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Exposure to chlorine gas (Cl;) primarily causes injury to the lung and
is characterized by inflammation and oxidative stress mediated by
reactive chlorine species. Reducing lung injury and improving re-
spiratory function are the principal therapeutic goals in treating
individuals exposed to Cl; gas. Less is known on the potential for Cl,
gas exposure to cause injury to extrapulmonary tissues and specif-
ically to mediate endothelial dysfunction. This concept is forwarded
in this article on the basis that (7) many irritant gases whose
reactivity is limited to the lung have now been shown to have effects
that promote endothelial dysfunction in the systemic vasculature,
and as such lead to the acute and chronic cardiovascular disease
events (e.g., myocardial infarctions and atherosclerosis); and (2)
that endogenously produced reactive chlorine species are now
considered to be central in the development of cardiovascular
diseases. This article discusses these two areas with the view of
providing a framework in which potential extrapulmonary toxic
effects of Cl, gas exposure may be considered.
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Exposure to chlorine (Cl,) gas remains an ongoing health
concern, both via its possible use in chemical warfare and via
accidental exposure during industrial manufacturing and trans-
port. Indeed, approximately 15million tons of Cl, are produced
annually in the United States for a variety of industrial purposes
(e.g., water purification, pharmaceutical and disinfectant devel-
opment) and is transported predominantly by rail to all cities.
Therefore there is potential to expose large numbers of civilians
to Cl, gas, and this is underscored by incidents related to large-
scale Cl-induced toxicity after accidental release (1-4). Cl,
gas—mediated toxicity is complex, consisting of an initial injury
to the lungs that continues even after cessation of Cl, exposure,
ultimately leading to pulmonary dysfunction, hypoxemia and
compromised oxygen delivery, vital organ perfusion, and func-
tion. Understanding the mechanisms by which Cl, gas exposure
causes lung injury are central to the development of therapeutics
that can be administered after Cl, exposure in both civilian
and military casualty scenarios. In this article we focus on the
potential for Cl, gas exposure to promote injury to extrapulmo-
nary tissues and suggest that this relatively underappreciated
aspect of Cl, toxicity requires consideration especially in the
context of development of post-exposure therapeutics.
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INHALED TOXICANTS, EXTRAPULMONARY INJURY,
AND ENDOTHELIAL DYSFUNCTION: AN
EMERGING PARADIGM

An emerging theme in pulmonary and vascular toxicology is the
concept that an insult compartmentalized in the lung can result in
extrapulmonary vascular injury. This is exemplified by environ-
mental exposure toinhaled irritants and the subsequent increased
susceptibility to cardiovascular disease (e.g., atherosclerosis)
(5-8). Key examples in the latter case include the association of
cigarette smoke, particulate matter, or ozone exposure with the
acceleration of atherosclerosis, a chronic inflammatory disease of
the vessel wall that underlies many cardiovascular diseases and
that contributes substantially to morbidity and mortality world-
wide. Clinical and epidemiologic studies together with recent
experimental studies have definitively linked exposure to inhaled
irritants with cardiovascular disease (5-12). Like most inhaled
toxicants, the direct reactivity between the inhaled species and
biological molecules is restricted to the lung compartment,
suggesting that the effects on systemic vascular function that lead
to enhanced atherogenesis are mediated by formation of second-
ary and diffusible species. This is further indicated by the fact that
in this setting vascular dysfunction is a chronic process (years)
compared with the relatively fast (seconds to minutes) reactivity
between inhaled species and lung biomolecules. The precise
mediators and mechanisms linking inhalation of toxicants with
extrapulmonary vascular dysfunction are still under investigation
and depend on the nature of the inhaled irritant(s) involved.
However, one common mechanism by which diverse environ-
mental/inhaled stressors may predispose the systemic vasculature
to inflammatory disease is to induce dysfunction in the endothe-
lial nitric oxide (NO) signaling pathway leading to endothelial
dysfunction, a clinical term that is fast becoming synonymous
with inflammatory vascular disease (13, 14).

Nitric oxide produced by the endothelial isoform of nitric
oxide synthase from L-arginine has diverse physiologic roles in
the vasculature, including regulating approximately 25% of basal
blood flow (NO is a vasodilator) in humans, regulating cellular
respiration, maintaining an anti-inflammatory, antithrombotic,
antioxidant, and anti-smooth muscle proliferation state (15, 16).
NO is central therefore in vascular homeostasis mechanisms.
Aberrant NO signaling is a common feature in endothelial
dysfunction and may contribute to the development of inflam-
matory diseases. In general this occurs by either decreased NO
synthesis and/or redirection of NO from “physiologic” to “path-
ologic” (or proinflammatory) signaling processes. An in-depth
review of the mechanisms that lead to this scenario is beyond the
purview of this article, with discussion below focused on potential
mechanisms of endothelial dysfunction associated with increased
exposure to reactive chlorine species.

REACTIVE CHLORINE SPECIES AND VASCULAR INJURY

Several lines of evidence implicate a role for reactive chlorine
species in the development of vascular diseases, with most at-
tention focused on myeloperoxidase (MPO)-derived hypochlo-
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rous acid (HOCI) (17-20) and subsequent generation of reactive
chlorine species (e.g., reactive chloramines) (21). Myeloperox-
idase is primarily expressed in neutrophils, and during the latter’s
activation it catalyzes the formation of HOCI (Equation 1),
a component of the phagocytic arsenal that is responsible for
killing invading pathogens.

H,0, + Cl » HOCI + OH (1)

HOCI (pKa = 7.5) and its derivative salts (e.g., NaOClI, the
reactive component of bleach), react with multiple biological
molecules, including lipids, amino acids, and nucleic acids, at
relatively rapid rates, forming a variety of chlorination and
oxidation products (22-30). In addition, HOCI can promote
nitration of biomolecules (e.g., forming 3-nitrotyrosine) by
reacting with nitrite to form the nitrating species nitrylchloride
(31, 32). Depending on the tissue/cellular environment and dose
of HOCI, these reactivities can result in a spectrum of modifica-
tions with diverse functional effects that encompass killing in-
vading pathogens to promoting cytotoxicity of host tissues and
perturbation of signaling pathways that regulate inflammation
and hence vascular disease. A specific role for HOCI in the
development of vascular disease is evidenced by (/) detection of
chlorinated lipids, sterols, and proteins in atherosclerotic lesions
(33-36); (2) reagent HOCI promoting vascular endothelial dys-
function (37-42) (discussed in more detail below); (3) decreased
inflammation in MPO-deficient mice (43), increased atheroscle-
rosis in MPO-transgenic mice (44, 45), and lack of coronary heart
disease in humans who are MPO deficient (46); and (4) significant
associations with degree of MPO activity and severity of myo-
cardial infarctions (18). In summary, HOCl is considered one of
the key reactive species that can promote oxidation, chlorination,
and nitration of biomolecules, thereby leading to the develop-
ment of inflammatory disease in the cardiovascular system.

MECHANISMS OF HOCL-INDUCED ATHEROSCLEROSIS
AND ENDOTHELIAL DYSFUNCTION

In discussing the mechanisms by which HOCI may promote
vascular injury, we will focus on atherosclerosis and coronary
artery disease for which most evidence exists. Many studies have
identified sites on specific proteins that are modified by HOCI that
are associated a pro-atherogenic function (reviewed in Reference
18). This is exemplified by low- and high-density lipoproteins
(LDL and HDL, respectively), on which markers indicating
modification by HOCI have been detected in human atheroma.
Importantly, the specific modifications have been shown to
convert both LDL and HDL into pro-atherogenic particles
(47-50). Furthermore, increased chlorotyrosine levels measured
on HDL in outpatient cardiology subjects is significantly associ-
ated with an elevated risk for cardiovascular disease (18).
Ongoing studies are identifying a diverse array of proteins that
are modified by HOCI and that lead to altered function and
ultimately a proinflammatory state. With regard to endothelial
dysfunction specifically, several studies have documented that
exposure of endothelial cells to physiologically relevant doses of
HOCI promotes dysfunction in eNOS-derived NO signaling
(37-42). Our group has shown that HOClI chlorinates L-Arginine,
with the resultant mono- and di-chlorinated products being
competitive inhibitors with native L-arginine for eNOS-depen-
dent NO production (41, 42). Other groups have demonstrated
that HOC], either directly or via stimulation of reactive oxygen
species from NADPH oxidase, compromises eNOS structural
stability and hence inhibits NO formation (38, 39). Similarly,
HOCI-dependent oxidation of lipids can result in aldehydic

products that in turn may inhibit eNOS (51). Finally, HOCI-
dependent protein modification forms epitopes that are recog-
nized by the receptor for advanced glycation end products
(RAGE) (52). Activation of these receptors on the endothelium
is proinflammatory in part via inhibition of eNOS-derived NO
signaling (53). In other words, via multiple distinct mechanisms
HOCI promotes dysfunction in the eNOS-derived NO-signaling
pathway.

CHLORINE GAS-INDUCED TOXICITY: DOES
EXTRAPULMONARY VASCULAR INJURY OCCUR,
AND IF SO, HOW?

Much of the lung injury caused by Cl, gas exposure is thought to
occur via its hydrolysis to form HOCI (discussed in other articles
in this issue) via mechanisms similar to those described above.
The potential for Cl, gas to induce extrapulmonary vascular
injury and specifically endothelial dysfunction has not been
investigated. As indicated above, however, the paradigm for
inhaled irritants mediating extrapulmonary injury is established,
and a role for reactive chlorine species in vascular disease clearly
indicated. It is interesting to speculate, therefore, that Cl, gas
exposure will also fall into the category of inhaled reactive gases
that can have detrimental effects on the systemic vasculature, and
preliminary studies in our laboratory using a rat model exposed to
Cl, gas indeed support this concept (unpublished observations).
Moreover, case reports of Cl, inhalation toxicity also support this
potential with incidences of hypertension and liver toxicity being
cited (2, 54). Clearly, a direct cause and effect of Cl, exposure and
extrapulmonary tissue injury from case studies is difficult to
conclude. We cite these simply to highlight the need for consid-
eration of extrapulmonary effects of Cl, gas exposure and note
that these, similar to lung injury, may also manifest both on acute
and chronic time scales.

The question then arises: how could Cl, gas exposure result
in extrapulmonary injury? This question also applies to the
myriad of inhaled toxicants (see above) that also cause dysfunc-
tion in systemic tissues. Common mechanisms may include
stress responses associated with a lung irritation/toxicity and
stimulation of inflammation. Due the reactive nature of inhaled
irritants, the latter is likely to be mediated by activation of
alveolar macrophages and epithelial cells in the lung compart-
ment, resulting in the up-regulation and secretion of proin-
flammatory cytokines into the circulation. Interestingly, some of
these (e.g., TNF-a) can in turn promote endothelial dysfunction
by inhibiting eNOS-dependent signaling (55). Whereas HOCI
formation is unique to Cl, gas exposure compared with non—Cl,
gas inhaled irritants, due to its high reactivity this reactive
species is unlikely to be able to migrate away from the lung
to directly cause injury to distal tissues. However, HOCI-
derived products that would be unique to Cl, gas exposure that
could exit the lung and mediate effects in other tissues can
be proposed. These include a variety of chlorinated products
which can have relatively higher stabilities than HOCI. One
example pertinent to endothelial dysfunction is chlorination of
L-arginine (41), for example, as discussed above.

PERSPECTIVES

A focus of this issue on Cl, gas toxicity underscores the potential
for Cl, gas to cause injury in civilian and military settings and
highlights the need for more mechanistic information on how Cl,
gas exposure promotes toxicity. This information is vital for the
development and use of effective therapeutics. The lung is the
primary target, damage to which manifests in both acute and
chronic symptoms. The goal of this article was to highlight the
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Figure 1. Hypothesis: inhaled chlorine gas induction of extrapulmo-
nary vascular dysfunction. Chlorine gas inhalation causes progressive
lung damage resulting in acute lung injury (ALI), adult respiratory
distress syndrome (ARDS), and reactive airway syndrome (RAS). Pro-
posed mechanisms of injury include increased exposure to hypochlo-
rous acid (HOCI) and secondary formation of proinflammatory
cytokines. In addition, we hypothesize that inhaled chlorine gas also
causes extrapulmonary vascular dysfunction and specifically endothelial
dysfunction secondary to formation of chlorinated products and release
of proinflammatory cytokines into the circulation.

potential for Cl, gas toxicity to promote injury to extrapulmonary
tissues also. This concept (illustrated in Figure 1) is based on
observations that (1) Cl,-derived species are critical in develop-
ment of inflammatory vascular disease, and (2) chemically diverse
inhaled irritants are now established risk factors for the de-
velopment of cardiovascular disease with causative mechanisms
beginning to be identified. Cl, gas exposure can fit into both
categories. Clearly, the hypothesis that Cl, gas promotes extrap-
ulmonary dysfunction requires vigorous testing, and ongoing
efforts are beginning to address this. We feel that emerging data
do suggest a role for Cl, gas in promoting endothelial dysfunction.
The prevalence of endothelial dysfunction, coupled with its key
role in the development of a cardiovascular diseases, mandates
a better understanding of the potential for Cl, gas to mediate
endothelial dysfunction which in turn will lead to more efficacious
and targeted preventive and treatment therapeutics.
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