to 2.5 years (or
2.56364 days) has no substantial effect on the average proportion of the population that was immune (1{1=R0) because the average duration of
immunity is still much larger than the average duration of infectiousness (v%c) [10]. c and f show the baseline dynamics of our system with
moderate seasonal forcing A~0:03125 and an average duration of immunity at 1=v~2:5 years. Seasonal forcing is strong enough to ensure the
existence of a genuine off-season during which there are very few infections, but not strong enough to force the system into irregular non-annual
cycles (such as those recently described for measles in Niger [30]. The combination of the degree of forcing and the natural frequency of the system
permits low proportions of individuals resistant to influenza during immediately before the start of the season.
doi:10.1371/journal.pone.0022089.g001
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Table 2. Illustrative within-1 and between-household attack rates2 for pandemic and non-pandemic influenza under Ro = 1.5.

Infectivity ratio h Household size Pandemic attack rate Non-pandemic attack rate

Total (% of population)
Within-house (% of
Total) Total (% of population)

Within-house (% of
Total)

0.4 All 57.9 22.8 12.8 22.1

0.5 57.9 26.1 12.7 25.1

0.6 57.9 28.9 12.6 27.7

0.7 1 44.7 0 9.6 0

2 50.0 25.5 11.8 24.0

3 58.1 31.5 12.5 30.0

4 59.8 34.5 12.9 33.1

5 60.8 36.3 13.1 35.1

All 57.9 31.3 12.5 30.0

0.8 All 57.9 33.4 12.4 32.0

0.9 57.9 35.3 12.3 33.7

1.0 57.9 37.0 12.2 35.3

1The attack rate is defined as the number of infections divided by the total number of individuals in households of that size.
2The within-household transmission is expressed as a percentage of the total number of infections.
doi:10.1371/journal.pone.0022089.t002

Figure 2. The within-household transmission percentages in non-pandemic years and the corresponding percentage difference
from that in pandemic years. The contour lines show the percentages of within-household transmission in non-pandemic years, and the heat
chart shows the differences between percentages of within-household transmission in non-pandemic years and pandemic years under different
combinations of h and d. For example, if h~1:0 and d~0:25, then the percentage of within-household transmission in a non-pandemic year would
be 45% and the difference between the percentage of within household transmission in non-pandemic years and pandemic years would be
approximately 2.5 to 3.0%.
doi:10.1371/journal.pone.0022089.g002

Influenza Infections within Households

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e22089



The household distribution of Hong Kong, as used in this study,

is similar to those of many other developed nations [26]. However,

less well developed populations and urban sub-populations in

other countries have larger average household sizes. The study of

the impact of household size distributions on infectious disease

dynamics merits further theoretical and empirical study. Also, we

chose not to include vaccination in this study. As an overall

percentage, there are very few populations for which vaccination is

a significant factor in the transmission of influenza. This was

certainly the case during earlier empirical studies on which our

parameters are based. If routine vaccination is extended to a large

proportion of the population (or of school-age children) then future

similar theoretical studies to that presented here should incorpo-

rate vaccination.

Figure 3. Proportion of within household and community infections in pandemic and non-pandemic years and the distribution of
the number of susceptible individuals in non-pandemic year. Proportion of within-household (blue) and community (red) infections in the
first six months of pandemic years (a, c and e) and non-pandemic years (b, d and f) and the distribution of the number of susceptible individuals from
households of 3 (red) , 4 (blue) and 5 (yellow) at the start of non-pandemic years for different values of Ro: (a, b) 5.4 , (c, d) 1.8 and (e, f) 1.5.
doi:10.1371/journal.pone.0022089.g003
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To simplify the model and increase its efficiency in solving

hundreds of master equations, the asymptomatic class is excluded

by assuming that the force of infections attributed by asymptom-

atic and symptomatic individuals are equal. The inclusion of

asymptomatic individuals would improve the main results, but

defining the hazard rate between these two groups to match the

attack rates in pandemic years and inter-pandemic years would

increase the uncertainties on extra parameter values.

The interpretation of our results is somewhat limited by our use

of a deterministic framework for the transmission model. Our

representation of an individual’s loss of immunity is very simplistic

– an exponential waiting time distribution from which every

individual’s loss of immunity is derived. We did not explicitly

include births (which were ‘‘rolled’’ into the replenishment of

susceptible individuals) and did not include step changes in the

nature of the pathogen over time, which is sometimes the case for

influenza. Thus, although our results are qualitatively robust,

further studies are required to make more informed estimates of

the scale of the effects we identified. For example, an individual-

based stochastic version of these models and deterministic versions

with step changes in the nature of the antigenic drift are worthy of

investigation.

We have assumed that the basic reproductive number for

influenza is the same in pandemic years as during non-pandemic

years because we have no evidence to suggest the contrary.

However, this equivalence may not be the case, especially during

moderate or severe pandemics. To estimate the reproductive

number for pandemic influenza, recent studies have re-examined

time series of excess mortality from various cities in the United

States and the United Kingdom during the 1918–1919 season

[18,19]. However, these populations may have been aware of the

Table 3. Sensitivity analysis on duration of latent period and duration of infectiousness.

1/a Household size Non-pandemic (% of Total)
% point difference in within-house attack rate between pandemic and
non-pandemic years (Pandemic attack rate - Non-pandemic attack rate)

1/c

0.6 1.2 2.4 0.6 1.2 2.4

1 0.0 0.0 0.0 0.00 0.00 0.00

2 24.0 24.0 24.0 1.44 1.40 1.35

0.7 3 30.0 30.0 30.0 1.43 1.40 1.35

4 33.1 33.1 33.1 1.35 1.31 1.27

5 35.1 35.1 35.1 1.26 1.22 1.18

All 30.0 30.0 30.0 1.31 1.27 1.21

1 0.0 0.0 0.0 0.00 0.00 0.00

2 24.0 24.0 24.0 1.50 1.45 1.49

1.4 3 30.0 30.0 30.1 1.48 1.44 1.47

4 33.1 33.1 33.1 1.39 1.35 1.37

5 35.1 35.1 35.1 1.29 1.25 1.26

All 30.0 30.0 30.0 1.34 1.30 1.31

1 0.0 0.0 0.0 0.00 0.00 0.00

2 24.0 24.0 24.1 1.55 1.37 1.38

2.8 3 30.0 30.0 30.1 1.53 1.37 1.37

4 33.1 33.1 33.2 1.42 1.28 1.28

5 35.1 35.1 35.1 1.31 1.18 1.17

All 30.0 30.0 30.0 1.37 1.22 1.21

doi:10.1371/journal.pone.0022089.t003

Table 4. Sensitivity analysis on seasonal forcing.

Seasonal
forcing A

Household
size

Non-pandemic
(% of Total)

% point difference
of within-house attack
rate in pandemic and
non-pandemic years
(i.e Pandemic attack
rate - Non-pandemic
attack rate)

0.015625 1 0 0

(1/v= 3.4 years) 2 24.0 1.48

3 30.0 1.47

4 33.1 1.37

5 35.1 1.27

All 30.0 1.32

0.03125 1 0 0

(1/v= 2.5 years) 2 24.0 1.50

3 30.0 1.50

4 33.1 1.40

5 35.1 1.20

All 30.0 1.30

0.0625 1 0 0

(1/v= 1.4 years) 2 24.1 1.32

3 30.1 1.31

4 33.2 1.22

5 35.2 1.13

All 30.0 1.28

doi:10.1371/journal.pone.0022089.t004
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imminent arrival of a pandemic and may have already changed

their behaviour to reduce average levels of transmission. The low

estimates of R0 in these studies may not accurately reflect the

mixing behaviour of populations during non-pandemic transmis-

sion periods. One might define a non-pandemic basic reproductive

number for influenza as the average number of secondary cases

generated by a typically infectious individual in an otherwise

susceptible population in which people have not changed their

mixing patterns in anticipation of a pandemic. We note that if the

non-pandemic basic reproductive number is higher than that of a

pandemic, it would substantially affect the non-pandemic attack

rate (which is determined largely by the average duration of

immunity).

Although the low constant R0 is assumed to be the case

during past pandemics and non-pandemic years as mentioned

above, we cannot rule out the possibility of the transmissibility of

influenza with high constant R0 in the future. To have the

household infection pattern for this scenario, a higher R0 of 5.4,

for instance, could be incorporated into our model. Given 30%

of household infection in non-pandemic years, the estimated h

would be approximately 1.6. Based on this estimated h, quite

different infection patterns would be observed in pandemic and

non-pandemic years. A relatively small proportion of infections

would be attributable to households in non-pandemic years than

in pandemic years. For size 3 households, 37.9% and 28.5%

would experience household infections in pandemic and non-

pandemic years, respectively. This result implies that the current

mitigation strategies recommended for households such as hand

hygiene and mask wearing may not be effective enough to halt

household transmission during pandemics in cases of high

influenza transmission. Even for lower values of R0 such hygiene

measures are unlikely to halt transmission too although to some

extent, these measures will give a reduction in transmission.

It is unfortunate that we needed to rely on the broad properties

of influenza transmission in non-pandemic years to characterize

our baseline transmission scenario. This was necessary due to the

lack of context-specific and unbiased laboratory confirmed

incidence data for influenza in any population: we did not

consider anonymous convenience samples from hospital surveil-

lance networks and incidence estimated from excess seasonal

mortality in all ages to be sufficiently accurate. Given the vast

resources currently being consumed investigating vaccine and

anti-viral candidates, we suggest that it is now appropriate to

instigate multi-centre and multi-year population-based serological

surveillance of influenza incidence. Such a program would be

relatively inexpensive and could be used to rapidly address key

shortfalls in our understanding of influenza epidemiology. If such

accurate representative data were to become available, there

would be great merit in extending the simple conceptual

framework proposed here to include discrete changes in the

serology of circulating strains and age specific transmission. It is

likely, although not certain, that these refinements would need to

be made within an individual-based stochastic version of our

model. Systematically accurate incidence data and more refined

transmission models could be used to make accurate population-

specific estimates of influenza incidence conditional on the

antigenic characteristic of the expected strain and of recent

strains.
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