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Introduction

Scleroderma is a connective tissue disease involving fibrosis of 
the skin, which is characterized by the excessive accumulation of 
extracellular matrix (ECM) proteins, vascular injury and immu-
nological abnormalities.1 In early stages of scleroderma, activated 
fibroblasts in the affected areas produce high amounts of col-
lagen. Histological analysis of the initial stage of scleroderma 
reveals perivascular infiltrates of mononuclear cells in the der-
mis, which is associated with increased collagen synthesis in the 
surrounding fibroblasts. Although the pathogenesis of systemic 
sclerosis (SSc) has not been fully elucidated as yet, a number of 
studies have demonstrated the crucial role of several fibrogenic 
cytokines released from immunocytes in initiating the sequence 
of events leading to fibrosis. Additionally, other mechanisms 
such as vascular injury and apoptosis are also participated in the 
induction of fibrotic conditions. In this review, current findings 
on the autoimmune mechanisms and a role of oxidative stress in 
the pathophysiology of scleroderma are discussed.

Autoimmune Mechanisms

T cells, macrophages and mast cells are present in increased num-
bers or in an activated state in the lesional scleroderma skin, which 
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Scleroderma is a fibrotic condition characterized by 
immunological abnormalities, vascular injury and increased 
accumulation of extracellular matrix proteins in the skin. 
Although the etiology of scleroderma has not yet been 
fully elucidated, a growing body of evidence suggests that 
extracellular matrix overproduction by activated fibroblasts 
results from complex interactions among endothelial cells, 
lymphocytes, macrophages and fibroblasts via a number 
of mediators, such as cytokines, chemokines and growth 
factors. Recent investigations have further suggested 
that reactive oxygen species (ROS) are involved and play 
a role of autoimmunology in scleroderma. In this review, 
current findings on the autoimmune mechanisms in the 
pathophysiology of scleroderma are described.
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play an active role in the pathogenesis of the disease by releasing a 
number of mediators, cytokines/chemokines and growth factors. 
In addition, activated peripheral B cells are found in abnormally 
large numbers in patients with SSc.2 B cells contribute not only to 
antibody production, but also to T cell activation and differentia-
tion and the production of various cytokines.

Pathogenic autoantibodies in scleroderma. Circulating anti-
bodies are present in most patients with SSc. Although their role 
in the pathogenesis of scleroderma remains unclear, the sympto-
mology of SSc can be classified to some extent by the presence 
of specific antibodies. Many patients with limited SSc have anti-
bodies against centromeres, whereas anti-topoisomerase-1 (Scl-
70) antibodies are often detected in patients with diffuse SSc. 
Anti-RNA polymerase III antibodies are associated with sclero-
derma renal crisis and anti-Th/To antibodies are associated with 
pulmonary fibrosis. Anti-PM-Scl and anti-U1-RNP antibodies 
are associated with myositis and overlap syndrome.

Recently, circulating antibodies to platelet-derived growth 
factor (PDGF) receptors, which stimulate reactive oxygen species 
(ROS) and collagen,3 have been identified in patients with SSc. 
The ROS-Ras-ERK1/2 cascade results in fibroblast activation 
and the formation of a myofibroblastic phenotype.

Cytokines and chemokines in scleroderma. TGFβ. 
Transforming growth factorβ (TGFβ), which occurs abun-
dantly in platelets and is released by activated macrophages or 
lymphocytes, is a strong chemoattractant for fibroblasts. TGFβ 
increases the synthesis of ECM, such as collagen type I and type 
III, or fibronectin by fibroblasts, modulates cell-matrix adhesion 
protein receptors, and regulates the production of proteins such 
as plasminogen activator, an inhibitor of plasminogen, or pro-
collagenase, which can modify the ECM by proteolytic action. 
In addition, TGFβ is capable of stimulating its own synthesis 
by fibroblasts through autoinduction, and also increases TGFβ 
receptor (TGFβR) levels in fibroblasts.4 TGFβ mRNA levels are 
elevated in the lesional skin of SSc, and shown to co-localize with 
type I collagen. Overexpression of TGFβR, which is regulated at 
the transcriptional level,5 is recognized in fibroblasts in the skin 
of scleroderma patients.6 Blocking endogenous TGFβ signaling 
eradicates the scleroderma phenotype.7 Thus, TGFβ plays a key 
role via autocrine signaling in the pathogenesis of scleroderma.

Signaling by TGFβ elicits potent profibrotic responses in fibro-
blasts. TGFβ binds to the type II receptor, thereby activating the 
type I receptor. Signaling occurs predominantly by phosphoryla-
tion of cytoplasmic mediators belonging to the Smad family. In 
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SSc, correlated with the number of plaque lesions22 or nailfold 
capillaroscopic features.23

IL-33 is a member of IL-1 cytokine family, which is released 
from cells undergoing necrotic cell death and thus functions 
as damage-associated molecular pattern (DAMP). Repeated 
administration of IL-33 induced skin fibrosis and inflammation 
in mice.24 IL-13 is a critical down-stream mediator of IL-33-
induced cutaneous fibrosis.

Chemokines. Recent studies have suggested that chemokines 
and their receptors may be important mediators of inflammation 
and fibrosis in scleroderma.25 CCL2/monocyte chemoattractant 
protein-1 (MCP-1) belongs to a C-C chemokine superfamily and 
numerous types of cells are capable of expressing CCL2 in the 
presence of serum or specific stimuli. A growing body of evi-
dence has demonstrated that CCL2 gene expression is upregu-
lated in human fibrosis, as well as in animal models of fibrosis. 
In vitro studies show that CCL2 upregulates type I collagen 
mRNA expression in rat fibroblasts, which is indirectly mediated 
by endogenous upregulation of TGFβ gene expression.26 CCL2 
enhances expression of MMP-1, MMP-2 as well as TIMP-1 in 
cultured skin fibroblasts.27 Recent studies have demonstrated 
increased expression of CCL2 in patients with SSc. Serum levels 
and spontaneous production levels of CCL2 by peripheral blood 
mononuclear cells are elevated in patients with SSc, compared 
with normal controls, and are correlated with pulmonary fibro-
sis.28 Increased expression of CCL2 is demonstrated in sclero-
derma skin,29-32 and scleroderma fibroblasts express increased 
levels of CCL2 mRNA and protein.30,31 Stimulation with PDGF 
results in a significant increase in CCL2 mRNA and protein.29 
Furthermore, the autoinduction of CCL2 is observed in sclero-
derma fibroblasts, but not in normal fibroblasts.31 CCL2 levels 
may also be increased by IL-13, a potent stimulator of CCL2.33 
These in vivo and in vitro results suggest an important involve-
ment of CCL2 in the pathogenesis of scleroderma.

Increased numbers of mast cells are noted in scleroderma skin. 
CCL2 also recruits mast cells, in addition to monocytes. Human 
mast cells are shown to be a rich source of chemokines, including 
CCL2, CCL3/macrophage inflammatory protein-1α (MIP-1α), 
CCL4/MIP-1β and CCL5/RANTES,34 as well as a number of 
cytokines/growth factors and mediators capable of activating 
fibroblasts or endothelial cells. Expression of SCF is upregu-
lated in scleroderma fibroblasts,35 and is thought to contribute to 
the increase of mast cells in scleroderma. SCF enhances CCL2 
expression in human mast cells.36 Because CCL2 enhances type 
I collagen mRNA expression in skin fibroblasts, the interaction 
between mast cells and fibroblasts via SCF/CCL2 may play an 
important role in the development of fibrosis.

CCR2 is a major CCL2 receptor. CCR2 upregulation in 
vascular structures, perivascular inflammatory infiltrates, and 
fibroblasts has recently been demonstrated in SSc.37 In particular, 
CCR2-positive fibroblasts in early-stage dSSc showed a profi-
brotic phenotype, with overexpression of α-smooth muscle actin 
(α-SMA), CTGF and CCL2.38 Their results suggest potential 
autocrine regulation of key fibrotic properties via the CCL2/
CCR2 loop in the early phases of scleroderma.

scleroderma fibroblasts, phosphorylation and nuclear transloca-
tion of Smad2/3 are increased, suggesting activation of the Smad 
pathway.8 Smad7 is shown to act as an intracellular antagonist of 
TGFβ signaling, and an inhibitor of TGFβ-induced transcrip-
tional responses. In scleroderma skin and cultured scleroderma 
fibroblasts, the basal level and the TGFβ-inducible expression 
of Smad7 are selectively decreased, whereas Smad3 expression is 
increased.9 On the other hand, Smad7 expression levels in sclero-
derma fibroblasts are uncertain. Smad7-Smurf-mediated negative 
regulation of TGFβ signaling is impaired in scleroderma fibro-
blasts.10 Other signaling pathways besides the Smad proteins, 
such as the p38 mitogen-activated protein kinase (MAPK), phos-
phatidylinositol 3-kinase (PI3K), c-Myb, Ets and Egr pathways, 
have also been shown to mediate TGFβ signaling in scleroderma 
fibroblasts.

CTGF. CTGF is selectively induced in fibroblasts after activa-
tion by the active form of TGFβ. Recombinant CTGF protein 
stimulates DNA synthesis and upregulate collagen, fibronec-
tin and integrin expression in fibroblasts. CTGF functions as a 
downstream mediator of TGFβ, and may coordinate the action 
of TGFβ, such as fibroblast proliferation, adhesion, and ECM 
production.11 Overexpression of CTGF is known to occur in 
cultured scleroderma fibroblasts.12,13 Selective overexpression of 
CTGF in fibroblasts led to a fibrotic phenotype.14 The constitu-
tive overexpression of CTGF in scleroderma fibroblasts is inde-
pendent of TGFβ signaling but dependent on Sp1.15 Moreover, 
serum levels of CTGF are elevated in patients with SSc.16 The 
CTGF silencing by small interfering RNA (siRNA) increased 
the production of matrix metalloproteinase-1 (MMP-1), while 
decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) in 
scleroderma fibroblasts.17 Dermal fibroblasts exposed to hypoxia 
(1% O

2
) or CoCl

2
 (1–100 μM) enhance expression of CTGF 

mRNA.18 Skin fibroblasts transfected with hypoxia-induc-
ible factor (HIF)-1α show increased levels of CTGF protein 
and mRNA, as well as nuclear staining of HIF-1α, which was 
enhanced further by treatment with CoCl

2
. This data may sug-

gest that hypoxia, caused possibly by microvascular alterations, 
upregulates CTGF expression through the activation of HIF-1α 
in dermal fibroblasts of SSc patients, and thereby contributes to 
the progression of skin fibrosis.

A recent study has demonstrated that variations in the pro-
moter region of the CTGF gene (G-945C polymorphism) are 
linked to susceptibility to SSc.19

IL-13. An imbalance exists between the type 1 and type 2 
cytokine response in the pathogenesis of scleroderma. IL-13 is 
a pleiotropic cytokine, elaborated in significant quantities by 
appropriately stimulated type 2 cells. IL-13 has the ability to 
suppress proinflammatory cytokine production in monocytes/
macrophages, and is known to enhance the growth and differen-
tiation of B cells and to promote immunoglobulin synthesis. In 
addition, in vitro studies demonstrate that IL-13 is a potent stim-
ulator of fibroblast proliferation and collagen production. The 
profibrotic effect of IL-13 is thought to involve irreversible fibro-
blast activation, triggered either directly or indirectly through 
TGFβ.20,21 Serum levels of IL-13 are elevated in patients with 
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TLR4 recognition.56 Mast cells are in increased numbers in the 
lesional skin of human as well as animal models of SSc. Mast cells 
can express TLRs, and may play a role in the induction of fibrosis 
by releasing various mediators upon stimulation via TLRs.

Regulatory T cells (Treg). CD4+ T cells are now devided 
into two distinct lineages; Tregs and T helper (Th) cells. Tregs 
are critical in maintaining self tolerance and preventing auto-
immunity. Recent data suggest a defective Treg function may 
underlie the immune dysfunction in SSc.57 TGFβ induces 
expression of Foxp3, a Treg marker. The numbers of Tregs in 
the peripheral blood were increased, and correlated significantly 
with disease activity and severity.58 By contrast, the number 
of FoxP3+ Tregs was fewer in the skin of patients with sclero-
derma.59 The number of Tregs is increased, which however had 
a diminished capacity to control CD4+ effector T cells. Further, 
the defective function correlated with altered CD69 and TGFβ 
expression.

Vascular Injury

Vascular injury causes endothelial cell activation, dysfunction 
and altered capillary permeability as a primary event. These are 
followed by increased expression of adhesion molecules leading 
to mononuclear cell infiltrates in the skin. Microvascular injury 
may be the result of direct or indirect injury by anti-endothelial 
cell antibodies (AECAs), which are frequently detected in sera 
of patients with SSc.60 AECAs can activate endothelial cells to 
express cell adhesion molecules which alter leukocyte attach-
ment, and can lead to endothelial cell damage and apoptosis. 
Kuwana et al.61 however, proposed that insufficient vascular 
repair machinery due to defective vasculogenesis contributes 
to the microvascular abnormality in SSc. Although circulating 
concentrations of angiogenic factors are high in SSc, the lev-
els of bone marrow-derived circulating endothelial precursors 
(CEP) are low, suggesting a dysregulation of vasculogenesis in 
SSc.

Endothelin-1 (ET-1) is a prototypical endothelial cell-derived 
product. Since ET-1 is a vasoconstrictive agent, loss of normal ves-
sel compliance and vasorelaxation may be induced by increased 
levels of ET-1. ET-1 is induced by TGFβ, and a downstream 
mediator of TGFβ.62 ET-1 promotes fibroblast synthesis of col-
lagen,63 and thus provides the link between vasculopathy and 
fibrosis. ET-1 can induce CTGF, and may mediate the induc-
tion of collagen synthesis by activation of CTGF.64 Further, ET-1 
can also induce myofibroblast differentiation in fibroblasts.65 
Circulating ET-1 levels have been observed in patients with dif-
fuse SSc and those with limited SSc and hypertensive disease,66 
suggesting that soluble ET-1 levels may be a marker of fibrosis 
and vascular damage. These facts underscore the importance 
ET-1 in scleroderma.

Nitric oxide (NO) is a vasodilator substance produced by 
endothelium, and dysregulated control of NO may be involved in 
SSc. Although the results of serum levels of NO in patients with 
SSc is controversy, NO synthase is overexpressed in scleroderma 
skin.67 NO may be involved in the process of vascular damage 
associated with SSc.

A novel protein, MCPIP (MCP-induced protein), upregulates 
members of the apoptotic gene family involved in the induction 
of cell death,39 and may provide a novel molecular pathway by 
which CCL2/CCR2 signal transduction is linked to transcrip-
tional gene regulation leading to apoptosis. CCL2 promoter 
polymorphism is associated with SSc.40 CCL2 may contribute to 
the induction of dermal sclerosis directly, via its upregulation of 
mRNA expression of ECM on fibroblasts, as well as indirectly 
through the mediation of a number of cytokines released from 
immunocytes recruited into the lesional skin.

Others. PDGF has mitogenic activity for mesenchymal cells, 
regulates matrix metabolism, has chemotactic and vasoactive 
properties, and produces inflammatory cytokines. Overexpression 
of PDGF has been reported in a number of fibrotic diseases. 
Elevated levels of PDGF-A chain are demonstrated in sclero-
derma skin.41 In addition, TGFβ upregulates PDGF-α mRNA 
and protein levels in scleroderma fibroblasts, in comparison with 
the control.42 On the other hand, increased expression of the 
PDGF B-chain and β-receptor in scleroderma skin has also been 
reported.43-45

IL-4 is known to promote fibroblast proliferation, gene 
expression, and synthesis of ECM proteins such as collagen and 
tenascin. IL-4 has been shown to upregulate TIMP-2 in dermal 
fibroblasts via the MAPK pathway46 as well as to upregulate 
TGFβ production. Increased IL-4 production is detected in the 
sera or in activated peripheral blood mononuclear cells of patients 
with SSc.47 Scleroderma fibroblasts express more IL-4 receptor α 
and produce more collagen after IL-4 stimulation.48

TGFβ can contribute to the differentiation of both regulatory 
T cells (Tregs) and inflammatory Th17 cells. IL-17 is a T cell-
derived cytokine, and functions to secret various cytokines and 
chemokines by different cell types. Elevated levels of IL-17 have 
been observed in patients with SSc, especially in the early stages,49 
and limited SSc.50 IL-17 has been reported to induce fibroblast 
proliferation, but not collagen production in SSc fibroblasts.49 
Also, Th17 promotes inflammation in SSc. IL-23 is associated 
with the activation and proliferation of Th17 cells. Increased 
serum IL-23 levels are shown in patients with SSc, in association 
with the disease duration and prevalence of pulmonary fibrosis.51

IL-21/IL-21R signaling has recently been shown to pro-
mote fibrosis by facilitating the development of the CD4+ Th2 
response.52 IL-21 increases IL-4 and IL-13 receptor expression in 
macrophages,53 thereby possibly enhancing fibrosis, and is abun-
dantly expressed in the epidermis in SSc.54

Innate immunity. Recent studies suggest that toll-like recep-
tors (TLRs), which play an important role in the regulation of 
innate and adaptive immune responses, are involved in the regu-
lation of inflammatory responses. Along with the recognition of 
microbial components, TLR signaling also plays an important 
role in the activation of the adaptive immune system by induc-
ing proinflammatory cytokines and upregulating costimulatory 
molecules of antigen presenting cells. Thus, the dysregulation of 
TLR signaling may cause autoimmunity by priming autoreactive 
T cells. Also, stimulation of dendritic cells from patients with SSc 
TLR ligands resulted in enhanced secretion of IL-6 and TNFα.55 
Production of CCL2 by fibroblasts is partially upregulated by 
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fibroblasts produce ROS constitutively.73 Other effects of oxygen 
radicals include the stimulation of skin fibroblast proliferation at 
low concentrations74 and the production of increased amounts 
of collagen75 suggesting that low oxygen tension may contribute 
to the increased fibrogenic properties of scleroderma fibroblasts. 
Treatment of dermal fibroblasts from scleroderma skin with anti-
oxidant epigallocatechin-3-gallate (EGCG) reduced the expres-
sion of ECM proteins and CTGF.76 Also, EGCG suppressed 
intracellular ROS, ERK1/2 kinase signaling and NFκB activity.76

Furthermore, several of the autoantigens targeted by sclero-
derma autoantibodies fragment in the presence of ROS and spe-
cific metals such as iron or copper.77 The authors suggest that 
tissue ischemia generates ROS, which in turn induces the frag-
mentation of specific autoantigens. On the other hand, oxidative 
stress transiently induces CCL2 mRNA and protein expression in 
cultured skin fibroblasts,78 suggesting that ROS may play a regu-
latory role in inflammation by modulating monocyte chemotac-
tic activity. Thus, excessive oxidative stress has been implicated in 
the pathogenesis of scleroderma.79 Reduced levels of micronutri-
ent antioxidants and increased susceptibility of serum lipopro-
teins to oxidation have been reported in patients with SSc.80

Free radicals are produced by several mechanisms such as 
hypoxanthine-xanthine oxidase system and activation of poly-
morphonuclear leukocytes. Several markers which reflect free 
radical formation, i.e., 8-isoprostane and N(epsilon)-(hexanoyl)
lysine, are elevated in the serum of patients with SSc.81,82 Also, 
autoantibodies against antioxidant enzymes such as peroxire-
doxin I and methionine sulfoxide reductase A (MSRA) are ele-
vated in the serum of patients with SSc.83,84

Role of Apoptosis

Excessive ROS/RNS induce cell death. Autoreactive clones that 
survive the apoptotic process may lead to increased susceptibil-
ity to autoimmune disorders. Apoptosis causes typical cellular 
morphological changes including cell shrinkage, nuclear con-
densation, DNA fragmentation and membrane alterations. This 
may in turn cause apoptotic cells to become a possible source 
of autoantigens.85 Scleroderma fibroblasts are thought to escape 
apoptosis because cultured scleroderma fibroblasts are resistant 
to Fas-induced apoptosis,86,87 and apoptosis of fibroblasts in SSc 
skin lesions has not been observed.87 TGFβ protects myofibro-
blasts from undergoing apoptosis. Serum-starved rat lung fibro-
blasts treated with IL-1 result in apoptosis which can be reduced 
by concomitant treatment with TGFβ.88 Also, α-SMA-positive 
myofibroblasts increase in number following stimulation by 
TGFβ, which protects these myofibroblasts against apoptosis 
induction. Other studies have shown that pretreatment with 
TGFβ significantly reduced apoptosis caused by serum starva-
tion in myofibroblasts, whereas this was not the case with non-
myofibroblasts.87 Thus TGFβ1 may play a role in inducing 
apoptosis-resistant fibroblast populations in SSc. In scleroderma 
fibroblasts, the Bcl-2 level is significantly higher, whereas the Bax 
level significantly lower.87

On the other hand, endothelial cell apoptosis is thought to 
occur early in the pathogenesis of scleroderma. Endothelial cell 

Scleroderma Fibroblasts

Fibroblasts are stimulated by inflammatory cells, such as activated 
T cells, monocytes/macrophages, mast cells and eosinophils. 
Additionally, fibroblasts themselves are not only structural ele-
ments but also part of the immune system, and can be activated to 
perform new functions important for controlling ECM synthesis 
and for producing various cytokines, growth factors, chemokines, 
growth factor receptors, integrins and oxidants. The phenotype 
and activation of fibroblasts is dependent on both soluble factors 
and ECM-generated signals. Fibroblasts interact with the sur-
rounding collagens via integrins. Aberrant signaling by ECM 
may disturb this interaction, thereby contributing to the persistent 
modulation of fibroblasts which results in fibrosis, as seen in the 
autocrine loops of cytokine production and excessive deposition 
of ECM proteins in the skin.68 It is widely68 accepted that human 
skin fibroblasts are heterogeneous with regard to their synthesis 
of collagen, proliferative responses and response to growth fac-
tors. Enhanced collagen synthesis is regulated at the transcrip-
tional level. Some researchers think that scleroderma fibroblasts 
are the result of phenotypic changes in dermal fibroblasts caused 
by soluble factors; others contend that scleroderma fibroblasts are 
recruited from circulating or resting mesenchymal precursor cells 
as fibrocytes. Alternatively, they may be generated by clonal selec-
tion of high-collagen-producing fibroblasts. Scleroderma fibro-
blasts possess high Rac activity and a Rac inhibitor suppressed 
fibrotic phenotype of scleroderma fibroblasts.69

Myofibroblasts represent activated and contractile phenotypes 
which exist in fibrotic lesions. Myofibroblasts express α-SMA, 
and can produce various cytokines, growth factors and chemo-
kines. TGFβ1 is a central regulator of the phenotypic changes of 
fibroblasts into myofibroblasts; the modulators are mechanical 
tension and fibronectin involving the ED-A domain. The differ-
entiation into myofibroblasts is regulated by mast cell mediators, 
i.e., tryptase.70

Fibrocytes are derived from circulating monocytes (CD34+ 
bone marrow-derived progenitors) and enter into the tissues. 
Fibrocytes produce matrix proteins such as collagens I and III, 
and participate in the remodeling process by secreting matrix 
metalloproteinases.71 TGFβ signaling in fibrocytes activates 
both Smad2/3 and MAP kinases, specifically the ERK1/2 and 
SAPK/JNK pathways.72 Fibrocytes are also a source of inflam-
matory cytokines, growth factors and chemokines, and involved 
in scleroderma.

Oxidative Stress

Oxidative stress is an imbalance between oxidants [reactive oxy-
gen and nitrogen species (ROS/RNS)] and antioxidants which 
affect lipids, DNA, carbohydrates and proteins. ROS generated 
during various metabolic and biochemical reactions have mul-
tifarious effects that include oxidative damage to DNA. ROS 
can cause several abnormalities such as endothelial cell damage 
or enhanced platelet activation, leading to upregulation of the 
expression of adhesion molecules or secretion of inflammatory or 
fibrogenic cytokines including PDGF and TGFβ. Scleroderma 
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with normal controls, while spontaneous apoptosis in CD4+ T 
cells occur at similar rates in both SSc and controls.96 Enhanced 
helper T cell function, resulting in the reduction CD8+ T cells, 
may lead to autoimmunity by modifying the immune balance.

Akt is one of the key enzymes inhibiting both spontaneous 
and stress-induced apoptosis. 3'-phosphorylated phosphoinositi-
des bind to the pleckstrin domain of Akt. Akt activity may result 
in the inhibition of pro-apoptotic Bad, Bax, Bik and caspase-9 by 
phosphorylation. It has recently been reported that Akt is active 
in scleroderma fibroblasts. Cultured scleroderma fibroblasts 
exhibited high levels of p-Akt, in comparison to control fibro-
blasts.97 TGFβ can activate Akt in fibroblasts, and by doing so, 
may also induce apoptosis resistance in scleroderma fibroblasts. 
These findings point to a potential role for Akt in the resistance 
of scleroderma fibroblasts to apoptosis.
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apoptosis was first noted in the UCD-200/206 chickens, which 
develop hereditary systemic connective tissue disease resembling 
human SSc.89 This phenomenon occurs before perivascular mono-
nuclear cell infiltration. Also, terminal deoxynucleotidyl transfer-
ase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) 
is shown to be positive on the endothelial cells in human sclero-
derma skin.89 A recent study showed that sera of patients with 
SSc induced apoptosis of endothelial progenitor cells, which is 
mediated by Akt-FOXO3a-Bim pathway.90 On the other hand, 
apoptosis of endothelial cells induces resistance to apoptosis 
in fibroblasts largely through PI3K-dependent mechanisms.91 
Furthermore, fibroblasts exposed to a medium conditioned by 
apoptotic endothelial cells present myofibroblast changes.91

The serum soluble Fas (sFas) levels are higher in patients with 
SSc.92-94 Untreated SSc patients have significantly higher serum 
sFas levels than the treated SSc patients and healthy controls.95 
It has been suggested that increased sFas levels in the serum of 
SSc patients can protect autoreactive T cells from FasL-induced 
apoptosis.93 Spontaneous apoptosis of CD8+ T cells in the periph-
eral blood is significantly higher in patients with SSc compared 
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