Skip to main content
. 2011 Jul 14;6(7):e22136. doi: 10.1371/journal.pone.0022136

Figure 1. Genus-level biodiversity and phylogenetic relationships of elpistostegid fish and earliest tetrapods, as compared to abiotic and biotic features of Devonian environments.

Figure 1

Due to the choosen phylogenetic scheme (after [11]), and the fact that we take into consideration the Glenisla trace fossils from Australia, ghost ranges of basal taxa (elpistostegids, from Panderichthys to Livoniana) and tetrapods (from ANSP 21350 to the crown group ‘Tulerpeton + modern amphibians’) are increased in a significant amount. We use oxygen levels predicted by GEOCARBSULF [21], evolution of arthropod orders [24], evolution of autotrophic reefs [27], body volume of marine invertebrates [26], and genus-level diversity of marine invertebrates [25]. It must be noted that in the highlighted zone of the diagram, the arthropods concerned with are three clades of terrestrial arthropods (myriapods, arachnids, hexapods). Hence the image gives a view of changes in terrestrial and marine species, but giving stress about the changes in marine environment since this is where the tetrapods evolved. The Zachelmie tracks [11] are quite close to the highlighted region and the Glenisla tracks [22] find a satisfactory position amongst the controversy in our image.