
USP4 targets TAK1 to downregulate TNFa-induced
NF-jB activation
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Lys63-linked polyubiquitination of transforming growth factor-b-activated kinase 1 (TAK1) has an important role in tumor
necrosis factor-a (TNFa)-induced NF-jB activation. Using a functional genomic approach, we have identified ubiquitin-specific
peptidase 4 (USP4) as a deubiquitinase for TAK1. USP4 deubiquitinates TAK1 in vitro and in vivo. TNFa induces association
of USP4 with TAK1 to deubiquitinate TAK1 and downregulate TAK1-mediated NF-jB activation. Overexpression of USP4
wild type, but not deuibiquitinase-deficient C311A mutant, inhibits both TNFa- and TAK1/TAB1 co-overexpression-induced
TAK1 polyubiquitination and NF-jB activation. Notably, knockdown of USP4 in HeLa cells enhances TNFa-induced
TAK1 polyubiquitination, IjB kinase phosphorylation, IjBa phosphorylation and ubiquitination, as well as NF-jB-dependent
gene expression. Moreover, USP4 negatively regulates IL-1b-, LPS- and TGFb-induced NF-jB activation. Together, our
results demonstrate that USP4 serves as a critical control to downregulate TNFa-induced NF-jB activation through
deubiquitinating TAK1.
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Transcription factor NF-kB is involved in the regulation of a
broad range of cellular responses such as inflammation,
immunity, development, cell proliferation and apoptosis by
controlling the expression of NF-kB-dependent survival
factors, cytokines and proinflammatory molecules.1–3 In its
resting state, NF-kB exists in a stable cytosolic complex with a
member of the inhibitor kB (IkB) family. Activation of an
intracellular signal transduction pathway induced by various
stimuli leads to the IkB phosphorylation, ubiquitination and
subsequent degradation through the 26S proteasome.4–6

The degradation of IkBa exposes a nuclear translocation
sequence facilitating translocation of NF-kB to the nucleus
and activates the expression of the target genes.7

Tumor necrosis factor-a (TNFa), a proinflammatory cyto-
kine, exerts its function through activating NF-kB along with
other transcription factors.8,9 On binding of TNFa, TNF
receptor 1 (TNFR1) recruits TNF-receptor-associated factor
2 (TRAF2) and cellular inhibitor of apoptosis 1/2 (cIAP1/2) E3
ligases to form a complex that subsequently leads to Lys63-
linked polyubiquitination of receptor-interacting protein
kinase 1 (RIPK1) and TRAF2.10–14 Some evidence shows
that TRAF2 does not possess E3 ligase activity and acts as a
scaffold protein to recruit cIAP1/2 E3 ligases to ubiquitinate
RIPK1, whereas others suggest that TRAF2 acts as an E3
ligase with cofactor sphingosine-1-phosphate to ubiquitinate
RIPK1.15–17 However, the molecular mechanism of TRAF2
and cIAP1/2 functional interaction remains uncertain.

On TNFa binding, TRAF2- and cIAP1/2-mediated Lys63-
linked RIPK1 and TRAF2 polyubiquitination further recruits
and activates transforming growth factor-b-activated kinase 1
(TAK1) through binding of the TAK1 regulatory subunits TAB2
and TAB3 to the Lys63-polyubiquitinated chains. After
recruiting TAK1 to the complex, TAK1 is polyubiquitinated
and activated to recruit IkB kinase (IKK) complex via
Lys63-linked polyubiquitinated TAK1 and RIPK1.18 Then
the activated TAK1 triggers the activation of the IKK, c-Jun
N-terminal kinase (JNK) and p38 MAPK,19–23 which lead
to activation of transcription factors NF-kB and AP-1.24

Interestingly, genetic evidence shows that TAK1 but not
RIPK1 is essential for TNFa-induced NF-kB activation in
mouse embryonic fibroblasts (MEFs).25,26 It is possible that
TRAF2 and cIAP1/2 can mediate Lys63-linked TAK1 poly-
ubiquitination and activation in a RIPK1-independent manner.

TAK1, a member of the MAPKKK family, is essential in
TNFa-mediated activation of NF-kB, JNK and p38.22,25,27,28

TAK1 regulatory subunits including TAB1, TAB2, TAB3 and
TAB4 are involved in the regulation of TAK1 activity in
response to TNFa stimulation. TAB1 is a TAK1-interacting
protein and induces TAK1 kinase activity through promoting
autophosphorylation of key serine/threonine sites of the
kinase activation loop.29 TAB1 is an inactive pseudophos-
phatase sharing homology with members of the PPM family
of protein serine/threonine phosphatases.30 TAB2, TAB3 and
TAB4 are involved in the regulation of TAK1 activation through
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binding to polyubiquitinated proteins and promoting a larger
complex formation during TNFa-induced TAK1 activation.22,31

Protein ubiquitination has an essential role in the positive
and negative regulation of TNFa-mediated NF-kB signal
transduction pathway.11 Recently, TRAF6-mediated Lys63-
linked TAK1 polyubiquitination has been shown to correlate
with TAK1 activation in TGF-b signaling.32,33 TRAF2- and
TRAF6-mediated TAK1 Lys63-linked TAK1 polyubiquitination
have been suggested to be essential for TNFa- and IL-1b-
induced NF-kB activation.18,34,35 However, the molecular
mechanism of TAK1 deubiquitination in the negative regulation
of TNFa-induced NF-kB activation remains poorly understood.

Protein ubiquitination can be reversed by deubiquitinating
enzymes (DUBs), which specifically cleave the isopeptide
bond at the C-terminus of ubiquitin (Ub). The human
genome encodes B95 putative DUBs that are divided into
five subclasses based on their Ub-protease domains.36 The
Ub-specific peptidases (USPs) represent the largest subclass
of DUBs. In this study, we used a functional genomic
approach to identify the USPs that are involved in the
deubiquitination of TAK1 by screening a library of USPs
whose overexpression inhibits TAK1-mediated NF-kB activa-
tion. In this study, we present evidence that USP4 functions
as a TAK1 deubiquitinase that deubiquitinates TAK1 and
downregulates TNFa-induced NF-kB activation.

Results

CYLD does not inhibit TAK1/TAB1 co-overexpression-
induced TAK1 polyubiquitination. Growing evidence
suggests that protein ubiquitination and deubiquitination
have an essential role in the tight regulation of the TNFa-
induced NF-kB activation.37 TRAF2-mediated Lys63-linked
TAK1 polyubiquitination is critical for the TNFa-induced TAK1
activation.18,34 Previously, CYLD has been suggested to
have a critical role in regulation of TAK1 deubiquitination
in T cells.38 However, CYLD knockout has no effect in
TNFa-induced NF-kB activation in macrophages, whereas
CYLD-knockout karatinocytes show elevated NF-kB activa-
tion in response to TNFa stimulation.39–41 To clarify the role of
CYLD in TAK1 deubiquitination, we co-transfected expres-
sion vectors encoding HA–Ub, TAK1-V5His and TAB1 with
vector control or expression vector encoding FLAG–CYLD
into HEK-293T cells. TAK1-V5His proteins were then immuno-
precipitated and immunoblotted with anti-HA antibody.
Surprisingly, we found that overexpression of FLAG–CYLD
failed to inhibit TAK1/TAB1 overexpression-induced TAK1
polyubiquitination (Figure 1a). Consistent with this result, we
also found that overexpression of CYLD did not inhibit TAK1
and TAB1 co-overexpression-induced NF-kB activation in a
reporter assay (Figure 1b). Together, these results suggest that
another DUB other than CYLD acts as a major DUB for TAK1.

USP4 inhibits TAK1/TAB1 co-overexpression-mediated
NF-jB activation. To explore whether a member of DUBs in
the USP sub-class is involved in the deubiquitination of TAK1
and downregulation of TAK1-mediated NF-kB activation, we
generated a library of mammalian expression vectors that
encode 38 USPs. To avoid the potential inhibitory effect of
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Figure 1 CYLD does not inhibit TAK1/TAB1 overexpression-induced TAK1
polyubiquitination and NF-kB activation. (a) CYLD has no inhibitory effect on TAK1/
TAB1 overexpression-induced TAK1 polyubiquitination. HA–Ub, TAK1–V5His and
TAB1 expression vectors were cotransfected with empty vector or FLAG–CYLD
expression vector into HEK-293T cells. TAK1–V5His in the cell lysates were
immunoprecipitated with anti-V5 antibodies and immunoblotted with anti-HA
antibodies to detect the presence of ubiquitinated TAK1–V5His. (b) CYLD has no
significant inhibitory effect on TAK1/TAB1 overexpression-induced NF-kB
activation. TAK1 and TAB1 expression vectors were cotransfected with empty
vector or CYLD expression vector along with NF-kB-dependent firefly luciferase
reporter and control Renilla luciferase reporter vectors into HEK-293T cells for 36 h.
Cells were then lysed and the relative luciferase activity in the cell lysates was
measured and normalized with the Renilla activity. Error bars indicate ± S.D. in
triplicate experiments
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tag sequence on deubiquitinase enzymatic activity, we did
not put any tag into the deubiquitinase protein coding
sequence in this USP expression library. Then we used an
NF-kB-dependent luciferase reporter assay to assess the
effects of overexpression of each USP on the TAK1-induced
NF-kB luciferase reporter activity. In this screen, USP4
significantly inhibited the TAK1-induced NF-kB luciferase
reporter activity, whereas other USPs had no or less effects
(Figure 2a).

To examine whether the inhibitory effect of overexpression
of USP4 on the TAK1-induced NF-kB reporter activity is due
to their deubiquitinase activity, we generated an expression
vector encoding MYC-tagged USP4 deubiquitinase-deficient
mutant by substitution of a cysteine residue in the USP active
site with an alanine (C311A) and found that only USP4 wild
type (USP4-WT), but not deubiquitinase-deficient C311A
mutant, inhibited the TAK1-induced NF-kB activation in a
reporter assay in HEK-293T cells (Figure 2b). We also found

that overexpression of USP4 inhibited TAK1 but not IKKb-
induced NF-kB activation in a reporter assay (Figure 2c).
Furthermore, we found that overexpression of USP4-WT
inhibited TAK1/TAB1 co-overexpression-induced TAK1, IKK
and MAPK phosphorylation in HEK-293T cells, whereas
TAK1 C311A mutant and CYLD had no any inhibitory
effect (Supplementary Figure S1). Consistent with the
above results, USP4-WT significantly inhibited TAK1/TAB1
co-overexpression-induced NF-kB-dependent reporter,
whereas USP4-C311A mutant and CYLD had no significant
inhibitory effect (Supplementary Figure S2). This result
suggests that USP4 acts as a TAK1 deubiquitinase to inhibit
TAK1-mediated NF-kB activation.

USP4 binds to overexpressed TAK1 with TAB1 and
TNFa induces association of USP4 with TAK1. To
determine the molecular mechanism of USP4 function in
TAK1-mediated NF-kB activation, we cotransfected TAB1
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Figure 2 USP4 inhibits TAK1/TAB1 overexpression-induced NF-kB activation. (a) The effect of overexpression of members of USP subclass of deubiquitinase on TAK1/
TAB1 overexpression-induced NF-kB activation. TAK1 and TAB1 expression vectors were cotransfected with empty vector or expression vectors encoding different USPs
along with NF-kB-dependent firefly luciferase reporter and control Renilla luciferase reporter vectors into HEK-293T cells for 36 h. (b) USP4 deubiquitinase activity is required
for its inhibitory effect on TAK1/TAB1 overexpression-induced NF-kB activation. FLAG–TAK1 and TAB1 expression vectors were cotransfected with empty vector or
expression vectors encoding USP4-WT or -C311A mutant along with NF-kB-dependent firefly luciferase reporter and control Renilla luciferase reporter vectors into HEK-293T
cells for 36 h. FLAG–TAK1, MYC–USP4 and TAB1 proteins in the cell lysates were immunoblotted with respective antibodies and b-actin is a loading control. (c) USP4 inhibits
TAK1/TAB1 but not IKKb overexpression-induced NF-kB activation. FLAG–TAK1/TAB1 or IKKb–V5His expression vectors were cotransfected with empty vector or
increasing amount of MYC–USP4 expression vectors along with NF-kB-dependent firefly luciferase reporter and control Renilla luciferase reporter vectors into HEK-293T cells
for 36 h. FLAG–TAK1, IKKb–V5His, MYC–USP4 and TAB1 proteins in the cell lysates were immunoblotted with respective antibodies indicated and b-actin is a loading control
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and MYC–TAK1 expression vectors along with FLAG–USP4-
WT and -C311A mutant expression vectors in HEK-293T
cells. In this assay, we found that MYC–TAK1 proteins
co-immunoprecipitated with FLAG–USP4-WT and -C311A
mutant (Figure 3a). The association between USP4
and TAK1 were also confirmed by co-immunoprecipitation
of overexpressed FLAG–TAK1/TAB1 and HA–USP4 in
HEK-293T cells (Figure 3b).

To further determine the molecular interaction of USP4
and TAK1 in TNFa-induced signal transduction, we
overexpressed expression vector encoding MYC–USP4 in
HEK-293T cells and treated with TNFa for the time
points as indicated (Figure 3c). We found that TNFa induced
co-immunoprecipitation of MYC–USP4 and TAK1 as
well as IKKb and RIPK1 within 10 min of stimulation
(Figure 3c). Consistently, we also found that TNFa induced
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co-immunoprecipitation of endogenous USP4 and TAK1
as well as KKb and RIPK1 (Figure 3d). Furthermore, TNFa
induced recruitment of USP4, TAK1 and RIPK1 to TNFR1
(Figure 3e). These results suggest that TNFa induces
association of USP4 with TAK1.

USP4 deubiquitinates TAK1 in vivo and in vitro. The
Lys63-linked ubiquitination of TAK1 has an essential role
in TNFa-induced NF-kB activation.18 Our results suggest
that inhibitory effect of USP4 on the TAK1-induced NF-kB
activation could be through its deubiquitinase activity toward
TAK1. To test this hypothesis, expression vectors encoding
FLAG–TAK1, TAB1 and HA–Ub were cotranfected with
vector control or expression vectors encoding MYC–USP4-
WT or -C311A mutant into the HEK-293T cells. Cell lysates
from the transfected cells were heated in the presence
of 1% SDS and diluted with lysis buffer in order to disrupt
non-covalent protein–protein interactions. Then FLAG–TAK1

was immunoprecipitated with anti-FLAG antibodies and
immunoblotted with anti-HA for the detection of the ubiquiti-
nated TAK1. As shown in Figure 4a, overexpression of
USP4-WT but not deubiquitinase-deficient C311A mutant
abrogated TAK1/TAB1 co-overexpression-induced TAK1 poly-
ubiquitination. In contrast, USP4-WT failed to deubiquitinate
cIAP1 (Supplementary Figure S3).

To further confirm the above result, we analyzed the role
of USP4 in the deubiquitination of TAK1 in vitro. In this
assay, FLAG–TAK1 proteins from HEK-293T cells with
co-overexpression of TAB1 were immunoprecipitated by
FLAG antibodies and then co-incubated with recombinant
His-USP4-WT or -C311A mutant in the deubiquitination
reaction buffer. The ubiquitination level of immunoprecipitated
FLAG–TAK1 was found to be significantly decreased by
co-incubation with recombinant His-USP4-WT but not -C311A
mutant proteins (Figure 4b). These results demonstrate that
USP4 acts as a TAK1 deubiquitinase.

Figure 3 USP4 binds to activated TAK1. (a) Co-immunoprecipitation of FLAG–USP4 and MYC–TAK1 proteins. Expression vectors encoding TAB1 and FLAG–USP4-WT
or -C311A mutant were cotransfected into HEK-293T cells with control vectors, or expression vectors encoding MYC–TAK1. MYC–TAK1 in the cell lysates were
immunoprecipitated with anti-MYC antibodies and immunoblotted with anti-FLAG antibodies. (b) Co-immunoprecipitation of FLAG–TAK1 and HA–USP4 proteins. Expression
vectors encoding TAB1 and FLAG–TAK1 were cotransfected into HEK-293T cells with control vectors, or expression vectors encoding HA–USP4-WT or -C311A mutant,
respectively. HA–USP4 in the cell lysates were immunoprecipitated with anti-HA antibodies and immunoblotted with anti-FLAG antibodies. (c) Co-immunoprecipitation of
MYC–USP4 and endogenous TAK1, IKKb, RIPK1 proteins. HEK-293T cells, transfected with MYC–USP4, treated with TNFa (10 ng/ml) for the time points indicated.
MYC–USP4 in the cell lysates from the transfected HEK-293T cells were immunoprecipitated with anti-MYC antibodies and immunoblotted with anti-TAK1, anti-IKKb and
anti-RIPK1 antibodies, respectively. (d) Co-immunoprecipitation of endogenous USP4 and TAK1, IKKb, RIPK1 proteins. HeLa cells treated with TNFa (10 ng/ml) for the
time points indicated. Endogenous USP4 in the HeLa cell lysates were immunoprecipitated with anti-USP4 antibodies and immunoblotted with anti-TAK1, anti-IKKb and
anti-RIPK1 antibodies, respectively. (e) Co-immunoprecipitation of endogenous TNFR1 and USP4 proteins. HeLa cells treated with TNFa (10 ng/ml) for the time points
indicated. Endogenous TNFR1 in the HeLa cell lysates were immunoprecipitated with anti-TNFR1 antibodies and immunoblotted with anti-USP4, anti-TAK1 and anti-RIPK1
antibodies, respectively
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Carboxyl terminal USP domain is required for USP4
to bind to and deubiquitinate TAK1. To further determine
the specificity of association of USP4 with TAK1, we
cotransfected FLAG–TAK1 and TAB1 expression vectors
into HEK-293T cells along with vector control, expression
vectors encoding MYC–USP4 full length (USP4-WT),
N-terminal regulatory domain (1–301 aa, USP4-NT),
N-terminal serine-rich domain and USP domain (188–963
aa, USP4-CTL) or C-terminal USP domain (302–963 aa,
USP4-CTS), respectively (Figure 5a). MYC–USP4 full length
or deletion mutant proteins were immunoprecipitated from
cell lysates and immunoblotted with anti-FLAG antibodies. In
this assay, we found that MYC–USP4-CTL and -CTS but not
-NT were able to pull down similar amounts of FLAG–TAK1
compared with MYC–USP4-WT (Figure 5b). Furthermore,
consistent with the above binding assay, overexpression of
USP4-WT, -CTL and -CTS but not -NT abolished TAK1 and
TAB1 co-overexpression-induced TAK1 polyubiquitination
(Figure 5c). These results indicate that carboxyl terminal
USP domain is mainly responsible for USP4 to bind to and
deubiquitinate TAK1.

Overexpression of USP4 inhibits TNFa-induced TAK1
polyubiquitination. To determine whether USP4 inhibits
TNFa-induced TAK1 polyubiquitination, we overexpressed

MYC–USP4-WT and -C311A mutant with HA–Ub in
HEK-293T cells and treated with TNFa for the time points
indicated. In this assay, we found that TNFa-induced
TAK1 polyubiquitination was inhibited by USP4-WT but not
-C311A mutant (Figure 6a). Consistent with this result,
overexpression of USP4-WT but not -C311A mutant inhibited
TNFa-induced NF-kB-dependent luciferase reporter activity
(Figure 6b). Taken together, these results suggest that
USP4 inhibits TNFa-induced IKK/NF-kB activation through
suppressing TAK1 polyubiquitination.

Suppression of USP4 expression enhances TNFa-induced
TAK1 polyubiquitination and IKK/NF-jB activation. To
determine whether USP4 is involved in the negative regulation
of TNFa-induced TAK1 polyubiquitination, we generated USP4
stable knockdown HeLa cell lines using a retroviral trans-
duction system (Figure 7a). We then analyzed the effect
of USP4 knockdown on the TNFa-induced TAK1 polyubi-
quitination. In this assay, we found that TNFa induced a higher
level of TAK1 polyubiquitination and IKKb recruitment at the
early time points in the USP4-knockdown cells compared
with the control cells, whereas TNFa-induced RIPK1 poly-
ubiquitination was comparable in both USP4-knockdown cells
and control cells (Figure 7a). Furthermore, knockdown of
USP4 enhances TNFa-induced recruitment of TAK1 and IKKb
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to TNFR1 complex (Figure 7b). This result suggests that USP4
is involved in the downregulation of TNFa-induced TAK1
polyubiquitination and recruitment of downstream signaling
components.

TAK1 mediates TNFa-induced NF-kB activation via IKK
phosphorylation and activation.42 Therefore, we further ana-
lyzed the effect of USP4 knockdown on the TNFa-induced IKK
phosphorylation, IkBa phosphorylation, ubiquitination and
degradation. As shown in Figure 8a, TNFa induced an
increased level of IKK phosphorylation at the early time points
of stimulation, an increased level of IkBa phosphorylation and
ubiquitination and rapid IkBa degradation in the USP4-knock-
down cells compared with the control cells (Figures 8a and b).

Consistent with the above results, TNFa also induced a
higher level of RelA nuclear translocation and the NF-kB-
dependent luciferase reporter activity in the USP4-knockdown
cells compare with the control cells (Figures 8c and d). The
purity of nuclear/cytoplasmic extracts is proved by anti-SP1
and anti-HSP90, respectively (Supplementary Figure S4).
Taken together, these results suggest that USP4 inhibits
TNFa-induced IKK/NF-kB activation through suppressing
TAK1 polyubiquitination.

Ectopic expression of sh-RNA-resistant USP4 reverses
the effect of USP4 knockdown. To rule out the possible
off-target effect of shUSP4, we generated a sh-RNA-
resistant USP4 expression vector (USP4-WT-R) to reverse
sh-USP4-1-knockdown effect. As shown in Figure 9a, this
sh-RNA-resistant USP4-WT-R rescued the knockdown
effect of sh-USP4-1 on USP4 expression. Consistently,
shUSP4-1 blocked the inhibitory effect of USP4-WT but not
USP4-WT-R on TNFa-and TAK1/TAB1-induced NF-kB acti-
vation (Figures 9b–e). To further confirm the rescue effect
of USP4-WT-R, we stably expressed USP4-WT-R in HeLa
USP4 stable knockdown cells. USP4-WT-R rescued the
expression of USP4 in the cells (Figure 9f). Also USP4-WT-R
rescued the effect of USP4 knockdown on TNFa-induced IKK
phosphorylation and IkBa phosphorylation (Figure 9f). These
results suggest that specific suppression of USP4 expression
enhances TNFa-induced NF-kB activation.

USP4 inhibits TNFa-induced NF-jB-dependent gene
expression. NF-kB activation is required for TNFa-induced
IL-6 expression. To determine the role of USP4 in the
regulation of TNFa-induced IL-6 gene expression,
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we extracted total RNAs from the control and USP4-knock-
down HeLa cell lines treated with TNFa for the time points
indicated and performed quantitative reverse transcription
(RT)-PCR to examine the effect of USP4 knockdown on
TNFa-induced IL-6 expression. TNFa induced a higher level
of the IL-6 expression in USP4 knockdown cells compared
with the control cells (Figure 10a). Consistent with this,
enzyme-linked immunosorbent assay (ELISA) showed a
higher IL-6 protein level in USP4-knockdown cells compared
with the controls cells (Figure 10b). To further explore the

role of USP4 on NF-kB target gene expression, we examined
the effect of USP4 knockdown on the expression of other
TNFa-induced NF-kB target genes. We found that USP4
knockdown enhanced TNFa-induced expression of MIP3a,
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MnSoD, MCP-1, IkBa, cIAP2 and A20 in HeLa cells
(Figures 10c–h). These results suggest that USP4 down-
regulates TNFa-induced gene expression via inhibiting
TNFa-induced Lys63-linked TAK1 polyubiquitination.

USP4 inhibits IL-1b-, LPS- and TGFb-induced NF-jB
activation. Our above findings suggest that USP4 functions
as a TAK1 deubiquitinase to downregulate TNFa-induced
NF-kB activation. Furthermore, we also tested the role of
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USP4 in IL-1b-, LPS- and TGFb-induced NF-kB activation.
We found that overexpression of USP4-WT but not -C311A
mutant inhibited IL-1b-, LPS-, and TGFb-induced NF-kB-
dependent luciferase reporter activity (Figure 11a).
Consistent with this finding, overexpression of USP4-WT
but not -C311A mutant inhibited TRAF2- and TRAF6-induced
NF-kB-dependent luciferase reporter activity (Figure 11b).
The inhibitory effect of USP4 on TRAF2 and TRAF6 is
specific, because USP4 failed to inhibit RelA-induced NF-kB
activation. (Figure 11b). To further confirm the inhibitory
effect of USP4 on IL-1b-, LPS- and TGFb-induced NF-kB
activation, we examined the level of IKK phosphorylation
induced by IL-1b, LPS and TGFb, respectively. In this assay,
we found that overexpression of USP4-WT but not -C311A
mutant inhibited IL-1b-, LPS- and TGFb-induced IKK phos-
phorylation (Figure 11c). Consistent with above results,

knockdown of USP4 expression enhanced IL-1b-, LPS- and
TGFb-induced NF-kB activation (Figure 11d).

Discussion

Lys63-linked polyubiquitination of TAK1 is an essential step in
the TNFa-induced IKK/NF-kB activation.18,34,35 TNFa rapidly
induces TRAF2-mediated TAK1 polyubiquitination at Lys-
158. However, the molecular regulation of TAK1 deubiquitina-
tion process to attenuate TNFa-induced TAK1 ubiquitination
and downstream IKK/NF-kB activation remains to be clearly
defined. In this study, we have identified USP4 as a TAK1
deubiquitinase in the TNFa-mediated NF-kB activation. By
using a combination of functional genomic screening and
molecular approach, we demonstrate that USP4 has a critical
role in the attenuation of TNFa-induced Lys63-linked TAK1
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polyubiquitination as well as downstream IKK/NF-kB activa-
tion through inducible association with TAK1 and suppression
of Lys63-linked TAK1 polyubiquitination. Our study suggests
that USP4 serves as a critical Yin-Yang regulatory mechan-
ism to fine-tune TNFa-mediated inflammatory responses by
targeting TAK1.

Interestingly, in T cells, CYLD has been implicated in the
regulation of TCR-mediated TAK1 ubiqutination.38 However,
despite its essential role in spontaneous activation of TAK1 in

T cells, the loss of CYLD in Jurkat T cells did not appreciably
prolong the IKK activation induced by TNFa.38 In this work,
we found that USP4 knockdown enhanced and prolonged
TNFa-induced IKK/NF-kB activation in HeLa cells (Figure 8).
Furthermore, unlike CYLD, binding of USP4 with TAK1 is
induced by TNFa stimulation in the cells (Figures 3c–e).
These results indicate that USP4 mainly inhibits inducible
TAK1 polyubiquitination and activation, whereas CYLD
mainly inhibits basal level of TAK1 polyubiquitination and
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activation. More interestingly, CYLD-deficient macrophages
show normal TNFa-induced NF-kB activation, whereas
CYLD-deficient keratinocytes display elevated NF-kB
activation.39–41 These results suggest a cell type-specific
function of CYLD in NF-kB activation. In this investigation, we
found that CYLD failed to inhibit TAK1/TAB1 co-overexpres-
sion-induced TAK1 polyubiquitination and NF-kB activation
(Figure 1, Supplementary Figures S1 and S2). Together,
these results suggest that CYLD may not be a main TAK1
deubiquitinase in TNFa signaling. Future studies are needed
to determine the functional difference between USP4 and
CYLD in TAK1-mediated NF-kB signaling.

In this study, we found that knockdown of USP4 expression
enhanced TNFa-induced TAK1 polyubiquitination (Figure 7a).
However, TNFa-induced TAK1 polyubiquitination peaked at
15 min of stimulation and went down rapidly in USP4-
knockdown cells (Figure 7b). It is likely that TNFa induces
both Lys63- and Lys48-linked TAK1 polyubiquitination, and
Lys48-linked polyubiquitination eventually leads to degrada-
tion of TAK1. Furthermore, if TNFa induces Lys48-linked
TAK1 polyubiquitination, future studies are needed to identify
the lysine residue on TAK1 for mediating Lys48-linked TAK1

polyubiquitination and E3 ligase for catalyzing TAK1 poly-
ubiquitination with Lys48-linkage type.

In our study, we found that USP4 overexpression inhibited
TAK1/TAB1 overexpression-induced TAK1 phosphorylation
and TAK1-mediated IKK and MAPK activation (Supplementary
Figure S1). These results suggest that TAK1 polyubiquitination
has an essential role in TAK1 activation and TAK1-mediated
IKK and MAPK activation. However, we found that over-
expression of PPM1B, a TAK1 phosphatase, inhibited TAK1/
TAB1 co-overexpression-induced TAK1 polyubiquitination
(Supplementary Figure S5). These results suggest that TAK1
phosphorylation also has an important role in TAK1 polyubi-
quitination. Therefore, it is highly likely that TAK1 Lys63-linked
polyubiquitination and phosphorylation are inter-dependent and
both are required for TNFa-induced TAK1 activation.

In conclusion, our results provide evidence that TNFa
induces association of USP4 with TAK1, which leads to
TAK1 deubiquitination in the TNFa-mediated NF-kB activa-
tion. In view of the data presented here and previous reports,
we propose a working model (Figure 12), in which that TNFa
rapidly induces Lys63-linked TAK1 polyubiquitnation and
binding of USP4 to TAK1, Lys63-linked TAK1 would be

Figure 12 A working model for the role of USP4 in the negative regulation of TNFa-induced TAK1 polyubiquitnation and NF-kB activation. On binding of TNFa, TNFR1
recruits several adaptor proteins including TRAF2, cIAP1/2 and RIPK1 to form a complex that subsequently leads to Lys63-linked polyubiquitination of TRAF2 and RIPK1.
Possibly, the Lys63-linked TRAF2 polyubiquitination further recruits and activates TAK1 through binding of the TAK1 regulatory subunits TAB2 and TAB3 to the Lys63-
polyubiquitinated chains. After recruitment of TAK1 to the TNFR1 complex, TRAF2 along with its cofactor S1P polyubiquitinate and activates TAK. Then, TNFR1 complex
recruits IKK complex via Lys63-polyubiquitinated TAK1 and RIPK1. Activated TAK1 triggers the activation of the IKK, JNK and p38 MAPK, which leads to activation of NF-kB
and AP-1. After TNFa stimulation, USP4 binds to the activated TAK1 and deubiquitinates TAK1 to disrupt TAK1/IKKs complex and inhibits TAK1-mediated downstream
signaling pathway. Besides USP4, other deubiquitinases (A20, Cezanne, CYLD, USP21, USP15 and USP11) have been suggested to negatively regulate TNFa-induced
NF-kB activation
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rapidly deubiquitinated by USP4 to attenuate the magnitude of
TNFa-induced Lys63-linked TAK1 polyubiquitination and
TAK1-mediated IKK/NF-kB activation.

Materials and Methods
Plasmids and transfection. In all, 38 human USPs cDNA clones were
purchased from Open Biosystems Company (Huntsville, AL, USA). Full-length
cDNA sequence for each USP containing opening reading frame was subcloned
into pcDNA3.1 expression vector (Invitrogen, Carlsbad, CA, USA). The NF-kB-
dependent firefly luciferase reporter plasmid and pCMV promoter-dependent
Renilla luciferase reporter were purchased from Clontech Co. (Mountain View, CA,
USA). Mammalian expression vectors for USP4 and TAK1 were constructed by
subcloning cDNAs encoding the full-length WT human proteins into the pcDNA3.1
vectors with an N-terminal MYC, FLAG or HA tag. The USP4-C311A and USP4-
WT-R expression constructs were generated using site-directed mutagenesis
Quikchange kit (Stratgene, CA, USA). The pSUPER-retro vector was used to
generate sh-RNA plasmids for USP4. HEK-293T cells, HeLa cells, MCF7 cells and
MEF cells were transfected with expression plasmids using FuGene 6, FuGene HD
(Roche, Indianapolis, IN, USA) or Lipofectamine 2000 (Invitrogen).

Antibodies and reagents. Mouse monoclonal anti-MYC (sc-40), anti-RelA
(sc-8008), anti-HA (sc-7392), anti-Ub (sc-8017), anti-TNFR1 (sc-8436), anti-SP1
(sc-59), anti-HSP90a/b (sc-7947), anti-PCNA (sc-56) antibodies and protein
A-agarose were from Santa Cruz (Santa Cruz, CA, USA). Goat polyclonal anti-
TAB1 (sc-6052) antibodies were from Santa Cruz. Rabbit polyclonal anti-phospho-
TAK1 (4536S), anti-TAK1 (4505), anti-phospho-IKKa/b (2681), anti-IKKb (2684),
anti-IkBa (9242) antibodies and secondary antibodies conjugated to horseradish
peroxidase were from Cell Signaling (Danvers, MA, USA). Mouse monoclonal anti-
actin (A2228) and anti-FLAG (F3165) were from Sigma (St. Louis, MO, USA).
Antibodies against RIPK1 were purchased from BD Bioscience (Sparks, MD, USA).
Antibodes against USP4 (A300-830A-1) and USP11 (A301-613A-1) were
purchased from Bethyl (Montgomery, TX, USA). Recombinant human and
mouse TNFa were from R&D Systems (Minneapolis, MN, USA). MG132 was
from Calbiochem (Darmstadt, Germany). Cell culture medium was obtained
from Invitrogen. Nitrocellulose membrane was obtained from Bio-Rad (Hercules,
CA, USA).

Establishment of the stable USP4-knockdown HeLa cell
lines. The pSuper-Control and sh-USP4 retroviral vectors were transfected into
the HEK-293T cells with retrovirus packing vector Pegpam 3e and RDF vector using
Fugene 6 transfection reagent (Roche) according to manufacturer’s instructions.
Viral supernatants were collected after 48 and 72 h. HeLa cells were incubated with
retroviral supernatant in the presence of 4 mg/ml polybrene. After incubation for
48 h, stable cell lines were established after 10 days of puromycin (2 mg/ml)
selection and knockdown of the target gene was confirmed by western blot.
Established USP4-knockdown cells were transfected with pcDNA 3.1 expression
vectors and selected by G418 (3 mg/ml) for 10 days for stable expression.

Immunoblotting and immunoprecipitation. To determine the
interaction of the proteins, co-immunoprecipitation and western blots were
performed as following. Targeted cells were washed three times with ice-cold
PBS on ice, then whole-cell extracts were prepared by lysing cells in lysis buffer
(25 mM HEPES (pH 7.7), 135 mM NaCl, 3 mM EDTA, 1% Triton X-100, 25 mM
b-glycerophosphate, 0.1 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl-
fluoride, 1 mM dithiothreitol, 10 mg/ml aprotinin, 10mg/ml leupeptin, 1 mM
benzamidine, 20 mM disodium p-nitrophenylphosphate, phosphatase inhibitor
cocktail A and B). After collecting the lysate by 15 000� g centrifuge for 15 min
at 4 1C, primary antibodies were added to the supernatant and incubated with
rotation for 3 h at 4 1C. After adding a protein A-agarose bead suspension, the
mixture was further incubated with rotation for 3 h at 4 1C. The precipitates were
washed three times using pre-cold washing buffer (20 mM HEPES (pH 7.7), 50 mM
NaCl, 2.5 mM MgCl2, 0.1 mM EDTA and 0.05% Triton X-100), then the beads were
resuspended in Laemmli sample buffer and boiled for 10 min. The immuno-
precipitates or the whole cell lysates were resolved by SDS-PAGE and transferred
to nitrocellulose membranes. The membranes were probed with appropriate
antibodies. The IgG horseradish peroxidase-conjugated antibodies were used as
the secondary antibodies. The proteins were detected using the ECL-Plus Western
blotting detection system (GE Health Care, Buckinghamshire, UK).

Luciferase reporter assay. Targeted cells were seeded at 3� 105 cells
per well and cultured overnight in six-well plates. The cells were transfected
with indicated plasmids, together with NF-kB-dependent firefly luciferase
construct and Renilla luciferase construct, which was used to normalize firefly
luciferase activity. The control plasmids were added to sustain equal amounts
of total DNA. At 36 h after transfection, 2 ng/ml of TNFa was added to the
media. The cells were incubated for another 6 h before they were collected
for dual specific luciferase reporter gene assays. Luciferase activity was
measured according to the manufacturer’s protocol. The relative luciferase
activity was calculated by dividing the firefly luciferase activity by the Renilla
luciferase activity. Data represent three independent experiments performed
in triplicate.

RT and quantitative RT-PCR. Cells were collected using TRIzol (Invitrogen)
and RNA extracted according to manufacturer’s protocol. First strand cDNA
synthesis was performed on 1 ug of RNA using SuperScript III Gene Expression
Tools and oligo dT (Invitrogen) according to the manufacturer’s protocol.
Quantitative Real-time PCR was performed using specific primers (Supple-
mentary Table S1) and SYBR Green ROX Mix (ABgene , Epsom, UK), analyzed
using an Applied Biosystems 7300 real time PCR system. Data were normalized to
housekeeping GAPDH gene and the relative abundance of transcripts was
calculated by the Ct models.

Enzyme-linked immunosorbent assay. HeLa cell lines with stable
knockdown of USP4 and control cells were plated in 12-well plates. Cells were either
left untreated or treated with 2 ng/ml of TNFa and incubated for different time points.
Medium was then taken and cleared of cells and debris by centrifugation
and assayed using the OptEIA Mouse IL-6 ELISA kit (BD Biosciences) as the
manufacturer’s instruction. Assays were performed in triplicate for three
independent times.

In vitro deubiquitination assay. His-USP4-WT, His-USP4-C311A proteins
were expressed in BL-21 Escherichia coli. After the induction with 0.5 M isopropyl-b-
D-thiogalactopyranoside at 30 1C for 4 h, bacteria were pelleted and lysed
with extraction buffer (20 mM Tris-HCl (pH 7.8), 500 mM NaCl, 1 mM DTT,
50 mg/ml lysozyme, 10mg/ml aprotinin, 10mg/ml leupeptin and 1 mM PMSF) for
45 min on ice. The bacteria were sonicated at 4 1C in 1% Sarcosyl (Sigma), and
then 1% Triton X-100, 5mg/ml DNase and 5 mg/ml RNase were added. The lysates
were centrifuged at 15 000� g for 15 min in a Sorvall SS34 rotor and
the supernatants containing His fusion protein were collected. A total of 150 ul
His-SelectTM Nickel Affinity gel (Sigma) was incubated with each bacterial
lysate supernatant at 4 1C overnight. The beads were washed three times in
extraction buffer containing 0.5% Triton X-100, one time in extraction buffer
containing 0.1% Triton X-100. Proteins were eluted in elution buffer (250 mM
imidazole, 50 mM Tris-HCl (pH 8.0), 10% glycerol, 300 mM NaCl) and dialyzed in
dialyzing buffer (20 mM Hepes (pH 7.9), 150 mM KCl, 0.2 mM EDTA, 20% glycerol).
The protein concentrations were determined with a Bradford Protein Assay
(Bio-Rad) and proteins were subjected to SDS-PAGE and visualized by Coomassie
Blue staining.

To perform in vitro deubiquitination assay, FLAG–TAK1 expression vectors were
transfected into HEK-293T cells with the vectors encoding TAB1. FLAG–TAK1
proteins in the cell lysates were immunoprecipitated with anti-FLAG antibodies and
co-incubated with purified recombinant His-USP4-WT or -C311A mutant for 2 h at
30 1C in a final volume of 20ml of deubiquitnation buffer (30 mM Tris (pH 7.6),
10 mM KCl, 5 mM MgCl2, 5% glycerol, 5 mM DTT and 2 mM ATP). The reaction
mixtures were resolved by SDS-PAGE and then analyzed by immunoblotting with
the anti-Ub antibodies.
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