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Theories of selective attention in associative learning posit that the salience of a cue will be high if the cue

is the best available predictor of reinforcement (high predictiveness). In contrast, a different class of

attentional theory stipulates that the salience of a cue will be high if the cue is an inaccurate predictor

of reinforcement (high uncertainty). Evidence in support of these seemingly contradictory propositions

has led to: (i) the development of hybrid attentional models that assume the coexistence of separate,

predictiveness-driven and uncertainty-driven mechanisms of changes in cue salience; and (ii) a surge

of interest in identifying the neural circuits underpinning these mechanisms. Here, we put forward a

formal attentional model of learning that reconciles the roles of predictiveness and uncertainty in salience

modification. The issues discussed are relevant to psychologists, behavioural neuroscientists and

neuroeconomists investigating the roles of predictiveness and uncertainty in behaviour.
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1. INTRODUCTION
Animals, including humans, spend a great deal of their

waking hours learning about and using cues to predict

events of motivational significance (reinforcers). One ques-

tion that has long captivated the imagination of learning

theorists is how an organism comes to attend to the appro-

priate cues. Decades of research have singled out two

variables, predictiveness and uncertainty, as playing a key

role in determining how much attention a cue will receive

[1]. This can be illustrated with a real-life example. Imagine

a hungry wetland heron scrutinizing the murky waters of a

marsh for cues of fish. Studies of the role of predictiveness

in learning suggest that those cues that best predict

the location of fish, such as sudden ripples, should possess

greater salience1 than cues that are irrelevant (e.g. the song

of a nearby warbler). In the future, sudden ripples will more

readily capture the heron’s attention, thus helping the bird

find its prey. Unfortunately for the heron, ripples are likely

to be caused by events other than fish (e.g. the movement

of a stealthy alligator), making this cue a rather uncertain

predictor of its consequences. Studies of the role of uncer-

tainty in learning suggest that under these circumstances

the salience of the ripples should also be high. Attending to

them will be equally adaptive because it will allow the heron

to acquire ever-finer discriminations between the kinds of rip-

ples given away by fish and, say, those given away byalligators.

While it is clear from behavioural and neurobiological

experiments that predictiveness and uncertainty endow
s for correspondence (esber@umaryland.edu; mark.
e@nottingham.ac.uk).

ic supplementary material is available at http://dx.doi.org/
/rspb.2011.0836 or via http://rspb.royalsocietypublishing.org.

20 April 2011
16 May 2011 2553
cues with high levels of salience, the psychological mechan-

isms invoked to explain these effects remain contentious

[1]. Part of the problem stems from our reliance on two

classes of theories of attention in learning which not only

fail to account for all the extant data, but which also rest

on fundamentally contradictory assumptions. One class of

theory, most prominently represented by Mackintosh’s

model [2], states that good predictors of reinforcement

will acquire high salience, while poor predictors should

lose salience (see also [3,4]). As a result, good predictors

will command substantial attention and poor predictors

will come to be ignored. The rival camp, represented by

the Pearce–Hall [5] model, rejects this view and assumes

that, on the contrary, the salience of good predictors

should decrease over the course of learning. Instead,

Pearce and Hall propose that increases in salience should

be applied where they are most needed—to inaccurate or

uncertain predictors of reinforcement, so as to facilitate

learning (see also [6,7]).

The purpose of this article is to overcome this theoreti-

cal contradiction by providing a proof of concept that the

influence of predictiveness and uncertainty on stimulus

salience can be reconciled. We begin by briefly reviewing

the kinds of evidence that gave rise and lend support to

the Mackintosh [2] and Pearce–Hall [5] models. The

paradox that unfolds takes us to visit hybrid models that

posit the coexistence of Mackintosh and Pearce–Hall

mechanisms and which, in a sense, ignore the contradic-

tion [8–10]. Having questioned the hybrid approach, we

then advance a possible solution in the form of a new,

formal attentional model of learning. To conclude, we

contrast some novel predictions and implications from

this model with those of hybrid models.
This journal is q 2011 The Royal Society

mailto:esber@umaryland.edu
mailto:mark.haselgrove@nottingham.ac.uk
mailto:mark.haselgrove@nottingham.ac.uk
http://dx.doi.org/10.1098/rspb.2011.0836
http://dx.doi.org/10.1098/rspb.2011.0836
http://dx.doi.org/10.1098/rspb.2011.0836
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


2554 G. R. Esber & M. Haselgrove Review. Predictiveness, uncertainty and salience
2. EVIDENCE THAT PREDICTIVE CUES HAVE HIGH
SALIENCE: THE MACKINTOSH MODEL
The adaptive benefit of a salience-enhancing mechanism

that is selective to good predictors of motivationally rel-

evant events (preys, predators, sexual partners, etc.) is

evident. In addition to enabling organisms to direct atten-

tional resources towards relevant cues and act upon them

with greater efficacy, it also allows them to ‘tune out’ dis-

tractors and thus optimize performance. It is no surprise

to learn, therefore, that a variety of organisms under a

range of conditions exhibit an attentional bias towards

cues with predictive significance.

One of the simplest demonstrations that the salience of

predictive cues increases is found in studies investigating

conditioned orienting responses. In one experiment, for

instance, rats were placed in a Skinner box and a localized

light was turned on for 10 s without consequences [11].

The animals initially oriented towards the light source,

but with repeated presentations this unconditioned

response habituated. Interestingly, when the light was

subsequently established as a predictor of food, a con-

ditioned orienting response was observed, reflecting a

restoration of its salience.

Further evidence for a Mackintosh-type mechanism is

provided by studies of attentional-set shifting (also known

as intradimensional–extradimensional shift). In this pro-

cedure, animals are required to predict a reinforcer on

the basis of a relevant dimension (e.g. odour), but not

an irrelevant one (e.g. texture). Following this training,

a test discrimination is solved more rapidly if the novel

cues belong to the previously relevant dimension than if

they belong to the previously irrelevant one (for a

review, see [12]). This effect is disrupted by lesions of

the prefrontal cortex, which has been implicated in sal-

ience and attention (for a review, see [13]). Other

behavioural techniques have provided similar evidence

while circumventing some of the limitations of the

attentional set-shift paradigm [14,15].

In humans, evidence of selective attention comes from

a variety of behavioural and physiological tests. Relative to

poor predictors, good predictors have higher associability

[16]; capture more attention by overt and covert measures

[17]; are more rapidly recognized [18]; and evoke greater

event-related potentials associated with selective attention

[19]. Furthermore, individuals with personality charac-

teristics and psychopathology associated with attentional

deficits show smaller differences in learning to good

relative to poor predictors (e.g. [20]).

This evidence is consistent with Mackintosh’s [2] pro-

posals. Formally, the theory states that the salience of a

cue will increase if it leads to a smaller prediction error2

than all of the other cues in the environment and, conver-

sely, will decline if it leads to a greater prediction error.

Since the absence of prediction error is what defines a

good predictor, this rule guarantees that good predictors

will enjoy greater salience than poor ones. The reader

interested in the mathematical instantiation of the model

can refer to the electronic supplementary material, S1.
3. EVIDENCE THAT UNCERTAIN CUES HAVE HIGH
SALIENCE: THE PEARCE–HALL MODEL
In addition to the advantage of selectively attending to

predictive cues, it is evident that an organism would
Proc. R. Soc. B (2011)
also benefit from a mechanism for enhancing the salience

of uncertain cues. By directing attentional resources

towards such stimuli, the organism should be better

placed to discover the relationships between them and

their consequences [5,21]. Several lines of evidence

suggest that the salience of a cue that predicts a reinforcer

with a measure of uncertainty is indeed greater than that

of a cue that predicts it with certainty. For instance, the

orienting response of a rat towards a visual cue is stronger

and more sustained if the cue has been paired with food

on a subset of trials (partial reinforcement) rather than

on all trials (continuous reinforcement) [22,23]. A similar

result has also been revealed in studies of eye movements

in humans [24]. In keeping with these findings, we have

demonstrated that partially reinforced cues are more

readily learned about in a subsequent discrimination

than continuously reinforced cues [14].

The influence of uncertainty or surprise on the

salience of cues is also demonstrated by the Wilson,

Boumphrey and Pearce task [25]. In this procedure, the

salience of a cue—as indexed by its associability—is

enhanced following the surprising omission of a sub-

sequent event (see also [26]). A well-studied neural

circuit comprising attention-related areas such as the

amygdala, the substantia nigra, the basal forebrain and

the posterior parietal cortex has been identified as critical

for this effect [27].

Neural correlates of a greater salience for uncertain

rather than certain predictors have also been reported.

Ventral midbrain dopamine neurons of monkeys show

greater activity in anticipation of a reward that cannot

be predicted with certainty [28]. In addition, ventral stria-

tum and orbitofrontal cortex show a strong BOLD

response under conditions of uncertainty in functional

magnetic resonance imaging studies [29,30]. It has been

suggested that these signals may covary with the attention

recruited by the experimental events in the way described

by the Pearce–Hall [5] model [28,31].

Although none of these phenomena are consistent with

the proposals of Mackintosh [2], they can be readily

explained by the Pearce–Hall [5] model. Pearce and

Hall posit that the salience of a cue is proportional to

the aggregate prediction error generated on the last trial

in which the cue was present (but see [6]). Under con-

ditions of uncertainty, such as in partial reinforcement,

trials will culminate in large aggregate prediction errors

and, consequently, the salience of all cues will stay high.

In circumstances such as continuous reinforcement,

where uncertainty is low by the time learning has reached

an asymptote, these errors will be small and so too will be

the salience of all cues. As mentioned above, this implies

that good predictors should ultimately attract little atten-

tion, at least of the kind necessary for learning. A more

detailed exposition of the Pearce–Hall model can be

found in the electronic supplementary material, S2.
4. A THEORETICAL CONUNDRUM (AND ITS
IMPLICATIONS)
Taken together, the evidence summarized above indicates

that both predictiveness and uncertainty lead to high

levels of cue salience. As we have pointed out, both effects

seem intuitively plausible, albeit for different reasons.

Theoretically, however, we are left with a conspicuous
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contradiction, for if both models were true then, on any

given trial, the same cue could potentially undergo simul-

taneous increments and decrements in salience. Consider

the case of a single cue consistently paired with a reinfor-

cer. With sufficient training, Mackintosh predicts that on

each trial the salience of this cue should increase, as the

cue leads to the smallest prediction error among all

stimuli present (i.e. it is the best predictor available).

On the very same trial, however, Pearce and Hall antici-

pate that the cue’s salience should decline, for the

aggregate prediction error in its presence should approxi-

mate zero (i.e. the cue reliably predicts its consequences).

For years, this contradiction formed the very substance

of the theoretical debate sparked by the two models,

and the empirical work they fuelled sought not only to

verify their own view but also to dismiss their rival’s. As

the evidence accumulated, however, a gradual acceptance

set in that, puzzling as it might seem, both mechanisms

ought to be true at once. This is the central assumption

of a family of so-called hybrid models of attention in

learning (e.g. [8–10]).

Although varying in detail, hybrid models advocate a dual

process of salience modification. One component of the cue’s

salience is computed for the purpose of stimulus selection

according to the principles of Mackintosh’s model. Indepen-

dently, a second salience component is computed for the

purpose of learning using the equation provided by Pearce

and Hall. The product of these two components then

determines the ultimate salience of the cue.

Equipped with these assumptions, hybrid models are

able to encompass the two sets of results described

above, which hitherto required two different models.

This should not be surprising since, by definition,

hybrid models incorporate the Mackintosh and Pearce–

Hall mechanisms. While acknowledging the success of

this approach, some investigators have entertained

doubts whether a single mechanism might be able to

account for the influence of predictiveness and uncer-

tainty on cue salience [10, p. 32]. Unfortunately, no

such mechanism has yet been advanced to challenge

hybrid models. This deficiency does more than impover-

ish the theoretical debate, for a hybrid conception shapes

our research hypotheses in very particular ways. In the

clinical domain, for instance, applying the hybrid view

will inevitably raise the question of which of the two

mechanisms, Mackintosh’s or Pearce–Hall’s, goes awry

in disorders with an attentional component, such as

schizophrenia, attention deficit hyperactivity disorder

and addiction. In studies of the neuroscience of attention

in learning, it may lead the investigator to assume the

existence of somewhat distinct neural underpinnings for

these processes. The possibility remains, however, that

the hybrid approach is incorrect, and to this extent our

understanding of the processes responsible for variations

in cue salience would benefit from competing theories.

With this in mind, we have set out to provide an

alternative solution to the contradiction.
5. OVERCOMING THE CONTRADICTION: A MODEL
OF ATTENTION IN LEARNING
(a) Increments in salience

Here, we introduce a formal model of attention in learn-

ing that colligates predictiveness- and uncertainty-related
Proc. R. Soc. B (2011)
attentional phenomena under a single mechanism for

increments in cue salience. Decrements in salience are

considered separately. While building the model, we

have taken recourse to a set of assumptions found already

in several influential theories of learning [2,5,32]. Like

others, we begin by assuming that the effective salience

of a cue (a) is partly determined by sensory attributes,

such as its intensity. We shall represent these unacquired

properties of the cue with the parameter f, and state,

for the sake of simplicity, that f is a constant of range

(0–1). For simulation purposes, the absolute value of f

is arbitrarily chosen, but its relative value captures the

common observation that the salience of a high-intensity

stimulus is greater than that of a low-intensity one. Thus,

as a first approximation, we shall declare that the level of

effective salience, a, is equivalent to f:

a ¼ f: ð5:1Þ

(i) The influence of predictiveness on stimulus salience

To begin to accommodate the evidence summarized

above, we shall assume with Mackintosh [2] that a cue

acquires additional salience when it predicts motivation-

ally relevant consequences. We shall not, however,

adopt Mackintosh’s rules for salience modification.

Instead, we propose that acquired salience (1) is simply

a function of the cue’s status as a predictor or, in other

words, its associative strength (V ):

1 ¼ f ðV cue!reinf Þ: ð5:2Þ

In this equation, f refers to a monotonically increasing

function. In the absence of any evidence to the contrary,

we have assumed in our simulations that f is the identity

function ( f ¼ 1, see the electronic supplementary

material, S4). If the cue becomes associated with several

reinforcers at once, then we assume that 1 is determined

by the sum of the cue’s associative strengths with those

reinforcers, regardless of their motivational sign:

1 ¼ f ðV cue!reinf 1 þV cue!reinf 2 þ � � � þV cue!reinf nÞ: ð5:3Þ

Factoring in acquired salience, the effective salience of the

cue now becomes:

a ¼ fþ 1: ð5:4Þ

An example based on the fishing heron of the opening

paragraph might help the reader appreciate the impli-

cations of the foregoing equations. Equation (5.2) states

that the salience of sudden ripples, say, will increase to

the extent that they become associated with fish. If similar

ripples were also occasionally produced by alligators, then

our heron would have two compelling reasons to attend to

them, for an error of judgement could make the difference

between eating and getting eaten. Equation (5.3) captures

this notion by ensuring that fish and alligators both

contribute to the salience of the ripples, in proportion

to their respective associations with this cue. As will

become apparent, this additive assumption is critical for

reconciling the roles of predictiveness and uncertainty in

salience enhancement.

Equations (5.2) and (5.3) substantially simplify the

rules for changes in stimulus salience put forward by

Mackintosh [2], the purpose of which is to ensure that

the salience of relevant cues increases as the salience of
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irrelevant cues decreases, thereby achieving selective

attention. How else might this be accomplished? Since

we assume a direct relationship between salience and

associative strength, all that is required is a selective-

learning mechanism that grants relevant cues a superior

status as predictors to irrelevant cues. An obvious candi-

date is the delta rule advanced by Rescorla and Wagner

[32]. According to this rule, cues conditioned in com-

pound compete for the maximum amount of associative

strength supported by the reinforcer (l), with a fully pre-

dicted reinforcer suffering a loss of processing relative to a

surprising reinforcer. For each cue, the increment in

associative strength (DV ) on any given trial is proportional

to the discrepancy between the value of l and the aggre-

gate prediction of the reinforcer generated on the basis of

all cues present (SV ). This is captured in the following

equation:

DV ¼ abðl� SV Þ; ð5:5Þ

where b is a constant (range 0–1) encapsulating the

intrinsic motivational properties of the reinforcer. The

larger the l2SV discrepancy in equation (5.5), the

more associative learning will take place. Learning

ceases as this discrepancy approaches zero. On trials in

which the reinforcer is omitted, it is assumed that l ¼ 0

and the resultant DV will be negative, signifying a

reduction in the cue’s associative strength (i.e. extinc-

tion). One consequence of equation (5.5) is that a cue

that has a negative correlation with reinforcement (i.e.

the reinforcer is more likely to occur in its absence than

its presence) will accrue negative associative strength.

As will be seen, however, we shall exclude negative

cue! reinforcer associations in the particular instantiation

of the delta rule presented here.

Application of the delta rule to circumstances in which

several cues are present ensures that good predictors will

acquire most of the associative strength available at the

expense of poor predictors. Equations (5.3) and (5.4)

imply that this difference in associative strength will be

reflected as a difference in the cues’ relative salience. In

this manner, the influence of predictiveness on stimulus

salience (and allocation of attention) is accounted for,

and we shall now turn to examine the relationship

between uncertainty and salience.
(ii) The influence of uncertainty on stimulus salience

Equation (5.3) states a simple additive rule according to

which a predictor of multiple reinforcers should have

more salience than a predictor of just one of these rein-

forcers. It is interesting to note that, in addition to

possessing greater overall motivational significance, a

cue in the former case is also, by definition, uncertain

as to the particular outcome of each trial. This suggests

that it might be possible to explain other instances of

uncertainty, such as partial reinforcement, by applying

the same additive rule: all one needs to assume is that

the omission of reinforcement can itself act as a reinfor-

cer. Before considering this scenario, however, we shall

need to say a few words on the notion of ‘no-reinforcer’

representations.

A number of theorists [5,33] have suggested that the

surprising omission of a reinforcer is also a motivationally

potent event, a proposal that has received empirical
Proc. R. Soc. B (2011)
support (e.g. [34,35]). Such no-reinforcer representations

are assumed to consist primarily of emotional responses

opposite in sign to those elicited by the reinforcer itself

(e.g. relief if the omitted reinforcer is aversive, disappoint-

ment or frustration if it is appetitive). Thus, a cue that is

intermittently followed by reinforcement will enter into

an association with, respectively, the positive emotional

aspects of the reinforcer and the negative emotional

aspects of the reinforcer’s omission. Theories that incor-

porate no-reinforcer representations further assume that,

when activated, these representations will inhibit their

counterpart reinforcer representations [33,36], leading

to the commonly observed reduction of responding in

partial reinforcement.

In adopting these assumptions, we shall propose, along

with others [5,37], that the development of both cue!
reinforcer (V) and cue! no-reinforcer ( �V ) associations

are governed by the delta rule. In equation (5.5), we

described this rule in relation to the cue! reinforcer

association. Acknowledging the contribution of no-rein-

forcer representations in learning, however, demands

some elaboration on this equation. This is because the

expectation of no-reinforcement (S �V ) should detract

from the expectation of reinforcement (SV ), to determine

the overall prediction of reinforcement (SV2S �V ). It is this

overall prediction that dictates the magnitude and direc-

tion of changes in associative strength. Thus, on any

given trial, the cue! reinforcer association will change

according to:

DV ¼ abðl� ðSV � S �V ÞÞ: ð5:6Þ

If the reinforcer is under-expected (l . (SV2S �V )), DV

will be positive and the association will strengthen

(DV . 0). Conversely, if the reinforcer is over-expected

(l , (SV2S �V )), DV will be negative and the association

will weaken. In keeping with other theories of associative

learning (e.g. [32]), we acknowledge that the strengthen-

ing and weakening of the cue!reinforcer association

may not occur at the same rate. Consequently, the value

of b under circumstances of under-expectation (bDV.0)

may be different from the value of b under circumstances

of over-expectation (bDV,0; for details about the b-values

in our simulations, see figure 1 and the electronic

supplementary material, S4).

When determining the corresponding equation for the

cue! no-reinforcer association, the first step is to define

the maximum amount of associative strength that can be

supported by this type of learning—that is to say, we must

determine its asymptote. This was relatively straight-

forward for the case of reinforcement, described above,

as the reinforcer is a stimulus that is physically present

and to which a quantity, l, could be assigned. The asymp-

tote supported by no-reinforcement, however, requires a

different treatment as its quantity is not based upon a

physically present stimulus. One simple solution is to

suggest that the asymptote of no-reinforcement is equal

to the expectation of reinforcement (SV ). From this, we

can then subtract the summed expectation of no-

reinforcement (S �V ) to derive a learning term, SV2S �V ,

that determines the change in the cue! no-reinforcer

association on any one trial. This expression provides an

intuition for what should drive cue! no-reinforcer learn-

ing. For example, if, our heron repeatedly expects to catch
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2 fish (SV ¼ 2) but catches none, he will over-expect

(and be frustrated or disappointed) by 2 fish, and

therefore the cue! no-reinforcer association will tend

towards this asymptote. Under some circumstances, how-

ever, cue! no-reinforcer learning will take place in the

presence of some reinforcement. Thus, if our heron expects

to catch 2 fish (SV¼ 2) but catches only 1 (l ¼ 1), then he

will over-expect to the value of 1 fish. In this case, 1 fish will

contribute towards the asymptote for the cue! no-reinfor-

cer association. To formalize this notion, we shall draw upon

the proposals of Pearce and Hall [5], and suggest that the

change in the strength of the cue! no-reinforcer

association is determined by

D �V ¼ abððSV � S �V Þ � lÞ: ð5:7Þ

If the reinforcer is over-expected (l , (SV2S �V )), then D �V
will be positive and the cue! no-reinforcer association will

strengthen. In contrast, whenever the reinforcer is under-

expected (l . (SV2S �V )), D �V will be negative and the

association will weaken. Once again, we acknowledge

the possibility that the strengthening and weakening of

this association may proceed at different rates

(bD �V .0 = bD �V ,0).

It follows from this account that a net conditioned

excitor is a cue whose association with reinforcement is

greater than its association with no reinforcement

(V . �V ) and, conversely, a net conditioned inhibitor is

one for which the reverse holds true (V , �V ). This

implies that negative associations, the hallmark of con-

ditioned inhibition according to Rescorla and Wagner

[32], are superfluous in the context of this model.

Hence, for reasons of parsimony, we shall follow Pearce

and Hall [5] and assume that associations between cues

and reinforcer or no-reinforcer representations can only

be positive, confining instead negative associations to

no-reinforcer—reinforcer interactions. For the purposes of

simulations provided here, we have assumed that strengths

of the cue! reinforcer and cue! no-reinforcer
Proc. R. Soc. B (2011)
associations range from 0 to 1. A possible architecture of

the model is shown in figure 2.

Let us now return to partial reinforcement. Equations

(5.6) and (5.7) correctly predict that a partially reinforced

cue should elicit a weaker conditioned response (CR)

than would be fostered by continuous reinforcement.

Crucially, however, application of equation (5.2) equally

predicts, along with Pearce and Hall’s model, that the

cue should, after sufficient training, acquire substantial

salience (see figure 1). This follows from the assumption

that the cue will signal two emotionally potent outcomes

simultaneously (e.g. food and no-food), which will have

additive effects on 1 (and therefore a):

1 ¼ f ðV þ �V Þ: ð5:8Þ

It might be profitable to illustrate the significance of

equation (5.8) by referring back to our fishing heron. It

is probable that the ripples that warn the heron of the

presence of fish will not invariably lead to a catch, as

occasionally the fish will manage to escape. Casually

stated, the mechanism we propose suggests that the

harder it is to make a catch, the more frustration and

other negative emotions will enhance the acquired sal-

ience of the ripples above the level determined by their

association with fish. As a result, the chances that the

ripples will subsequently capture the heron’s attention

will also increase, thus improving the likelihood of

making a catch. On this view, therefore, it is not the size

of the prediction error—as Pearce and Hall [5] posit—

that is responsible for the high salience of a partially

reinforced cue. Rather, such a high salience derives, in

the spirit of Mackintosh’s [2] theory, from the cue’s

associations with emotionally significant events. A similar

circumstance will arise if a cue is initially established as a

predictor for reinforcement and then established as a pre-

dictor for its absence (i.e. extinguished). So long as the

(novel) cue! no-reinforcer association grows faster

than the (established) cue! reinforcer association is

lost, then this procedure will result in the acquisition of
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Figure 2. The associative structure of salience enhancement. Learning: a representation of the cue forms independent associ-

ations with representations of the reinforcer and no-reinforcer, according to a version of the delta rule [32]. Salience
modification: the degree to which the reinforcer and no-reinforcer representations are each activated by the cue determines feed-
back to the cue representation, enhancing its salience. Behaviour: downstream, activation of the no-reinforcer representation
inhibits activation of the reinforcer representation to determine the overall prediction of reinforcement, which itself dictates

conditioned responding.
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both cue! reinforcer and cue! no-reinforcer associ-

ations and, consequently a net gain in the acquired

salience of the cue. Extant evidence indicates that this is

the case [37]. However, as will be appreciated from the

next section that considers decrements in salience,

extended nonreinforced exposure to a cue should result

in a reduction in its salience, thus any gains in salience

as a consequence of extinction should not last indefinitely.

Because the amount of salience that a cue will acquire

is determined by its relevance, the model successfully

accommodates the observation that partial reinforcement

will not always result in an increase in salience.

Implementation of the delta rule ensures that this will

only be the case so long as the cue remains the best avail-

able predictor of either outcome. If other cues should

signal the presence and absence of reinforcement with

greater accuracy, then the partially reinforced cue would

ultimately acquire relatively weak associations (low V and

low �V ), which should limit its acquisition of salience. As

a result, the model correctly predicts, with Mackintosh’s

model, that irrelevant stimuli will normally fail to acquire

salience (e.g. [16]; see figure 1 and the electronic

supplementary material, S4).

Thus, by assuming that (i) different reinforcers contrib-

ute independently to the salience of a cue, and that, in

this regard, (ii) no-reinforcer representations can play the

part of a reinforcer, it is possible to reconcile the effects

of predictiveness and uncertainty on enhancements in

cue salience. It is interesting to note that the theoretical

notions espoused here are consonant with current think-

ing and data in behavioural neuroscience, according to

which events of opposite motivational significance exert a

common influence on salience/arousal neural systems,

while having opposing effects on affective-valence systems

(e.g. [38]).
(b) Decrements in salience

Thus far, our discussion has focused on the conditions

that lead to increments in cue salience as a result of a
Proc. R. Soc. B (2011)
predictive relationship with reinforcement. It is evident,

however, that the salience of a cue may also decline

from its initial, novelty level. Phenomena such as habitu-

ation and latent inhibition demonstrate that repeated

exposure to a cue attenuates unconditioned behaviours

directed at the cue (orienting responses, spontaneous

exploration [11]) as well as its associability, both com-

monly used indices of its salience [39,40]. Salience

attenuation by exposure, moreover, is not limited to rela-

tively neutral stimuli, but equally affects both reinforcers

[41] and their predictors [42].

Decrements in cue salience represent the other side of

the contradiction between the Mackintosh [2] and

Pearce–Hall models [5]. For Mackintosh, the salience

of a cue will decrease if it is a relatively poor predictor

of its consequences. In contrast, Pearce and Hall

assume that salience will decrease if the cue is a good pre-

dictor of its consequences. Both models, however, concur

that decrements in salience are determined by the status

of the cue as a predictor, an assumption which itself has

not gone uncontested [27, p. 343; 43]. Here, we shall

abandon this assumption to follow Wagner’s [44] propo-

sal that the salience of a cue will drop to the extent that it

is itself predicted by (rather than predictive of) other

events, including the context. This analysis accommo-

dates the finding that both habituation (e.g. [45]) and

latent inhibition (e.g. [46]) are attenuated when the con-

text is changed following exposure. If the extent to which

a cue is predicted is represented as the sum of associative

strengths between all preceding events and the cue

(SVpre!cue), then we can incorporate Wagner’s mechan-

ism into the model by assuming that effective salience

equals:

a ¼ fþ 1� kSV pre!cue; ð5:9Þ

where k is a constant ranging between 0 and 1, the value

of which determines the ultimate reduction in the salience

of the cue. In keeping with Wagner’s [44] proposals, the
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value of SVpre!cue is determined by the delta rule or,

more specifically, by our implementation thereof.

Despite the elegance of this analysis, there is evidence

that habituation [47] and latent inhibition [48] may trans-

fer seamlessly across different contexts. It appears

therefore that an additional associative structure is

required to account for reductions in the salience of a

cue as a consequence of exposure. One possibility is

that the cue becomes a good predictor of itself. For

example, a cue can be regarded as composed of a

number of features, each of which possesses a different

temporal activation function across the duration of the

cue [49]. One implication of this assumption is that,

with repeated presentations, later features of the trial

will become predicted by earlier features. Although we

are aware of at least one study of latent inhibition that is

consistent with this analysis [50], we cannot evaluate

the influence or generality of this mechanism at this

point, and shall therefore refrain from attempting to

formalize it.

It is important to realize that, rather than invoking an

entirely different mechanism, this analysis of decrements

in salience simply applies to cues the processes hitherto

applied to reinforcers. That is to say, both cues and rein-

forcers should suffer a decrement in their processing as a

consequence of being predicted. With this addendum to

the model, a symmetrical picture emerges according to

which every stimulus may simultaneously be signalled by

preceding events (detracting from its salience) and a

signal of subsequent ones (from which, if motivationally

significant, it will derive further salience). Because any

stimulus repeatedly presented will to some extent

become predicted by itself and the context where it is

experienced, stimulus salience should, by default, tend

to decline gradually with exposure. We suggest that such

a decline forms the backdrop against which the salience-

enhancement mechanism described above operates. In

the absence of any direct evidence, it is tantalizing to

learn that several lesion studies have shown that incre-

ments and decrements in cue salience are underpinned

by different, non-overlapping neural circuits3 [27].
6. DISCUSSION
This article offers a solution for assimilating predictiveness-

and uncertainty-driven attentional phenomena into a

coherent salience-changing mechanism. By doing so, it

overcomes a long-standing contradiction in the field of

associative learning [9,10]. According to the account pre-

sented here, increments in the salience of predictive cues

underlie the organism’s attempt to track events associated

with motivationally relevant consequences. Increments in

the salience of uncertain cues are seen as a by-product of

this process. On the other hand, decrements in salience

are otherwise determined: they depend on the status of

the cue as an event that is predicted, rather than a predictor

of other events, and are thus a natural consequence of

exposure. We regard this way of partitioning the salience

problem (i.e. incremental versus decremental mechanisms)

as more parsimonious than assuming separate, Mackintosh-

and Pearce–Hall-type of processes [2,5], each of which

can independently (and divergently) produce increments

or decrements in salience.
Proc. R. Soc. B (2011)
Simulations of the model have confirmed that it suc-

cessfully handles benchmark cue-interaction effects such

as blocking [51], overshadowing and conditioned inhi-

bition [52]. This is a consequence of incorporating the

delta rule [32] for determining changes in associative

strength, which was designed to explain these pheno-

mena. By the same token, it is obvious that by using

this rule the model inherits some of its shortcomings,

such as the inadequate account it provides of the role of

similarity in learning [53]. Such shortcomings are

nonetheless theoretically dissociable from the issue of

stimulus salience that concerns us here.

Importantly, the current model represents a departure

from existing theories (e.g. [2,5,9,10]) in that it emphasizes

the role of associative strength—rather than prediction

error—in the determination of stimulus salience. Perhaps

the most straightforward implication of this assumption is

that a cue that is strongly associated with reinforcement

should acquire greater salience than a cue that is only

weakly associated. This prediction, which is shared by

other attentional theories [2,9,10], has recently received

empirical support [54]. A further implication of this analysis

is that, under some circumstances, the sum of the associat-

ive strengths acquired by a cue whose consequences are

uncertain might not exceed the associative strength of a

cue whose consequence is certain. From this, it follows

that the salience of an uncertain cue may not always be

greater than that of a certain cue, a possibility which is

not contemplated by hybrid models [55, p. 102]. Although

this point warrants further investigation, it is interesting to

note that the salience of continuously reinforced cues have

occasionally been shown to surpass that of partially

reinforced cues (e.g. [56]). One circumstance in which the

model predicts this state of affairs is early in training

(figure 1b). Evidence in support of this analysis comes

from an experiment with pigeons which shows that auto-

shaped key-pecking, a CR which has been shown to

correlate with stimulus salience, is initially higher to a con-

tinuously than a partially reinforced cue, but with extended

training this pattern of behaviour reverses [57]. While

anticipated by the model, these results pose a significant

challenge to all other theories discussed above.

Another area where the current model departs

substantially from existing models of learning and atten-

tion (e.g. [2,5,9,10]) is in its use of cue! reinforcer

and cue! no-reinforcer associations to determine the

acquired salience of the cue—particularly under con-

ditions of partial reinforcement. An implication of this

analysis is that should steps be taken to undermine the

contribution of no-reinforcer representations (e.g.

frustration) through behavioural or pharmacological

interventions, then concomitantly the salience of a

partially, but not a continuously reinforced cue should

be compromised. This prediction remains to be tested.

To conclude, it has been our aim to show that the roles

of predictiveness and uncertainty in stimulus salience can

be reconciled and, notably, without departing from con-

ventional assumptions in learning theory. The current

model is a case in point that the advent of alternatives

to the hybrid approach will refine our research hypo-

theses, thereby furthering our understanding of the

mechanisms involved in salience modification. Elucida-

tion of these mechanisms will benefit the investigation

of the neural basis underpinning these changes, and
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shed light on the nature of disorders characterized by

attentional deficits.
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ENDNOTES
1An intuitive definition of salience is the ability of a stimulus to cap-

ture attention. Etymologically, the word salience is derived from the

latin salı̄re, meaning to leap. Literally, therefore, a salient stimulus is

one that leaps at you. We shall use the term associability (which is

sometimes used interchangeably with salience) only in its most literal

meaning: the readiness with which a cue will enter into an association

with an outcome. Associability is commonly used as an index of

salience (but see the electronic supplementary material, S3).
2Prediction error is defined as the difference between the reinforcer

received and the reinforcer predicted by the organism.
3Since we regard the mechanisms of salience enhancement and

attenuation as orthogonal, we have felt justified to separate the treat-

ment of the latter from the main exposition of the model and the

theoretical contradiction it is intended to solve. For the same

reason, we have used the simpler equation (5.4) (rather than equation

(5.9)) for computing cue salience in the simulations provided.
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