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Chlorine is considered a chemical threat agent to which humans may
be exposed as a result of accidental or intentional release. Chlorine is
highly reactive, and inhalation of the gas causes cellular damage to
the respiratory tract, inflammation, pulmonary edema, and airway
hyperreactivity. Drugs that increase intracellular levels of the signal-
ing molecule cyclic AMP(cAMP) may be useful for treatmentof acute
lung injury througheffectsonalveolarfluidclearance, inflammation,
and airway reactivity. This article describes mechanisms by which
cAMP regulates cellular processes affecting lung injury and discusses
the basis for investigating drugs that increase cAMP levels as
potential treatments for chlorine-induced lung injury. The effects
of b2-adrenergic agonists, which stimulate cAMP synthesis, and
phosphodiesterase inhibitors, which inhibit cAMP degradation, on
acute lung injury are reviewed, and the relative advantages of these
approaches are compared.
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CHLORINE-INDUCED LUNG INJURY

Chlorine gas is a highly toxic and widely used industrial
chemical. Chlorine is employed in the purification of drinking
water and in the production of plastics, solvents, pharmaceuti-
cals, and various other chemicals. Because of its toxicity and the
large amounts that are transported and used in the United
States, chorine is considered a chemical threat agent that could
inflict large numbers of casualties following accidental or in-
tentional release. Chlorine has been used as a chemical weapon
in the Iraq war, and accidental releases of chlorine leading to
human casualties have occurred within the United States.

Chlorine is a strong oxidant that, when inhaled, causes acute
lung injury through direct damage to cells of the respiratory
tract. Clinical symptoms of chlorine intoxication include dysp-
nea, airway obstruction, cough, pulmonary edema, pneumonitis,
cyanosis, nausea, vomiting, and loss of consciousness (1–3).
Lung injury induced by chlorine inhalation has been investi-
gated using animal models in multiple species, including pigs,
rats, rabbits, mice, and dogs (4–9). Common features of lung
injury in such models are epithelial cell damage, vascular
leakage, pulmonary edema, airway hyperreactivity, production
of inflammatory mediators, and influx of neutrophils into lung
tissue. Efforts to develop medical countermeasures for chlorine

poisoning have focused on preventing or reversing these aspects
of lung injury.

CYCLIC AMP AS A SIGNALING MEDIATOR

Cyclic AMP (cAMP) is an intracellular signaling molecule that
regulates a broad range of cellular processes. cAMP is formed
from ATP by the action of the enzyme adenylate cyclase
(Figure 1). Adenylate cyclase is a transmembrane protein
whose activity is regulated by G protein–coupled receptors
(GPCRs), specifically those receptors for which ligand binding
is coupled to activation of the Gs type of G protein. Examples of
GPCRs coupled to Gs and adenylate cyclase are the b2-
adrenergic receptor, EP2 and EP4 prostaglandin receptors,
A2A and A2B adenosine receptors, V2 vasopressin receptor,
and VPAC receptors for vasoactive intestinal peptide and
pituitary adenylate cyclase activating peptide. Signaling initi-
ated by cAMP formation is terminated in part through the
degradation of the compound by phosphodiesterases (PDE).
Intracellular cAMP concentrations are therefore determined by
the balance between cAMP synthesis by adenylate cyclase and
its breakdown by PDE. Consequently, cAMP levels can be
increased through pharmacologic means by either stimulating
production with GPCR ligands such as b2-adrenergic agonists
(b agonists) or inhibiting degradation with PDE inhibitors
(Figure 1).

Intracellular cAMP formed as a result of adenylate cyclase
activation triggers cellular responses via two main signal trans-
duction pathways. One pathway involves the activation of
protein kinase A (PKA), which occurs though binding of cAMP
to the regulatory subunit of the kinase resulting in its dissoci-
ation from the catalytic subunit (10, 11). PKA directly phos-
phorylates a variety of proteins, such as phosphorylase kinase
and pyruvate kinase, to directly regulate their activity. In
addition, PKA regulates the transcription of an additional set
of genes through its ability to activate specific members of the
bZIP family of transcription factors, most notably cAMP
response element–binding protein (CREB). CREB and related
factors bind to an 8–base pair DNA sequence in the promoter
region of responsive genes (12). Phosphorylation of CREB by
PKA allows binding by the transcriptional coactivator proteins
CBP (CREB-binding protein) or p300, leading to the recruit-
ment of RNA polymerase II and initiation of transcription (13).
The types of genes regulated by cAMP/CREB signaling are
diverse and include hormones, growth factors, enzymes, tran-
scription factors, and structural proteins (14).

A second, PKA-independent, signal transduction pathway
triggered by cAMP production is the activation of proteins of
the Epac family (exchange proteins directly activated by
cAMP). Epac1 and Epac2 are guanine nucleotide exchange
factors (GEFs) that activate members of the Ras family of small
GTPases, including Rap1 and Rap2. The binding of cAMP to
Epac proteins stimulates their GEF function, resulting in
release of GDP from, and subsequent binding of GTP to,
Rap1 and Rap2 (15, 16). Through the action of these small
GTPases, Epac signaling affects multiple cellular processes,
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such as ion channel function, exocytosis, cell motility, pro-
liferation, and survival (17, 18).

BENEFICIAL EFFECTS OF INCREASED CAMP LEVELS
IN LUNG INJURY

Elevation of cAMP levels by pharmacologic means has the
potential to result in multiple beneficial effects in the injured
lung. Agents that raise cAMP levels are known to stimulate
alveolar fluid transport, to inhibit inflammation, and to induce
bronchodilation. Increased alveolar fluid transport following
acute lung injury is beneficial because of the potential to speed
the resolution of pulmonary edema. Alveolar epithelial cells
mediate the movement of water from the airspaces to the lung
interstitium through the production of an osmotic pressure
gradient via the transport of ions. Increased cAMP production
stimulates alveolar fluid transport through its effects on the
expression and function of ion channels such as the epithelial
sodium channel (ENaC) and the cystic fibrosis transmembrane
conductance regulator (CFTR) chloride channel (19). cAMP
regulates ENaC function by increasing subunit gene expression
(20–22), enhancing the open probability of the channel (23, 24),
and altering intracellular trafficking to increase the number of
channels on the cell surface (22, 25). These effects appear to
occur through both PKA-dependent (26, 24) and -independent
mechanisms (25), including Epac (23). CFTR expression is up-
regulated by a transcriptional mechanism mediated by PKA
(27) and by a post-transcriptional mechanism that is indepen-
dent of PKA (28). PKA also directly phosphorylates CFTR to
activate the channel (29, 30).

Agents that raise cAMP levels produce widespread damp-
ening of inflammatory processes, including decreased inflam-
matory mediator production and inhibition of macrophage,
lymphocyte, eosinophil, and neutrophil function (31). In neu-
trophils, which are predominant inflammatory cells in acute
lung injury, cAMP-elevating agents reduce neutrophil adhesion
(32), chemotaxis (33), and degranulation (34). Treatments that
increase cAMP levels also inhibit endothelial permeability (35),
and this may contribute to suppression of inflammatory cell
influx from the circulation into the injured lung. The anti-

inflammatory effects of cAMP appear to occur through diverse
mechanisms dependent on both PKA and Epac (36–41).

An additional beneficial effect of elevated cAMP levels in
the lung is bronchodilation produced by smooth muscle re-
laxation. Airway smooth muscle constriction is produced
though the action of GPCRs coupled to the Gq family of G
proteins. Gq signaling leads to intracellular calcium release,
which activates myosin light chain kinase, resulting in myosin
phosphorylation and muscle contraction. Raising cAMP levels
by stimulation of Gs-coupled GPCRs, or by other means,
activates PKA. This enzyme in turn inhibits smooth muscle
contraction by inhibition of calcium release, stimulation of
myosin light chain phosphatase, and inhibition of Gq signaling
(42). cAMP signaling appears to play a minor role in mainte-
nance of basal airway smooth muscle tone under normal
conditions, but agents that raise cAMP levels are effective
inhibitors of bronchoconstriction and airway hyperreactivity in
pathologic states.

b2-ADRENERGIC AGONISTS

The b2-adrenergic receptor is a Gs-coupled GPCR that, upon
ligand binding, stimulates the production of cAMP. In the lung,
prominent sites of b2-adrenergic receptor expression are alve-
olar epithelial cells, in which it mediates alveolar fluid transport,
and airway smooth muscle cells, in which it mediates broncho-
dilation. Effects of b-agonists on alveolar fluid transport were
first suggested in experiments using cultured rat alveolar
epithelial cells (43). Subsequent studies have shown that this
phenomenon is likely due to combined effects on ENaC, CFTR,
and Na,K-ATPase, which are active in both type I and type II
cells (44, 45). Treatment with b-agonists stimulates alveolar
fluid transport in isolated lungs (46) and in intact, uninjured
lungs (47, 48). In animal models of acute lung injury, b-agonists
show beneficial effects on alveolar fluid transport as well as
limitation or resolution of pulmonary edema (49, 50). In pigs
exposed to chlorine gas, aerosolized terbutaline led to increased
arterial oxygen tension and lung compliance (51). In chlorine-
exposed mice, intranasal delivery of formoterol resulted in
increased alveolar fluid clearance and decreased airway re-
activity to methacholine (52). In human subjects, prophylactic
treatment with salmeterol inhibited the development of high-
altitude pulmonary edema (53). Administration of aerosolized
salbutamol reduced post-surgical increases in extravascular lung
water and improved oxygenation in patients undergoing lung
resection (54). In patients with adult respiratory stress syn-
drome (ARDS), intravenous salbutamol resulted in a decrease
in pulmonary edema as measured by extravascular lung water
(55). In contrast, a larger trial involving aerosolized albuterol
did not show any difference in mortality or ventilator-free days
(56). Thus substantial evidence has been gathered from animal
models to support the concept of using b-agonists to treat acute
lung injury in general and chlorine injury in particular, yet
results from human ARDS trials are mixed. Targeting deliv-
ery methods and treatment regimens specifically for chlorine-
induced lung injury may potentially result in increased efficacy
toward this particular type of acute lung injury.

PHOSPHODIESTERASE INHIBITORS

PDE enzymes have been grouped into eleven families based on
their structural and functional properties, including whether
they can metabolize cAMP, cyclic GMP, or both. Type 4 PDEs
are cAMP-specific enzymes that are important in regulating
cAMP turnover in lung and inflammatory cells. Type 4 PDEs
represent major isozymes in lung epithelial cells (57, 58), airway

Figure 1. Production and degradation of cyclic AMP (cAMP). The
production of cAMP is stimulated by binding of ligand to a Gs-coupled

G protein–coupled receptor, leading to activation of adenylate cyclase.

Adenylate cyclase catalyzes the formation of cAMP from ATP. Phos-

phodiesterase (PDE) enzymes catalyze the degradation of cAMP to
AMP. PDE inhibitors block degradation of cAMP, leading to increased

intracellular concentrations of this mediator. Downstream effects of

cAMP are mediated through protein kinase A and Epac pathways.
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smooth muscle cells (59), and multiple inflammatory cell types
(60). Therapeutic effects of PDE4 inhibitors such as rolipram,
roflumilast, and cilomilast have been tested in lung injury
models. For example, rolipram has been shown to inhibit lung
injury and/or inflammation induced by LPS (61), hyperoxia
(62), and cardiopulmonary bypass (63). Treatment with roflu-
milast inhibited lung injury induced by cigarette smoke (64) and
bleomycin (65). Rolipram has been shown to inhibit airway
hyperreactivity induced by various stimuli, including allergen
(66), respiratory syncytial virus (67), cigarette smoke (68), and
LPS (69). Additional support for the use of PDE inhibitors in
acute lung injury caused by chemical agents comes from studies
with pentoxifylline, a nonspecific PDE inhibitor, which has

shown significant effects in ameliorating injury following expo-
sure to acid (70, 71). In clinical trials for chronic obstructive
pulmonary disease (COPD), roflumilast and cilomilast have
been shown to improve airflow obstruction, reduce exacerba-
tions, and inhibit inflammation (72–75).

We have tested the effects of the PDE4 inhibitor rolipram
on airway hyperreactivity induced by chlorine inhalation.
Inbred FVB/N mice were exposed to chlorine, and the follow-
ing day, respiratory system resistance in anesthetized, mechan-
ically ventilated mice was measured at baseline and after
increasing doses of aerosolized methacholine. Chlorine expo-
sure produced a pronounced airway hyperreactivity to inhaled
methacholine (Figure 2A). Delivery of rolipram to the lungs
via intranasal administration 1 hour and 10 hours after chlorine
exposure inhibited chlorine-induced airway hyperreactivity
(Figure 2B).

b-AGONISTS VERSUS PDE INHIBITORS FOR THE
TREATMENT CHLORINE-INDUCED LUNG INJURY

Relative advantages and disadvantages of b-agonists versus
PDE inhibitors for the treatment of chlorine-induced lung
injury are summarized in Table 1. An advantage of b-agonists
is their long history of use to treat asthma and other lung
diseases, and the evidence that they are safe in the vast majority
of patients. However, a disadvantage of their use is the fact that
continuous stimulation of b2-adrenergic receptors typically
leads to significant reductions in response over time. This
phenomenon, which is known as desensitization or tolerance,
results from multiple mechanisms, including uncoupling of re-
ceptor from G protein signaling, increased PDE activity, receptor
internalization, receptor degradation, and down-regulation of
receptor expression (76). b-agonists typically retain effective-
ness for the treatment of asthma in part because the main target
of these drugs in this disease is airway smooth muscle, which
appears to be more refractory to desensitization than other cell
types (76). The efficacy of b-agonists in treating chlorine-
induced lung injury is dependent on activity in other cell types
such as alveolar epithelial cells. Although the importance of
desensitization may be mitigated when considering short-term
treatment following chlorine exposure in otherwise healthy
individuals, reduced responses to b-agonists in individuals with
asthma who regularly receive these drugs may limit the
effectiveness of such a strategy for treating chlorine injury in
this population. In addition, injury to the lung can result in
impaired b-receptor function, which could potentially reduce
the efficacy of b-agonist treatment (45). For example, in a model
of lung injury induced by hemorrhagic shock in rats, endoge-
nously released nitric oxide was shown to inhibit catecholamine-
mediated alveolar fluid clearance (77) and TGF-b1 was shown
to impair b-adrenergic receptor–mediated chloride transport
and alveolar fluid clearance through desensitization mecha-
nisms dependent on phosphatidylinositol 3-kinase (78). A final
disadvantage of b-agonists is that some drugs of this class have
been associated with increased, although rare, serious adverse
effects in individuals with asthma (79).

TABLE 1. ADVANTAGES AND DISADVANTAGES OF b-AGONISTS AND PHOSPHODIESTERASE
INHIBITORS FOR THE TREATMENT OF CHLORINE-INDUCED ACUTE LUNG INJURY

Drug Type Advantages Disadvantages

b-agonist Long history of use in patients with lung disease Desensitization or tolerance

Rare adverse effects

Phosphodiesterase inhibitor No desensitization or tolerance Gastrointestinal side effects

More significant antiinflammatory activity

Figure 2. Effect of rolipram on airway hyperreactivity in chlorine-

exposed mice. (A) Mice were exposed to a dose of 250 ppm-hour

chlorine (8). The following day, respiratory mechanics were measured

in anesthetized, mechanically ventilated mice at baseline and after
inhalation of aerosolized methacholine using a FlexiVent system

(SCIREQ, Montreal, PQ, Canada). The responses of chlorine-exposed

and unexposed mice were significantly different (P , 0.05 by repeated
measures ANOVA; n 5 4 mice/group). (B) Mice were exposed to 256 6

3 ppm-hour chlorine (mean 6 SE, three exposures). Mice received

rolipram (300 mg/kg) or vehicle intranasally 1 hour and then again 10–

11 hours after exposure. The day after exposure, airway reactivity was
measured as in A. The responses of rolipram- and vehicle-treated mice

were significantly different (P , 0.05 by repeated measures ANOVA;

n 5 8–9 mice/group).
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In contrast to b-agonists, PDE inhibitors do not appear to
lose significant activity with continued administration, which
represents an advantage for this class of compounds in treating
lung injury. In addition, the anti-inflammatory effects of PDE
inhibitors are more widespread and of greater magnitude than
those induced by b-agonists. This phenomenon may be in part
a result of desensitization induced by b-agonists in inflamma-
tory cells. The major disadvantage of PDE inhibitors relative to
b-agonists is the occurrence of gastrointestinal side effects
caused by the action of the former class of drugs in emesis
centers in the brainstem and in intestinal epithelial cells (80, 81).
Such side effects represent the major barrier to the use of orally
administered PDE4 inhibitors in chronic lung diseases such as
asthma and COPD. It is possible that this problem could be
obviated by local delivery of PDE inhibitors to the lung via the
inhaled route. In addition, PDE inhibitors would be adminis-
tered for a limited period of time for acute injury induced by
chlorine gas inhalation, so any potential side effects may be
limited or better tolerated.

CONCLUSIONS

Cyclic AMP regulates multiple cellular processes that regulate
normal cell function and responses to injury. Manipulating the
production and/or degradation of cAMP to raise the levels of
this signaling mediator represents a therapeutic approach for
the treatment of chlorine-induced lung injury. Raising cAMP
levels stimulates alveolar fluid transport, inhibits inflammation,
and relaxes airway smooth muscle. b-agonists and PDE in-
hibitors have both been documented to raise cAMP levels and
produce beneficial effects in injured lungs. The current key
challenge is to identify an optimal combination of drug and
delivery method to produce the desired therapeutic effects in
the chlorine-injured lung while minimizing unwanted effects
elsewhere.
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