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Abstract

Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the
invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase
Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on
phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa
cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K
inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85a and p85ß by RNAi had no inhibitory effect
on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases,
PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella
ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether
these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-
independent process that incorporates some essential elements of the canonical pathway.
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Introduction

Salmonella enterica is a facultative intracellular pathogen that causes

a number of diseases ranging from self-limiting gastroenteritis to

systemic typhoid fever. Like many other Gram-negative patho-

gens, Salmonella use Type III Secretion Systems (T3SS) to deliver

bacterial effector proteins into host cells. T3SS1, also known as the

invasion associated T3SS, mediates efficient invasion of non-

phagocytic eukaryotic cells, such as enterocytes in the intestinal

epithelium. The invasion process has been extensively studied

using cultured epithelial cells and S. enterica serovar Typhimurium

(S. Typhimurium). It is characterized by the formation of localized

membrane ruffles, which involves the co-operative activity of the

T3SS1 effectors: SopE, SopE2 and SopB [1]. These effectors act

in concert to activate the Rho family GTPases, Cdc42 and Rac,

either directly, by acting as GTPase exchange factors (SopE and

SopE2), or indirectly, by the generation of phosphoinositides on

the cytosolic face of the plasma membrane (SopB).

In addition to its role in invasion, SopB has a number of other

roles in establishing the intracellular niche [2,3,4,5,6,7]. One of the

major targets of SopB in mammalian cells is the prosurvival kinase

Akt (also known as PKB) [5,6], a serine/threonine kinase that plays

central roles in a variety of cellular functions. Other bacterial

pathogens also target Akt in epithelial cells, suggesting that

manipulation of this kinase may be an important step in establishing

infection [8,9,10,11,12,13]. Canonical Akt activation, as illustrated

by growth factor stimulation of epithelial cells, involves two

sequential steps: (1) Class I PI3K-dependent membrane-transloca-

tion, followed by; (2) phosphorylation at Thr308 and Ser473, that

occurs in the cell membrane [14]. The PH domain of AKT binds

with high affinity to the 39-phosphorylated lipid products of PI3K,

PtdIns(3,4,5)P3 and PtdIns(3,4)P2 [15,16,17]. Once at the mem-

brane, Akt is phosphorylated on Thr308 by the serine-threonine

kinases PDK1 (phosphoinositide-dependent kinase 1) [18] and

subsequently on Ser473 by mTORC2 (mammalian target of

rapamycin complex 2) [19]. Akt phosphorylation is typically

short-lived due largely to the rapid hydrolysis of PtdIns (3,4,5)P3

and PtdIns(3,4)P2 by a number of phosphoinositide phosphatases

including PTEN, inositol polyphosphate 5-phosphatases and

inositol polyphosphate 4-phosphatase [20,21,22,23].

The mechanism of activation of Akt by SopB is not well understood.

Both SopB and IpgD, a homolog from Shigella flexneri [24], are

phosphoinositide phosphatases with homology to mammalian inositol

4-phosphatases as well as the inositol 5-phosphatase synaptojanin [25].

Phosphoinositide phosphatase activity is essential for Akt activation by

either effector [5,10], however, the mechanism by which this intersects

with the canonical PI3K/Akt pathway to induce Akt activation

remains unclear. Inhibition of SopB/IpgD-dependent Akt phosphor-

ylation by the PI3K inhibitor LY294002 supports a role for PI3K

[5,10], however, a different study found that this inhibitor did not
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inhibit Salmonella-dependent accumulation of either PtdIns (3,4,5)P3 or

PtdIns(3,4)P2 in membrane ruffles [26]. IpgD has been shown to

activate the PI 3-kinase/Akt pathway activation via a process that

involves conversion of PI(4,5)P2 into PtdIns(5)P [10,24]. And more

recently it was shown that PtdIns(5)P may act indirectly to increase Akt

phosphorylation by inhibiting the PP2A phosphatase [27]. In vitro

phosphatase assays have shown that SopB and IpgD have relatively

low specific activity compared to mammalian homologues and that

they have slightly different substrate specificities. Sop Bhas a preference

for PtdIns(3,4,5)P3 and PtdIns(3,4)P2, whereas IpgD has a preference

for PtdIns(4,5)P2 followed by PtdIns(3,4,5)P3 [24,28]. Thus the

involvement of PI3K in Salmonella-dependent Akt activation has not

been definitively established.

SopB-dependent Akt activation in epithelial cells has important

implications for Salmonella pathogenesis, particularly during the

gastrointestinal phase of infection where the intestinal epithelium is

targeted. To gain a better understanding of how Salmonella

activates this critical cellular kinase in epithelial cells, we have

investigated the role of PI3K, and other known components of the

PI3K/Akt pathway, in SopB-dependent Akt phosphorylation and

membrane localization in Salmonella-induced membrane ruffles.

Results

SopB is sufficient for Akt phosphorylation
Several features of Salmonella pathogenesis require the concerted

actions of multiple T3SS1 effectors. In particular, SopB cooperates

with SopE and SopE2 to induce the actin rearrangements leading to

invasion [29]. To investigate whether these, or other effectors,

contribute to SopB-dependent Salmonella-mediated Akt phosphor-

ylation, HeLa cells were infected with mutant S. Typhimurium

strains that lacked either specific effectors or the ability to

translocate them. Akt phosphorylation was then assessed by

immunoblotting using phospho-specific antibodies that recognize

Akt when it is phosphorylated at Ser473 or Thr308 (Figure 1A). As

shown previously, wild type (WT) Salmonella induces Akt phosphor-

ylation whereas a sopB deletion mutant, DsopB, does not [5]. A strain

lacking SopE and SopE2 (DsopE/sopE2) induced Akt phosphoryla-

tion levels comparable to WT, whereas the triple mutant DsopE/

sopE2/sopB was indistinguishable from the DsopB strain. A DSPI1

mutant, which lacks the T3SS1 structural and regulatory compo-

nents and is unable to translocate any T3SS1 effectors into host

cells, also did not induce Akt activation. Since several of these

mutants are invasion defective, we confirmed that invasion per se is

not required for Akt activation by pretreating cells with cytochalasin

D to disrupt the actin cytoskeleton. Cytochalasin D inhibits bacterial

invasion (not shown and [30]) but had no effect on the ability of WT

Salmonella to induce Akt phosphorylation in HeLa cells (Figure 1A),

confirming that effector translocation, but not bacterial invasion, is

required for Salmonella-induced Akt phosphorylation. To rule out a

requirement for any other bacterial factors, His-tagged SopB (6His-

SopB) was expressed from a mammalian expression plasmid in

HeLa cells. Akt phosphorylation was increased in cells expressing

6His-SopB compared to control cells (no plasmid) or cells expressing

the catalytically inactive SopB C460S mutant [5](Figure 1B).

Together these experiments show that SopB phosphatase activity is

the only bacterial factor required for Salmonella-mediated Akt

phosphorylation in HeLa cells.

SopB-dependent Akt activation is wortmannin-
insensitive

We next investigated the role of PI3K in SopB-induced Akt

phosphorylation using the PI3K inhibitors wortmannin and

LY294002. HeLa cells expressing 6His-Sop Bwere treated with

the inhibitors and Akt phosphorylation assessed by immunoblot-

ting (Figure 1B). Surprisingly, wortmannin had no effect on SopB-

dependent Akt phosphorylation in this system. In contrast,

LY294002 completely inhibited SopB-dependent Akt phosphory-

lation. To confirm that this was not an artifact of ectopic

expression we next compared the inhibitory activities of LY294002

and wortmannin in HeLa cells infected with Salmonella. Cells were

pretreated with inhibitors for 30 min then infected with Salmonella

for 30 min in the presence of the inhibitors. Subsequently we

assessed the levels of phosphorylated Akt either by immunoblot-

ting or ELISA (Figure 1C and D). In agreement with the results

obtained with ectopically expressed SopB, SopB-dependent Akt

phosphorylation in Salmonella-infected cells was efficiently inhibited

by LY294002 but not by wortmannin. In these experiments, and

subsequently (Figure 2 and 3), EGF stimulation of HeLa cells was

used as a positive control for activation of the canonical PI3K/Akt

pathway. Both of the PI3K inhibitors completely inhibited EGF-

dependent Akt phosphorylation (Figure 1D). Control experiments

were also carried out in which wortmannin was added to cells for

30 min or 3 hr prior to infection with Salmonella or EGF treatment.

Irrespective of the pre-incubation period, wortmannin efficiently

inhibited Akt phosphorylation in HeLa cells stimulated with EGF

but not in cells infected with Salmonella (Figure S1). These

experiments were repeated in human (FHs 74 Int) and rat (IEC-

18) intestinal epithelial cells that are physiologically relevant for

Salmonella pathogenesis (data not shown). In these cell lines

Salmonella-induced Akt phosphorylation was also insensitive to

wortmannin, thus wortmannin-insensitivity seems to be a

characteristic of this pathway in epithelial cells.

The Akt phosphorylation defect of DsopB Salmonella can be

rescued by plasmid expressed SopB or the Shigella homologue

IpgD [25]. Using the plasmids pACDE, which encodes both SopB

and its chaperone SigE, and pACipgDE, which encodes IpgD and

its chaperone IpgDE, we directly compared SopB- and IpgD-

dependent Akt phosphorylation in infected HeLa cells. In both

plasmids, expression is under the transcriptional control of the sopB

promoter [25]. Like SopB, IpgD efficiently induced Akt phos-

phorylation, which was inhibited by LY294002 but not wortman-

nin (Figure 1C). Thus SopB and IpgD induce Akt phosphorylation

via a similar wortmannin-insensitive mechanism.

Since the differential sensitivity to the pharmacological

inhibitors wortmannin and LY294002 was both unexpected and

difficult to interpret, we next sought to verify whether or not class I

PI3K is required for Salmonella-induced Akt activation. To do this

we used RNAi-mediated knockdown to deplete the p85a and p85ß

regulatory subunits of class I PI3K. Cells were transfected with

siRNA 48 hr prior to infection with Salmonella for 15 min. As

shown in Figure 2, depletion of p85 resulted in significant

inhibition of EGF-induced Akt-phosphorylation but had no effect

on Salmonella-induced Akt-phosphorylation. Furthermore, a time

course experiment showed no requirement for PI3K in Salmonella-

induced Akt-phosphorylation up to 3 hr post-infection (Figure S2).

Together the above experiments indicate that the Salmonella-

induced phosphorylation of Akt is not dependent on class I PI3K.

Differential effects of Akt inhibitors on SopB- and
EGF-induced phosphorylation of Akt

Having shown a difference between Salmonella-mediated and EGF-

mediated Akt activation using the PI3K inhibitor wortmannin, we

next targeted post-PI3K steps in the Akt-activation pathway using a

panel of pharmacological inhibitors. These included: SH-6, a

phosphatidylinositol analog that prevents phosphorylation of Akt

[31,32]; Triciribine (TCN), a cell-permeable tricyclic nucleoside that

selectively inhibits the cellular phosphorylation/activation of Akt

Activation of Akt by Salmonella
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without affecting either PI3K or PDK [33]; Akti-1/2, a PH domain

dependent allosteric inhibitor that preferentially inhibits Akt1 and

Akt2 [34]; and Akt inhibitor6[10-(49-(N-diethylamino)butyl)-2-chlor-

ophenoxazine, HCl] (AIX), a PH domain independent inhibitor of

Akt kinase activity [35]. HeLa cells were treated with Akt inhibitors

for 30 min then either infected with Salmonella for 30 min or treated

with EGF for 2 min. AIX was the only one of these inhibitors that

inhibited Salmonella- and EGF-stimulated Akt phosphorylation with

similar efficiency (compare Figure 3A and B). Two of the inhibitors,

SH-6 and TCN, had no significant effect on Salmonella-induced Akt

phosphorylation when used at concentrations that caused inhibition

of EGF-stimulated Akt phosphorylation. In contrast, Akti-1/2 had no

effect on EGF-stimulated Akt phosphorylation at the concentrations

used here (0.05 mM–0.1 mM) but did significantly reduce Salmonella-

induced Akt phosphorylation at 0.1 mM. Altogether, these results

confirm our initial findings with the PI3K inhibitor wortmannin; that

SopB-dependent Akt phosphorylation is occurring via a mechanism

distinct from the canonical PI3K/Akt pathway.

Rictor and PDK1 are involved in SopB-dependent Akt
phosphorylation

To verify the above data and also determine the requirement for

other known components of the PI3K/Akt pathway in SopB-

mediated Akt phosphoylation, we used RNAi-mediated knockdown

to deplete proteins directly involved in Akt regulation (Figure 4).

First, we performed targeted knockdown using isoform-specific

siRNAs to compare the roles of Akt1 and Akt2, the two Akt isoforms

present in HeLa cells. Cells were transfected with siRNA 48 hr prior

to infection with Salmonella for 30 min. The levels of total Akt (Akt1

and Akt2), phospho Akt (Akt1 and Akt2) and actin were then

assessed by immunoblotting. In HeLa cells the pan Akt antibody

that we used to detect total Akt, recognizes both Akt1 (upper band)

and Akt2 (lower band). Knockdown efficacy was better for Akt2

than Akt1. Negative control siRNA targeting Akt3, an isoform not

expressed in HeLa cells, did not affect Akt1 and Akt2 levels and had

no effect on Salmonella-dependent Akt phosphorylation. Depletion of

either Akt1 or Akt2 resulted in reduced levels of Akt phosphory-

lation although Akt2 depletion had a more pronounced effect

(Figure 4A). Depletion of both Akt1 and Akt2 caused almost

complete abrogation of Akt phosphorylation as previously shown

[6], but also caused loss of cell growth and/or viability as in dicated

by the decrease in actin. These data show that Salmonella can induce

phosphorylation of both Akt1 and Akt2 in infected HeLa cells.

Down-regulation of growth factor mediated Akt phosphorylation

is dependent on phosphatase and tensin homologue deleted on

chromosome 10 (PTEN) which dephosphoylates PtdIns(3,4,5)P3.

However, targeted knockdown of PTEN with siRNA had no

Figure 1. SopB–dependent Akt phosphorylation in epithelial
cells is wortmannin insensitive. (A) HeLa cells were infected with
Salmonella, either WT or the indicated mutants, for 20 min. Monolayers
were then solubilized in sample buffer and processed for immunoblotting
using rabbit polyclonal antibodies to detect phospho Akt (Ser473) and

total Akt. Cytochalasin D (cyto D: 1 mg/ml) treated cells were incubated
with drug prior to and throughout the infection. (B) HeLa cells were
transfected with plasmid expressing 6His-SopB or 6His-SopB C460S for
18 hr. Monolayers were solubilized and processed for immunoblotting
using antibodies against SopB, phospho Akt (Ser473) and total Akt. Where
indicated, LY294002 (LY: 50 mM) or wortmannin (W:100 nM) were added
for 40 min prior to sample collection. (C & D) HeLa cells were treated with
EGF (50 ng/ml) for 2 min or infected with Salmonella for 30 min then
solubilized and processed for immunoblotting (C) or ELISA (D). To compare
the activities of SopB and IpgD the DsopB strain was complemented with
plasmids pACDE or pACipgDE, respectively. Where indicated cells were
pretreated with either LY294002 (LY29: 50 mM) or wortmannin (WTM:
100 nM) for 30 min preceding infection and inhibitor was maintained in
the media for all subsequent incubations. Immunoblots are representative
from three independent experiments. ELISA data represent means 6 SD
from three independent experiments (* P,0.05, significantly different from
untreated).
doi:10.1371/journal.pone.0022260.g001
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apparent effect on the amount of Akt phosphorylation in HeLa cells

infected with Salmonella for 30 min (Figure 4A) or in extended (3 hr)

time-course experiments (data not shown).

Phosphorylation of Akt at Thr308 and Ser473 is mediated by the

Akt kinases, PDK1 and mTORC2 respectively [19,36]. We assessed

the role of these kinases using siRNA targeting PDK1 or Rictor, the

defining component of the multisubunit complex mTORC2. In

cells depleted of PDK1 and then infected with WT Salmonella for

30 min, we observed a strong reduction in Thr308 phosphorylation

as well as a detectable reduction in Ser473 phosphorylation

(Figure 4B). In contrast, in mTORC2 depleted cells Ser473

phosphorylation was preferentially reduced. As an additional

control, we also depleted raptor, which is complexed with mTOR

in mTORC1, but this had no effect on Akt phosphorylation.

Collectively, these data demonstrate a requirement for both PDK1

and mTORC2 in the Salmonella-induced activation of Akt.

PDK1 and rictor, are recruited to Salmonella-induced
ruffles independent of SopB

Having shown that Salmonella-induced phosphorylation of Akt is

dependent on PDK1 and rictor we next sought to confirm that these

kinases are translocated to the plasma membrane during infection.

The dominant characteristic of Salmonella invasion of epithelial cells is

the formation of membrane ruffles and Akt is specifically translocated

to the ruffle where it is phosphorylated [6]. To determine whether the

Akt kinases are also translocated to the ruffles we used transiently

expressed myc-tagged PDK1 and rictor fusion proteins since the

endogenous proteins were below the levels of detection in our system

(not shown). As shown in Figure 5 both PDK1-Myc and Myc-rictor

were recruited to ruffles induced by WT Salmonella.

Intriguingly, although SopB is required for Salmonella induced

phosphorylation of Akt, no requirement has been demonstrated for

SopB in membrane translocation. On the contrary, Akt is apparently

enriched in ruffles induced by DsopB Salmonella (Figure 5 and [6]).

Here we found that PDK1 and rictor are also translocated to ruffles

induced by the DsopB strain (Figure 5). These experiments indicate

that Akt, PDK1 and rictor are translocated to Salmonella-induced

ruffles independent of SopB activity. This does not explain why Akt

phosphorylation is strictly SopB dependent. One possibility is that a

negative regulator of Akt phosphorylation could be involved in the

absence of SopB. We analyzed the localization of CTMP, a 27-kDa

protein that has been shown to regulate the activity of Akt by

associating with it at the plasma membrane [37,38]. However, in

Figure 2. The class I PI3K regulatory subunits p85a and p85ß are not required for SopB-mediated Akt phosphorylation. HeLa cells
were transfected with siRNAs, specific for p85a and p85ß, for 72 hr then either treated with EGF or infected with Salmonella WT. For siRNA control
siRNA specific for AKT3 was used (cont.). Monolayers were then solubilized in sample buffer and processed for immunoblotting using antibodies to
detect phospho Akt (Ser473), total Akt or p85a. (A) Representative immunoblot showing p85a knockdown efficiacy and effect on Akt
phosphorylation in infected or EGF treated cells. (B) Quantification of Akt phosphorylation estimated by densitometry. Shown are the means 6 SD
from three independent experiments.
doi:10.1371/journal.pone.0022260.g002
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HeLa cells co-expressing FLAG-CTMP and GFP-Akt, CTMP co-

localized with Akt in ruffles induced by either WT Salmonella or the

DsopB mutant. Altogether these experiments did not reveal any

requirement for SopB in localization of Akt kinases or CTMP to

plasma membrane ruffles.

Semi-quantitative analysis of SopB-dependent Akt
recruitment and phospholipid changes in
Salmonella-induced membrane ruffles

Although the visual comparison of ruffles did not reveal a

requirement for SopB in Akt, PDK1 or rictor recruitment, we

considered that subtle changes in membrane recruitment might

not be detected by this method. We therefore used a semi-

quantitative microscopy-based method to obtain a more accurate

measurement of Akt phosphorylation and protein recruitment in

Salmonella-induced ruffles. This method involves comparison of the

protein of interest to a plasma membrane reference marker,

fluorescently conjugated wheat germ agglutinin (WGA), in order

to compensate for the variable amount of membrane in ruffles

[39]. Single optical sections through ruffles were then obtained

using a spinning disc confocal microscope. It should be noted that

Salmonella-induced ruffles protrude above the surface of the cell, so

that the majority of these z-sections do show not the main body of

the cell (Figure 6A). Compare with the images shown in Figure 7A,

where YZ single sections are included to illustrate the intensity and

height of ruffles compared to the rest of the cell. When the ratio of

intensity of phospho Akt/total Akt (RpAkt/Akt) was calculated for

individual ruffles induced by WT Salmonella the RpAkt/Akt was

approximately 3-fold higher than that in ruffles induced by the

DsopB strain (Figure 6B). Complementation with plasmid borne

SopB restored the WT phenotype. When LY294002-treated cells

were infected with Salmonella expressing SopB the RpAkt/Akt value

was reduced to the level of that induced by the DsopB strain. In

contrast, wortmannin had no effect on the RpAkt/Akt values. Thus

measurement of Akt phosphorylation in ruffles provides results

strikingly similar to those obtained by immunoblotting for whole

cell lysates and reiterates the finding that wortmannin does not

inhibit SopB-dependent Akt phosphorylation (Figure 1).

Next we used a similar microscopy based semi-quantitative

method to measure recruitment of Akt to ruffles (Figure 7). In this

assay the average pixel intensity (background subtracted) in ruffles is

compared to the average pixel intensity in the cytosol (background

subtracted) [Recruitment = (GFPRuffle2GFPback)/(GFPcyto2GFP-

back)], and any value greater than 1 indicates recruitment. This

method revealed a subtle but significant requirement for SopB in

Akt recruitment that was not apparent by visual assessment

(Figure 7B). In ruffles induced by WT Salmonella recruitment was

higher than in ruffles induced by the DsopB strain and complemen-

tation of the DsopB strain restored the WT phenotype

(WT = 1.760.9; DsopB = 1.060.3; DsopB/pACDE = 1.760.8). An

Akt construct, EGFP-mAktDPH, lacking the phophoinositide

binding PH domain, and therefore unable to bind membranes,

was not enriched in Salmonella-induced ruffles (WT = 0.960.4;

DsopB = 0.960.3; DsopB/pACDE = 1.160.4). In contrast, the PH

domain of Akt (Akt-PH-EGFP) was efficiently recruited to ruffles via

Figure 3. PI3K/Akt inhibitors differentially affect Salmonella-induced and EGF-induced Akt phosphorylation in epithelial cells. HeLa
cells were pretreated with PI3K/Akt inhibitors for 30 min and then infected with Salmonella for 30 min (A) or treated with EGF (50 ng/ml) for 2 min
(B). Monolayers were then solubilized in sample buffer and processed for immunoblotting using antibodies to detect phospho Akt (Ser473) and total
Akt. Inhibitors used were; Wortmanin (WTM:100 nM), LY294002 (LY29: 50 mM), SH-6 (20 mM, 10 mM), TCN (20 mM, 10 mM), Akti-1/2 (0.1 mM, 0.05 mM)
and AIX (10 mM, 5 mM). The graphs below each panel show the quantification of Akt phosphorylation estimated by densitometry. Shown are the
means 6 SD from three independent experiments (* P,0.05, significantly different from untreated).
doi:10.1371/journal.pone.0022260.g003
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a SopB-dependent process (WT 7.163.6; DsopB 2.661.4; DsopB/

pACDE 7.463.9). Translocation to the plasma membrane of the

Akt PH domain can be mediated by PtdIns(3,4,5)P3 and/or

PtdIns(3,4)P2 [40,41]. To determine whether both of these

phosphoinositides are enriched in in ruffles we used GFP fusions

to the PH domains of Btk and TAPP1 which bind PtdIns(3,4,5)P3

and PtdIns(3,4)P2 respectively [40,42]. Only EGFP-TAPP1-PH

showed statistically significant recruitment to ruffles in a SopB-

dependent manner (WT = 2.061.0; DsopB = 1.460.7; DsopB/

pACDE = 2.661.6). This suggests that, in Salmonella-induced ruffles,

SopB activity leads to an enrichment of PtdIns(3,4)P2, rather than

PtdIns(3,4,5)P3. Finally, we analyzed recruitment of the PH domain

of phospholipase C delta (PLC-d), a probe for PtdIns(4,5)P2 [42,43].

This probe (PLCd-PH-EGFP) confirmed that PtdIns(4,5)P2

is enriched in Salmonella-induced ruffles (WT = 3.661.7;

DsopB = 4.261.7; DsopB/pACDE = 3.961.6). Although we could

not detect any statistically significant dependence on SopB, it should

be stated that this technique assesses the total amount of probe in

ruffles and would not reveal differences within sub-regions of the

ruffles. For example, depletion of PtdIns(4,5)P2 at the apex of the

phagocytic cup as has previously been shown [2].

Discussion

While it has been well established that the PI3K/Akt pathway is

modulated by many viruses and plays an important role in the

establishment of viral infection [44], the appropriation of Akt by

pathogenic bacteria is less well understood [5,6,10,11,45,46,47].

Salmonella, and other intracellular bacteria [9], use Akt activation

to block or delay apoptosis in infected cells. Given the diverse

cellular roles of Akt, it is likely to have additional functions during

bacterial infection.

In this study, we first showed that the Salmonella effector protein

SopB is necessary and sufficient for Akt phosphorylation in HeLa

cells. To gain a better understanding of the role of Akt in Salmonella

pathogenesis we then compared SopB-mediated Akt activation

with the canonical EGF signaling pathway common to all

epithelial cells. Using different approaches we assessed the two

essential steps in Akt activation i.e. membrane translocation and

phosphorylation. The most striking difference that our study

revealed is that the irreversible PI3K inhibitor wortmannin is

unable to inhibit either of these steps in Salmonella-infected HeLa

cells. An obvious interpretation of this is that SopB-dependent Akt

activation is independent of class I PI3K, supported by the finding

that depletion of the p85 regulatory subunit of class I PI3K had no

effect on this pathway. Surprisingly, the more specific PI3K

inhibitor LY294002 did inhibit both membrane translocation and

phosphorylation of Akt in Salmonella infected cells. However,

LY294002 does have other intracellular targets [48], including:

casein kinase-2, GSK3a and GSK3ß, as well as p97/VCP, a

member of the type II AAA ATPase family [49]. Several other

Figure 4. Both PDK1 and rictor are required for Salmonella-induced Akt phosphorylation. A and B. HeLa cells were transfected with the
indicated SMART pool siRNA for 48 hr then infected with Salmonella WT or DsopB. For siRNA control SMART pool siRNA specific for AKT3 was used
(cont.). After 30 min, monolayers were solubilized and processed for immunoblotting. Antibodies were used to detect phospho-Akt (Ser473 or
Thr308), total Akt, PDK1, raptor, rictor or actin. Gray bars underneath the individual panels highlight the efficiency of each siRNA knockdown.
doi:10.1371/journal.pone.0022260.g004
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Figure 5. Akt regulators accumulate in Salmonella induced ruffles. HeLa cells were transfected with plasmids encoding epitope-tagged
proteins as indicated. After 20 hr they were infected with Salmonella for 30 min, then fixed and processed for immunofluorescence microscopy. GFP-
HA-Akt transfected cells were stained for Salmonella LPS (Cy5) and phospho Akt Ser473 (AF568: A–C), Myc (AF568: D–F) or 36FLAG (AF568: J–L). Cells
expressing PDK1-Myc (G–I) were stained for LPS (Cy5), Myc (AF488) and actin filaments (phalloidin-AF568) to reveal the ruffles.
doi:10.1371/journal.pone.0022260.g005

Figure 6. Accumulation of phospho Akt in Salmonella-induced ruffles is wortmannin insensitive. HeLa cells expressing EGFP-mAkt were
infected with Salmonella for 20 min then fixed and processed for immunofluorescence microscopy. Cells were doubly stained for plasma membrane
(Cy5-WGA) and phospho Akt Ser473 (AF568). (A) Representative images with ruffles outlined to show phospho Akt in ruffles induced by WT
Salmonella. In comparison, phospho Akt levels are much lower in ruffles induced by the DsopB mutant, unless the mutant is complemented in trans
with sopB (pACDE). (B) Semi-quantitative analysis of phospho Akt (Ser473) levels (RpAkt/Akt) in membrane ruffles. Where indicated, cells were
pretreated with wortmannin (WTM: 100 nM) or LY294002 (LY29: 50 mM) for 30 min prior to infection and maintained throughout. Data are the means
6 SD from three independent experiments (* P,0.05).
doi:10.1371/journal.pone.0022260.g006
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potential targets, DNA-PK, PI4K and mTOR, can be excluded

since they are equally sensitive to wortmannin [50,51,52]. We also

found that SopB-dependent Akt phosphorylation was less sensitive

than EGF-induced phosphorylation to two small molecule

inhibitors of AKT. SH-6 is a phosphatidylinositol analog that

competes with PI3K for PtdIns(4,5)P2 [32] whereas TCN is a cell-

permeable tricyclic nucleoside that inhibits Akt phosphorylation

[33]. One possibility is that the SopB pathway engages a

mammalian PI3K other than the canonical class I PI3K, although

this is unlikely since WTM does not show significant isoform

specificity. A final alternative is PI3K-independent activation of

Akt. This is not without precedent since both cAMP/protein

kinase A and dopamine have been shown to elicit wortmannin-

insensitive Akt activation [53,54,55,56]. Despite the above

differences between the SopB-mediated and EGF-mediated

pathways of Akt activation our data suggest that the Akt kinases,

PDK1 and mTORC2, are essential components in both cases.

To get a better understanding of the role of SopB in recruitment

of signaling components we also investigated recruitment of

proteins and phosphoinoside specific PH domains to membrane

ruffles. This semi-quantitative method revealed that Akt enrich-

ment is SopB dependent, whereas in a previous study where

enrichment was simply assessed visually, we could not detect any

requirement for SopB [5]. Furthermore, the PH domain

translocation experiments indicated that SopB induces a localized

increase in PtdIns(3,4)P2 rather than PtdIns(3,4,5)P2 in Salmonella-

induced ruffles. This suggests that Akt phosphorylation in the

Salmonella-induced ruffle is dependent on PtdIns(3,4)P2 rather than

PtdIns(3,4,5)P2. Further studies are required to determine the roles

of these phosphoinositides in SopB-dependent Akt activation.

Interestingly, studies on the S. flexneri effector protein IpgD, a

homolog of SopB, have shown that sustained Akt phosphorylation

is mediated by IpgD-dependent generation of PtdIns(5)P [10] and

indeed SopB causes localized conversion of PI(4,5)P2 to PI(5)P in

Figure 7. Enrichment of PH domain lipid-binding probes in Salmonella-induced ruffles. HeLa cells transfected with plasmids encoding
EGFP-fusions to full length Akt (EGFP-mAkt) or isolated PH domains as indicated were infected with Salmonella for 30 min, then fixed and processed
for immunofluorescence microscopy. Cells were stained for plasma membrane (Cy5-WGA) and Salmonella LPS (AF568). (A) Representative images to
show EGFP-mAkt accumulation in ruffles induced by Salmonella WT, the DsopB mutant or DsopB complemented in trans with sopB (pACDE).
Orthogonal sections show WGA (grayscale) and EGFP-Akt (grayscale converted to a heatmap using the ‘‘FIRE’’ look up table of ImageJ) corresponding
to the red lines on the projections. (B) Analysis of GFP fusion enrichment in membrane ruffles. Shown is combined data from three independent
experiments. Each dot represents one ruffle. P values were obtained by ANOVA and Tukey’s post hoc analysis (* P,0.05).
doi:10.1371/journal.pone.0022260.g007
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regions of Salmonella-induced plasma membrane ruffles [2,57].

One possible effect of increased PtdIns(5)P is to prevent the

dephosphorylation of Akt by inhibiting the catalytic subunit of

PP2A phosphatases [27]. However, these studies also found that

PI3K played an essential role in IpgD-dependent Akt-phosphor-

ylation. Unfortunately, PtdIns(5)P is a rare phosphoinositide [48],

making it very difficult to detect and it remains poorly understood.

In conclusion, we have shown that Salmonella induces Akt

activation via a wortmannin insensitive mechanism that probably

involves a novel class I PI3K-independent pathway. Why

Salmonella have not simply tuned into the canonical pathway is

unclear, but one possibility is that it could allow the targeting of

different downstream proteins. The molecular mechanisms

involved in this process remain unknown, however, the work

presented here provides a foundation for future experiments that

should lead to a better understanding of bacterial pathogenesis as

well as the multi-faceted essential kinase Akt.

Materials and Methods

Materials
Primary antibodies, mouse monoclonal antibodies to Myc and

horseradish peroxidase (HRP)-conjugated secondary antibodies

were obtained from Cell Signaling Technology unless otherwise

noted. Fluorescently labeled Alexa Fluor (AF)-conjugated anti-

bodies and phalloidin were from Invitrogen. Cy5-conjugated

antibodies were from Jackson ImmunoResearch. Rabbit polyclon-

al antibodies to Salmonella LPS (Salmonella O Antiserum Group B

Factors 1, 4, 5, 12) were from BD. Anti-FLAG antibodies were

from Sigma. Other chemicals were from EMD Biosciences except

where indicated. Cytochalasin D was from Sigma. LY294002 was

from Enzo Life Sciences.

Cell Culture
HeLa (human cervical adenocarcinoma, ATCC CCL-2) cells

were grown at 37uC in 5% CO2 in Eagle’s minimal essential

medium (EMEM) (Mediatech) supplemented with 10% (v/v) heat-

inactivated fetal bovine serum (Invitrogen). Cells were passaged

every three to four days and used for experiments within 15

passages of receipt from ATCC.

Bacterial strains and plasmids
Salmonella enterica serovar Typhimurium SL1344 wild type and

the mutants DSPI1::kan, DsopB and sopE::aphT/sopE2::pM218

(TetR) (M202E-E2-) were as previously described [5,58,59]. The

DsopB/sopE::aphT/sopE2::pM218 was constructed by sequential

phage P22-mediated transduction of the DsopE::aphT and

DsopE2::pM218 alleles of M202E-E2- into SL1344 DsopB.

The complementing plasmids pACDE and pACipgDE have

been described previously [25]. EGFP-mAkt [39], Myc-PDK1

[60], green fluorescent protein (GFP)-HA-Akt [41], enhanced GFP

(EGFP)-TAPP1-PH [61], Akt-PH-EGFP, PLCd-PH-EGFP and

Btk-PH-EGFP [43] have all been described previously. Myc-

Rictor [62] was purchased from Addgene (plasmid #11367). To

remove the PH domain of Akt, EGFP-mAkt was used as template

in inverse PCR with the oligonucleotides Akt deltaPH-129F (CCC

AAG CTT TCA GGG GCT GAA GAG ATG) and Akt deltaPH-

4R (CCC AAG CTT TAC GTC GTT CAT AGA TCT). The

amplicon was digested with HindIII and self-ligated to create

EGFP-mAktDPH. CTMP was amplified from a Human Kidney

Creator SMART cDNA library (Clontech) with the oligonucleo-

tides hCTMP-3FLAG-Bgl5 (59 GGA AGA TCT GCT GAG

GAG CTG CGC CGC G 39) and hCTMP-3FLAG-Sal3 (59 A

CGC GTC GAC TTA TGT CAG ACT TTT AGC AGG ATT

CAG 39). The resulting amplicon was cloned into pCR2.1 TOPO

(Invitrogen), released by EcoRI digestion and ligated into EcoRI-

digested p36FLAG-CMVTM-7.1 (Sigma) to create 36FLAG-

CTMP.

For ectopic expression of SopB, sopB was amplified from

pACDE [25] or pACDE C460S [6] with the oligonucleotides

6His-SigD-F (59 CGC GGA TTC AAA TAC AGA GCT TCT

ATC AC 39) and 6His-SigD-R (59 CCG CTC GAG TCA AGA

TGT GAT TAA TGA AGA 39) (engineered restriction sites are

underlined). The resulting amplicons were digested with BamHI

and XhoI and ligated into the corresponding sites of pcDNA3.1/

His A (Invitrogen) to create 6His-SopB and 6His-SopB C460S,

respectively.

Bacterial Infection of Mammalian Cells
Cells were seeded into 6-well plates (2.06105 cells/well), 10 cm

tissue culture dishes (1.66106 cells/dish) or glass coverslips in 24-

well plates (5.06104 cells) to yield monolayers of 75–85%

confluency after 16–20 h. SPI1-induced bacteria were prepared

by diluting 0.3 ml of overnight LB-Miller culture in 10 ml of fresh

LB-Miller and incubating at 37uC with shaking (225 rpm). At late

log phase (3.5 h), the bacteria were pelleted at 8,0006 g for 2 min

and resuspended in an equal volume of Hanks’ balanced salt

solution (Mediatech) or phosphate-buffered saline. This suspension

of invasive bacteria was then used to inoculate HeLa cells

(multiplicity of infection = 100) and invasion was allowed to proceed

for 10 min at 37uC in 5% CO2. Following invasion, extracellular

bacteria were removed by washing with HBSS and the cells were

then incubated with serum-free EMEM for 20 min. For experi-

ments requiring longer incubations, gentamicin (50 mg/ml) was

added 30 min post-infection and reduced to 10 mg/ml at 90 min

post-infection, to kill any extracellular bacteria. Where indicated,

cells were treated with inhibitors for 30 min immediately before

infection and drugs were maintained in media thereafter. For serum

starvation cells were incubated in serum-free EMEM for 3–3.5 h

immediately before infection and also for subsequent steps.

Immunoblotting
Monolayers of infected HeLa cells in 6 well plates were

solubilized in hot SDS-PAGE sample buffer (100 ml/well) at the

indicated times and SDS-PAGE and immunoblotting were

performed as described previously [4]. Rabbit polyclonal anti-

Akt, rabbit monoclonal anti-total Akt (pan) (11E7) (cat # 4685),

rabbit polyclonal anti-phospho-Akt Ser473, rabbit monoclonal

anti-phospho-Akt (Ser473) (193H12), rabbit monoclonal anti-

phospho-Akt (Thr308) (D9E), rabbit polyclonal anti-PDK1, rabbit

polyclonal anti-raptor, rabbit polyclonal anti-rictor (BL2181,

Bethyl Laboratories), mouse monoclonal anti-PI3K p85a (clone

AB6, Millipore) or mouse monoclonal anti-actin (C-2, Santa Cruz

Biotechnology) were used at a 1:1,000 to 1:20,000 dilution in

blocking buffer [Tris buffered Saline, 0.1% (v/v) Tween 20, 1%

bovine serum albumin]. Secondary antibodies, horseradish

peroxidase-conjugated goat anti-rabbit or horse anti-mouse IgG,

were diluted 1:5,000 in Tris buffered saline, 0.1% (v/v) Tween 20,

5% (w/v) skim milk powder. For chemiluminescent detection the

SuperSignal West Femto Substrate Kit or SuperSignal West Pico

Substrate Kit were used according to the manufacturer’s

instructions (Thermo). Immunoblotting with rabbit polyclonal

antibodies to SopB was as previously described [63,64].

ELISA
HeLa cells in 10 cm dishes were infected with Salmonella as

described above. Samples were prepared and the level of Akt

phosphorylation was assessed using the PathScanH Phospho-Akt1
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(Ser473) Sandwich ELISA Kit (Cell Signaling Technology)

according to the manufacturer’s instructions.

Transient expression of proteins in HeLa cells
HeLa cells were seeded in 6-well or 24 well plates and 6–8 h later

were transfected with plasmids using FugeneH 6 according to the

manufacturer’s instructions (Roche Diagnostics). After 20 h cells were

infected with Salmonella or processed directly for immunoblotting

following solubilization in 150 ml hot 1.56SDS-PAGE sample buffer.

RNA-mediated interference
Small interfering RNA (siRNA) SMARTpool (Dharmacon)

sequences targeting human Akt1, Akt2, Akt3, PTEN, PDK1,

raptor and rictor were diluted and stored according to the

manufacturer’s instructions. Cells were transfected with siRNA

using RNAifect (Qiagen) transfection reagent according to the

manufacturer’s instructions and infected with Salmonella 48 h later.

For experiments in which knockdown of p85 was carried out ON-

TARGETplus SMARTpool siRNA targeting human AKT3, p85a
and p85ß was used. HeLa cells were seeded in 6-well plates at a

density of 96105 cells/well and incubated for 16–20 h to yield a

monolayer of 50–60% confluency. Cells were transfected using

DharmaFect1 reagent (Dharmacon) according to the recom-

mended protocol with 50 nM siRNA for a single target and

25 nM siRNA each for dual targets. Cells were treated with EGF

or infected with Salmonella 72 h later.

Imaging of phospho Akt in membrane ruffles
HeLa cells grown on glass coverslips were transfected with

plasmid EGFP-mAkt 16–18 hrs prior to infection with Salmonella.

After 15 min coverslips were fixed in 2.5% paraformaldehyde for

10 min at 37uC, washed in PBS and stained with 1.0 mg/ml WGA-

Alexa Fluor 647 (AF647-WGA) for 5 min, washed and fixed for

5 min at 37uC in 2.5% paraformaldehyde. Cells were permeabi-

lized for 5 min with 0.1% saponin, 10% normal goat serum in PBS

processed for immunofluorescence using a mouse anti-Akt phospho-

serine 473 antibody, followed by AF568-conjugated anti mouse

secondary. Coverslips were mounted onto glass slides with Prolong

Gold and imaged within 1 week. Z-stacks were acquired for each

channel on a Zeiss laser scanning confocal 510 microscope. Laser

power and acquisition settings were kept constant for each series of

experiments. Cells for imaging were selected on the basis of GFP

intensity; only low expressing cells with an average cytoplasmic pixel

intensities in the bottom 10% with .1.5226 background and

equivalent GFP intensities between infections were imaged.

PH domain recruitment to ruffles
HeLa cells on coverslips were transfected with plasmids expressing

EGFP-mAkt, EGFP-mAktDPH, Akt-PH-EGFP, Btk-PH-EGFP,

EGFP-TAPP1-PH, PLCd-PH –EGFP 16–18 hrs prior to infection

with Salmonella. Cells were fixed at 15 min and processed for

immunofluorescence as described above for phospho Akt imaging

except that a rabbit anti-LPS antibody, followed by AF568-

conjugated rabbit secondary, was used to stain Salmonella. Coverslips

were mounted in Prolong Gold and imaged within 1 week. Image

acquisition and analysis was performed with using a spinning disk

confocal microscope [65]. Laser power and acquisition settings were

kept constant for each series of experiments. Cells for analysis were

selected on the basis of GFP intensity; only low expressing cells with

cytoplasmic or nuclear average pixel intensities in the bottom 10%

with .1.5226background were used. Once a GFP expressing and

infected cell was selected, far-red (AF647-WGA), red (AF568), and

green (GFP) fluorescence images were acquired sequentially, one set

near the bottom of the cell for a representative cytoplasmic section

and a second set above the main body to select a section of the

protruding ruffle by thresholding on the far-red (AF647-WGA)

image. The resulting region-of-interest (ROI) was cloned to the green

channel giving the average intensity in the ROI for GFP at the ruffle

(GFPRuffle). The average pixel intensity in the green channel at the

cytoplasmic section in the cell (GFPCyto) was determined with a

circular ROI and the average pixel intensity of the background in the

green channel (GFPBack) was determined with a circular ROI outside

the cell body. The ratiometric calculation was, Recruitment =

(GFPCyto2GFPBack)/(GFPRuffle2GFPBack).

Microscopy
Confocal images were either captured on a Zeiss LSM510

microscope with 488 nm, 543 nm and 643 nm laser lines or on a

spinning disc confocal microscope as previously described [65]. Image

analysis and maximum intensity projections were performed with

ImageJ v.1.4.1 (written by Wayne Rasband at the U.S. National

Institutes of Health and available by anonymous FTP from

zippy.nimh.nih.gov) and figures assembled using Adobe Photoshop

CS2.

Statistical Analysis
Unless otherwise noted results are presented as the mean 6

S.D. of n = 3 independent experiments. One way Analysis of

Variance (ANOVA) combined with the Tukey post hoc test was

used to determine statistical significance with PrismTM software

(GraphPad Software Inc).

Supporting Information

Figure S1 Wortmannin is effective at inhibiting EGF-
mediated but not Salmonella-mediated Akt phosphory-
lation. HeLa cells were pretreated treated with wortmannin

(WTM:100 nM) then infected with Salmonella for 30 min or 3 hr.

For the EGF treated cells agonist was added for 2 min

immediately before solubilization at 30 min or 3 hr. Samples

were processed for immunoblotting using antibodies to detect

phospho Akt (Ser473) and actin.

(TIF)

Figure S2 Depletion of the class I PI3K regulatory
subunits p85a and p85ß does not affect the kinetics of
SopB-mediated Akt phosphorylation. HeLa cells were

transfected with siRNAs, specific for p85a and p85ß, for 72 hr

then either treated then infected with Salmonella WT for 15 min.

For time points greater than 15 min monolayers were rinsed to

remove non-internalized bacteria and were further incubated in

the presence of gentamicin to kill extracellular bacteria. Mono-

layers were solubilized in sample buffer at the indicated times and

processed for immunoblotting using antibodies to detect phospho

Akt (Ser473), total Akt or actin.

(TIF)
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