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Photosystem II (PSII) is a large membrane bound molecular
machine that catalyzes light-driven oxygen evolution from
water. PSII constantly undergoes assembly and disassembly
because of the unavoidable damage that results from its normal
photochemistry. Thus, under physiological conditions, in addi-
tion to the active PSII complexes, there are always PSII sub-
populations incompetent of oxygen evolution, but are in the
process of undergoing elaborate biogenesis and repair. These
transient complexes are difficult to characterize because of their
low abundance, structural heterogeneity, and thermodynamic
instability. In this study, we show that a genetically tagged Psb27
protein allows for the biochemical purification of two mono-
meric PSII assembly intermediates, one with an unprocessed
form of D1 (His27ActpAPSII) and a second one with a mature
form of D1 (His27PSII). Both forms were capable of light-in-
duced charge separation, but unable to photooxidize water,
largely because of the absence of a functional tetramanganese
cluster. Unexpectedly, there was a significant amount of the
extrinsic lumenal PsbO protein in the His27PSII, but not in the
His27ActpAPSII complex. In contrast, two other lumenal pro-
teins, PsbU and PsbV, were absent in both of these PSII inter-
mediate complexes. Additionally, the only cytoplasmic extrinsic
protein, Psb28 was detected in His27PSII complex. Based on
these data, we have presented a refined model of PSII biogenesis,
illustrating an important role of Psb27 as a gate-keeper during
the complex assembly process of the oxygen-evolving centers in
PSII.

Photosystem II (PSII)® is a large membrane protein complex
found in the thylakoids membranes of cyanobacteria, algae, and
higher plants. It catalyzes oxidation of water and reduction of
plastoquinone (PQ). These activities are essential for the con-
version of solar energy to the chemical energy used by the vast
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majority of life on earth and for the production of molecular
oxygen.

Recent structural studies have provided a detailed yet static
view of PSII (1-3). Accordingly, a PSII monomer is comprised
of 20 protein subunits, which form a proteinaceous scaffold
holding two pheophytin a (Pheo), 35 chlorophyll a (Chla), one
non-heme iron, two hemes (Cyt b.., and Cyt c..,), three PQ,
and 12 B-carotene (4, 5) molecules as cofactors. The light
driven electron transfer reactions through the PSII complex
requires precise positioning of all these cofactors and an inor-
ganic (Mn,-Ca) cluster on lumenal side, the latter of which is
also called water-oxidizing complex (WOC). However, the cost
of water oxidation is high: photooxidative damage inevitably
occurs to PSII, in which P6807, the strongest biological oxi-
dant, is generated and finally leads to the splitting of water to
molecular oxygen, protons, and electrons. Under physiological
conditions, an elaborate and well-orchestrated repair process
repairs such damages, so that PSII can function optimally.

Because PSII is under constant repair and biogenesis, eluci-
dation of the details of the PSII assembly pathway has been the
focus of intensive research. Many studies have been conducted
to define the order of association of intrinsic and extrinsic PSII
polypeptide subunits (6, 7). During the sequential assembly of
the PSII complex, cofactors such as chlorophylls, carotenoids,
non-heme iron, Pheo, and (Mn,-Ca) center must bind to the
proteinaceous environment and be oriented properly. The final
step leading to functional PSII is thought to be the photoassem-
bly of the (Mn,-Ca) cluster on the electron transfer donor side
(8, 9) and the association of the lumenally localized extrinsic
proteins, which enhance the stability of the (Mn,-Ca) cluster.
However, the detailed order in which the dynamic recruitment
of such extrinsic proteins during photoactivation in vivo
remains unclear.

One essential step before the photoassembly of (Mn,-Ca)
cluster can take place is the proteolytic processing of the D1
protein by a C-terminal processing enzyme (CtpA). The D1
protein is synthesized as a precursor protein (pD1) with a short
(8 —16 residues) amino acid extension at its C terminus (10, 11).
The extension must be cleaved before (Mn,-Ca) cluster assem-
bly, because the exposed terminal carboxylate group on D1
appears to provide a coordination ligand for a manganese atom
in the catalytic (Mn,-Ca) cluster of PSII (12—14). Following the
proteolytic processing of pD1, assembly of the (Mn,-Ca) center
takes place in a light-dependent manner. This process occurs
very rapidly in vivo, and thus transient assembly intermediates
have been difficult to capture experimentally.
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TABLE 1
Primers used in the construction and segregation analysis
Name Sequence (5’ to 3')

5pBADF27 CCCGCCGCTCGAGATCCTTTTTGAAAAATCAG
3pBAD27 CCCAAGCTTCACGCCCCGTTCAATGGATC
27HisFor ACATGCATGCATGGATCCGAGCTCGAGATCCT
27HisRev CTAGTCTAGAAGCTGGAGACCGTTTAAACTCA
27dsFor CGAGCTCGAACCATCCCGATTTCCC
27dsRev CGGAATTCATGGTCGGCACTAGTTTTGG
Psb27For AGCCGGTCATAGGAAGGAGT
Psb27Rev CCTGGCCAACTGGTAGGATA

In this context, Psb27, an 11 kDa lumenal protein, has been
found to be a component of PSII during its assembly process,
but not a component in the mature and functional form of PSII
(15-17). Here, we report two intermediate PSII complexes, iso-
lated using a genetically tagged form of the Psb27 protein in the
cyanobacterium Synechocystis 6803. Both of these PSII prepa-
rations could undergo charge separation, but could not catalyze
water oxidation. Thus, these isolated complexes represent con-
secutive assembly intermediates before the photoactivation of
PSII. His27PSII complex contains mature D1 protein, while
His27ActpAPSII complex contains pD1 protein due to the
genetic deletion of the ctpA gene. Analysis of these two isolated
membrane protein complexes has allowed us to develop a more
detailed model of PSII biogenesis in cyanobacteria.

EXPERIMENTAL PROCEDURES

Growth of Synechocystis sp. PCC 6803 Strains—HT3, His27,
and His27ActpA strains of Synechocystis 6803 were grown in
BG11 medium (18) at 30 °C under 30 wmol photons m™>s™ ",
These strains were grown in BG11 supplemented with antibi-
otics as follows: 5 ug/ml kanamycin (HT3); 5 ug/ml gentamicin
(His27); 5 wg/ml gentamicin, 5 pg/ml erythromycin, 10 um
DCMU (3-(3',4'-dichlorophenyl)-1,1-dimethylurea), and 5 mm
glucose (His27ActpA). The HT3 strain was provided by Dr.
Terry M. Bricker (19). Because the His27ActpA cells are light
sensitive, they were cultured at a lower light intensity by wrap-
ping culture bottles with Kimwipes.

Mutant Construction—To generate the His27 strain, the full-
length psb27 gene without its stop codon was amplified using
the 5pBADF27 and 3pBAD27 primers (Table 1) and cloned into
the pBAD/Myc-His vector (Invitrogen, Carlsbad, CA). The
PCR fragment containing the affinity tag (both Myc and Hisy)
derived from the pBAD/Myc-His vector and psb27 gene was
amplified using 27HisFor and 27HisRev primers and then
cloned into pUC18 vector to yield the 27His/pUC18 plasmid. In
a separate step, the DNA fragment corresponding to the 489
base pair (bp) downstream of the psb27 gene was amplified
using the 27dsFor and 27dsRev primers, and was cloned into
pUCI18 to yield 27ds/pUC18 plasmid. The Kpnl fragment con-
taining the gentamicin resistance gene from the pUCGM vec-
tor (20) was cloned into the 27ds/pUC18 plasmid to yield the
GM/27ds/pUC18 plasmid. Finally, the BamHI/EcoRI fragment
from the GM/27ds/pUC18 plasmid containing both the gen-
tamicin resistance gene and the psb27 gene downstream frag-
ment was cloned into the 27His/pUC18 plasmid to yield the
Tag27 plasmid. The Tag27 plasmid was used to transform wild
type Symechocystis cells. Segregation of the modified psb27
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locus was verified by PCR analysis with Psb27For and Psb27Rev
primers. All primer sequences are listed in Table 1.

After successful isolation of the His27PSII assembly interme-
diate, we replaced the ctpA gene with a 1.5-kb erythromycin
resistance marker in the genetic background of the His27 strain
to generate the double mutant His27ActpA. Complete segrega-
tion of the ActpA mutation was confirmed by PCR analysis of
the ctpA locus (data not shown).

PSII Purification—PSII complexes from the HT3, His27, and
His27ActpA strains were purified as previously described (19)
with minor modifications for an AKTA FPLC system (GE
Healthcare, Little Chalfont, Buckinghamshire, UK). Solubilized
membranes were injected onto a nickel-nitrilotriacetic acid
agarose column (Qiagen, Valencia, CA) pre-equilibrated with
buffer containing 50 mm Mes-NaOH, pH 6.0/5 mm CaCl,/10
mm MgCl,/25% glycerol/0.04% B-dodecylmaltoside (3-DDM).
PSII was eluted with buffer supplemented with 50 mM L-histi-
dine. The elution peak containing PSII was precipitated in the
presence of polyethylene glycol.

Polypeptide Profile and BN-gel Analysis—Electrophoresis
and immunodetection were performed using an 18 -24% gra-
dient acrylamide 6 M urea SDS/PAGE system (21, 22). PSII sub-
units were identified by using specific antisera after transferring
onto PVDF membranes (Millipore). Bands were visualized by
using enhanced chemiluminescence reagents (WestPico;
Pierce) on a Fujifilm LAS-1000 Plus imager (Fujifilm, Stamford,
CT). Monomer and dimer analysis of PSII assembly intermedi-
ates were performed by Blue-Native gel (BN-gel) electrophore-
sis (23).

Protein Identification by Mass Spectrometry—After SDS-
PAGE of purified PSII preparations, samples of specific protein
bands were analyzed on a QSTAR XL (AB/MDS Sciex) mass
spectrometer at the Danforth Plant Science Center proteomics
facility (St. Louis).

Cofactor Analysis—Chla concentration in PSII complexes
was determined spectrophotometrically (24). Simultaneous
quantification of Chla and Pheo was performed using HPLC.
Pigments were extracted from purified PSII complexes in 7:2 of
acetone: methanol (v:v) at 4 °C and immediately analyzed. Pig-
ments were resolved on a ZORBAX XDB-C18 (4.6 X 250 mm,
5 wm) column on an Agilent 1200 series HPLC using a diode
array detector (Agilent Technologies, Santa Clara, CA). The
mobile phase consisted ethanol in methanol and separation was
achieved using a linear gradient. Chla and Pheo were detected
at 408 nm and characteristic absorption spectra of the corre-
sponding peak confirmed the identities of the compounds.
Quantification of Chla and Pheo was performed by comparison
of peak area to standards of known concentration. Pheophytin
a standards were prepared by acidification of Chla with 2.5 mm
HCl. Concentration of Mn was determined on an AA600
atomic absorption spectrophotometer (PerkinElmer Life Sci-
ences, Wellesley, MA). The Mn: PSII ratio was calculated based
on 41 molecules of Chla/PSII (21).

Oxygen Evolution Measurements—Steady state rates of oxy-
gen evolution of PSII were measured on a Clark-type electrode
in the presence of 1 mm potassium ferricyanide and 0.5 mm 2,
6-dichloro-p-benzoquinone as electron acceptors at 5 pg of
Chla/ml in 50 mm Mes-NaOH (pH 6.0)/20 mm CaCl,/0.5 m
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sucrose. PSII samples were incubated for 1 min in the dark at
30 °C before the assay under 8,250 wmol photons m~2>+s™ ',
Fluorescence Analysis—PSII samples were diluted to 0.1 mg
Chla/ml and fluorescence emission spectra at 77K were mea-
sured on a Fluoromax-2 fluorometer (Jobin Yvon, Longjumeau,
France) with excitation at 435 nm (25). Variable Chla fluores-
cence relaxation kinetics at room temperature were recorded
on a double-modulation fluorometer FL-200 (Photon System
Instruments, Brno, Czech Republic), with a built-in analyzing
program, FluorWin. The sample concentration was adjusted to
5 pg/ml of Chla in the buffer used for oxygen evolution with
0.04% of B-dodecylmaltoside added additionally. All samples
were dark adapted for 5 min at room temperature before the
measurements. DCMU was added to 10 uM, when needed.

RESULTS

Mutant Construction—To facilitate PSII purification, a hexa-
histidine tag was designed at the C terminus of the Psb27 pro-
tein, so as not to disrupt lipid modification of the N-terminal
cysteine residue of the mature protein (17). The His27 strain
construct contains the native promoter of the psb27 gene. Fol-
lowing the coding sequence of Psb27 protein is a sequence
encoding for a c-Myc epitope and for a hexahistidine tag (Fig.
1A). A gentamicin resistance marker was introduced between

02

the polyhistidine tag and the downstream s/r1646 gene (encod-
ing ribonuclease III) for selection purpose. Complete segrega-
tion of the His27 strain with the resultant larger PCR product
was confirmed by PCR analysis (Fig. 1B). Psb27 is not absolutely
essential for photosynthesis in Synechocystis 6803 cells (26), as
well as in the vascular plant Arabidopsis thaliana (27). Simi-
larly, when grown in nutrient replete BG11 medium, the His27
strain exhibits normal photoautotrophic growth and photo-
chemical activities (data not shown).

PSIiI Isolation—As reported before, the Psb27 protein is pres-
ent in substoichiometric amount in PSII complex isolated using
a polyhistidine tag on the CP47 protein of Synechocystis 6803
(21). To investigate the nature of the protein complex that has a
stoichiometric amount of Psb27, the tagged Psb27 protein was
used to isolate PSII complexes from His27 cells. We have used a
similar strategy in the past to purify a highly active PSII prepa-
ration using a C-terminally polyhistidine tagged extrinsic PsbQ
protein (28). Isolation of His27PSII using FPLC chromatogra-
phy resulted in a single small peak (data not shown). 77 K fluo-
rescence measurements confirmed that the elution peak con-
tained PSII complexes (Fig. 2A4), which show a specific PSII peak
at 685 nm (F685) and a much decreased peak at 695 nm (F695).
Notably, no characteristic peak from PSI was observed. We
named the corresponding purified PSII complex as His27PSII.
The yield of this PSII complex was about 10 —15 fold lower than
PSII from the HT3 strain (Table 2), consistent with the notion

that the Psb27 protein is present in a PSII assembly intermedi-
sir1644 >-{ N\ o) sir1646 ; . ,
-{ psbz7 t\\ an s ate pigment-protein complex, but not in the mature and func-
- .
Psb27For Psb27Rev tional PSII complex.
As expected, the His27ActpA strain could not grow photoau-
B wr His27 totrophically (data not shown), since the CtpA protein is essen-
tial for one of the terminal maturation steps in the assembly of
1457 bp functional PSII complex (11). We isolated pD1-containing PSII
TABLE 2
PSII function and cofactor analysis
579 bp PSII Yield O,evolution” Mn/PSII  Chla/Pheo
HT3PSII 4-6% 1394 + 103° 36*0.1 169 = 1.4
FIGURE 1. Construction of His27 mutant. A, psb27 locus in the His27 mutant H§527PSII 0.4% 115 * 34 076 £ 0.1  20.6 £1.8
which expresses a C-terminally Myc/His¢-tagged Psb27 protein. A gentamicin His27ActpAPSIT  1.25% ND* 091*008 203*20
resistance gene cassette is located between the psb27 locus and the down- “ Oxygen evolution rates in umol of O,'mg™"' Chl'h ™.
stream gene slr1646. B, PCR segregation analysis using the Psb27For and ? Standard error of the mean (1 = 3).
Psb27Rev primers (Table 1); positions of primers are labeled in A. ¢ ND, not detected.
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FIGURE 2. Characterization of purified His27PSIl and His27 ActpAPSII protein complexes. A, 77 K fluorescence emission spectra of the His27PSlI (red) and
His27ActpAPSII (blue) complexes are shown with that of HT3PSII (black) complexes as a reference. Samples were excited at 435 nm and fluorescence emission
was normalized as (F-Fg,0)/(Fgs3 — Feao). B, immunodetection of the polyhistidine tag and c-Myc tag epitopes in HT3PSII, His27PSlIl, and His27ActpAPSII.
C, BN-gel analysis of HT3PSII, His27PSlI, His27 ActpAPSII preparation. Arrows indicate the dimeric (D) and monomeric (M) forms. For details, see “Experimental

Procedures.”
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FIGURE 3. Fluorescence kinetic analysis. Chlorophyll a fluorescence decay in the absence (A) and presence (B) of 10 um DCMU, following a single saturating
flash on HT3PSII (black), His27PSlI (red), and His27ActpAPSII (blue) samples. Error bars represent the standard error of the mean (n = 3).

complex (named His27ActpAPSI) from this strain grown
under photoheterotrophic conditions. Interestingly, the yield
of PSII complex preparation from this strain is significantly
higher than that from the His27 strain (Table 2).

Fig. 2B shows the immunodetection of the polyhistidine and
c-Myc tags in the purified PSII complexes from strains under con-
sideration. As expected, the HT'3 strain contained only polyhisti-
dine-tagged CP47, whereas both His27 and His27ActpA strains
contained polyhistidine-tagged Psb27. Similarly, the Psb27 pro-
tein in the His27 and His27ActpA strains exhibits the presence
of the c-Myc epitope (Fig. 2B, lower panel), whereas no c-Myc
protein is present in HT3PSIL

Fig. 2C shows the results of blue-native gel (BN-gel) analysis
of these three PSII preparations. The HT3PSII complex could
be resolved into two major green bands corresponding to PSII
dimers and PSII monomers, respectively. Interestingly, both
His27PSII and His27ActpAPSII are present mostly as mono-
meric form. Recently, a new dimeric Psb27-PSII complex has
been observed, which accumulates under specific stress condi-
tions and is apparently involved in the replacement of damaged
D1 (29). However, we only detected monomeric Psb27-con-
taining PSII complexes with either processed or unprocessed
D1 protein. Further experiments are needed to characterize the
functional and structural differences between monomeric and
dimeric Psb27-containing PSII complexes.

Activities of PSII from HT3, His27, and His27ActpA Strains—Table
2 documents the photochemical activities of the three PSII
preparations. Compared with HT3PSII, the His27PSII prepara-
tion has marginal oxygen evolution activity, whereas the
His27ActpAPSIL sample does not exhibit any such activity.
Table 2 also shows manganese content and Chla/Pheo ratios of
these PSII samples. All three samples have nearly similar Chla/
Pheo ratios. In contrast, His27PSII and His27ActpAPSII com-
plexes show less than 1 Mn per PSII center, consistent with
their inabilities to oxidize water. This observation is consistent
with the finding that in a Psb27-containing PSII complex from
the thermophilic cyanobacterium Thermosynechococcus elon-
gatus, no observable EPR signal from Mn,-Ca cluster was
observed (30).

Electron transfer in the two PSII assembly intermediates was
further investigated and compared with that of HT3PSII by
using flash-induced variable fluorescence decay analysis. Fig. 3
shows the fluorescence decay kinetics measured in the absence
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or presence of DCMU in the three PSII preparations. In the
absence of DCMU, after a single turnover saturating flash, the
fluorescence decay occurs mainly as a consequence of forward
electron transfer from Q,~ to Q. On the other hand, in the
presence of DCMU, which prevents electron transfer from
Q. to Qg, the decay of fluorescence following a saturating
flash is dominated by charge recombination between Q, ~ and
the oxidizing-side components of PSII. As shown in Fig. 34, the
decay kinetics of the flash-induced fluorescence from
His27PSII and His27ActpAPSII preparations in the absence of
DCMU are significantly slower than that from HT3PSII, indi-
cating that the Q, ~ reoxidation by forward electron transfer to
Qg has been severely affected in both of these preparations. In
fact, the fluorescence decay trend in both His27PSII and
His27ActpAPSII samples without DCMU treatment are very
similar to those treated with DCMU. It seems that compared
with HT3PSII, forward electron transfer from Q,~ to Qg in
both His27PSII and His27ActpAPSIL is blocked. These findings
are consistent with those from the studies on monomeric PSII
complexes from T. elongatus containing Psb27 (30).

Polypeptide Profiles of the His27PSII and His27ActpAPSII
Complexes—Fig. 4A shows a comparison of the polypeptide
profiles of PSII preparations from HT3PSII, His27PSII, and
His27ActpAPSIL Protein components were identified based on
their migration on the SDS-PAGE system (31) or by immuno-
detection (Fig. 4B). As expected, tagged Psb27 protein migrated
more slowly in the His27PSII and His27ActpAPSII samples, due
to the additon of the c-Myc and polyhistidine tags (Fig. 2B).

In both His27PSII and His27ActpAPSII preparations, most
PSII intrinsic core subunits, such as CP47, CP43, D1, D2, and
PsbE, are observed. As expected, His27ActpAPSII contains only
the pD1 protein, which migrates at the same location of D2
protein. An unexpected finding is the detection of a significant
amount of the PsbO protein in the His27PSII preparation (Fig.
4, A and B). In contrast, PsbU and PsbV are not observed (Fig.
4B), whereas PsbQ is observed only as a very weak band in both
the His27PSII and His27ActpAPSII samples.

Another notable finding is the enriched presence of the
Psb28 protein (the gene product of s//1398) in His27PSII prep-
aration. There was a distinct band in the region where PsbU
migrates in HT3PSII and His27PSII, but imunological methods
showed PsbU was not detected in His27PSII via Western
blot (Fig. 4, A and B). Psb28 (11 kDa) migrates in the same

VOLUME 286+NUMBER 28-JULY 15,2011



Purification of Cyanobacterial PSIl Assembly Intermediates

ps
A (}QP" B 0\9
«'5 gq:‘ 'fo\b > \é’i\ 1"\>
> tS \b‘e kDa Q‘« Ay é\e
198
_ 115 pD1 -
e . 53 Fere —
cP43 — -
Pst -
< PD1/02 PsbU M-
PsbV —>

W <— His27
<— Psb28*

PsbQ —

Psbu —> -
Psb27—>

PSbE —> s .

PsbH— —_— J—
p— -

. —

FIGURE 4. A, polypeptide profiles of isolated HT3PSIl, His27PSIl, and
His27 ActpAPSIl complexes. The positions of major PSIl protein components
are indicated on the left. The Psb28 protein in His27PSll is indicated by an
asterisk. 5 g of Chla containing sample was loaded in each lane. B,immuno-
detection of PSll polypeptides in the isolated complexes. 0.2 g of Chla sam-
ple was fractionated by SDS-PAGE, transferred to PVDF membrane, and
probed for the indicated PSII proteins. Specific antibodies against CP47, D1
extension, PsbO, PsbU, PsbV, and PsbQ were used for immunodetection of
the corresponding proteins, respectively.

region of PsbU (12 kDa) and thus they are difficult to separate
using SDS-PAGE. An excised band corresponding to the gen-
eral location of PsbU from the His27PSII lane (Fig. 4A, asterisk)
was analyzed by mass spectrometry analysis and the results
indicated no PsbU was identified, consistent with our Western
blot analysis (Fig. 4B). MS/MS analysis identified three Psb28
protein peptide fragments corresponding to residues 9-19
(GVAETVVPEVR), 33-43 (FYFLEPTILAK), and 100-112
(GAENGLGFSKSE) of the 112 amino acid residues long Psb28
protein in Synechocystis 6803 (supplemental Fig. S1). Psb28 is
the only cytoplasmically (stromal) exposed extrinsic protein in
PSII (32). This protein is absent in the His27ActpAPSII prepa-
ration, suggesting it becomes associated to PSII after the pro-
cessing of the C-terminal extension of the D1 protein.

In addition to Psb28, S111130, a hypothetical 11 kDa protein
was identified. Also identified were the carbon dioxide concen-
trating mechanism protein (CcmK homolog2, 11 kDa); 30 S
ribosomal protein S10 (12 kDa); ribulose bisphosphate carbox-
ylase small subunit (13 kDa). Because of the high sensitivity of
modern mass spectrometry, it is highly possible that these pro-
teins are contaminants rather than PSII components. Sl11130
has been previously reported in PSII preparations (21).

DISCUSSION

In summary, using genetic and biochemical methods, we
have isolated and characterized two PSII assembly intermedi-
ates, which represent two stages immediately preceding and
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following the C-terminal processing of the pD1 protein, respec-
tively. The ability to biochemically purify such complexes using
C-terminally polyhistidine-tagged Psb27 protein indicates that
Psb27 is a tightly bound subunit of these PSII assembly
intermediates.

The yield of the fraction of Psb27-containing PSII assembly
intermediates from the His27 cells is around 7-10% of that
from HT?3 cells (Table 2). This provides strong evidence to that
there is always a subpopulation of PSII, which undergoes
dynamic assembly. This fraction is characterized by the pres-
ence of Psb27, the absence of (Mn,-Ca) cluster, and absence of
oxygen evolution activity. Absence of the (Mn,-Ca) cluster in
PSII assembly intermediates particularly may have profound
physiological and ecological adaptive effects. It has recently
been reported that coupling of phycobilisome, the large light
harvesting antenna complex of cyanobacteria, to PSII is
dependent on the integrity of the (Mn,-Ca) cluster on the
donor side of PSII (33). Thus, it is conceivable that without
phycobilisomes functionally attaching to Psb27 containing PSII
intermediates; no energy coupling can take place, resulting in
less damage to the complex. This is particularly important,
since protection of PSII assembly intermediates from pho-
todamage before the functional state of PSII is achieved is
essential for efficient PSII biogenesis under physiological
conditions.

The presence of the PsbO protein in the His27PSII but not in
the His27ActpAPSII assembly intermediate prompts us to pro-
pose that PsbO is the first extrinsic protein recruited to the
binding interface of PSII during donor side assembly. Absence
of PsbO in His27ActpAPSII is consistent with the data from
PSII complexes isolated from our earlier studies on a
ActpAHT3 strain (16). As it is the only difference between the
two PSII assembly intermediates in our current studyj, it is rea-
sonable to speculate that it is either the presence of the C-ter-
minal extension of pD1, or the subsequent conformational
changes in CP47 or CP43 that blocks the interactions between
PsbO and CP47 and CP43 (4, 34). The absence of functional
(Mn,-Ca) clusters (Table 2) in both PSII intermediates may also
contribute substantially to the reduced extrinsic protein bind-
ing affinity to PSII, as has been observed in in vitro experiments
(35, 36). Our results argue against the hypothesis that Psb27
facilitates the (Mn,-Ca) clusters assembly by preventing the
PsbO protein from binding to PSII (37).

A novel finding in this report is the presence of Psb28 in
His27PSII, but not in His27ActpAPSIIL. The functional role of
this extrinsic protein, with a unique location in the cytoplasm
side of thylakoids membrane, remains poorly understood. A
recent study has suggested that this protein is somehow
involved in the biosynthesis of chlorophyll, and also is closely
associated with the CP47 protein. Our data indicate that the
binding of Psb28 to the cytoplasmic side of the His27-contain-
ing PSII assembly intermediate occurs after the C-terminal
processing of the pD1 protein on the lumenal side of PSIIL In
addition, accumulation of Psb28 has only been found in PSII
monomers from dgdA mutant cells (38). The authors hypothe-
sized that Psb28 may have an important function in the assem-
bly of subunits in PSII. It seems that in His27PSII both donor
and acceptor sides are structurally compromised and different
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intermediate )
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I , 1 Extrinsic protein association

Mature PSII

FIGURE 5. A schematic model for PSIl assembly. The core membrane pro-
teins are shown in green, whereas the extrinsic proteins are Psb27 (yellow),
Psb28 (gray), PsbO (blue), PsbU (orange), PsbV (red), and PsbQ (purple). The
Psb27 and PsbQ lipoproteins are depicted with their lipid modifications. The
atoms of Mn cluster are shown in blue and white. The different assembly
events are labeled.

from those of functional PSIL. The functional implications of
such events deserve further detailed investigation.

We propose a refined schematic model for the biogenesis of
the PSII complex (Fig. 5), combining our data with previous
studies, especially recent reports (30, 39, 40). Psb27 is the first
lumenal protein that binds to the lumenal interface of PSII
assembly intermediates containing a number of intrinsic mem-
brane proteins such as CP47, CP43, Cyt bss,, D2, and pD1.
Next, the CtpA enzyme cleaves the C-terminal extension of
pD1 to form mature D1. At this stage, due to the presence of
Psb27 and potential effects on lumenal domains of intrinsic
subunits, PsbO is only able to weakly bind to PSII. However, the
presence of Psb27 completely prevents PsbU, PsbV, and PsbQ
from binding to intrinsic PSII subunits and prevents the (Mn,-
Ca) cluster from assembling. Finally, the detachment of Psb27
allows photoactivation of the (Mn,-Ca) cluster as well as the
binding of other extrinsic proteins, to form stable PSII com-
plexes with normal water oxidation capacity.

In conclusion, we have demonstrated that Psb27 is tightly
bound to two PSII assembly intermediates, and that PsbO,
but not PsbV and PsbU, can bind to the Psb27 containing
PSII assembly intermediates after pD1 processing. However,
the binding partner(s) of Psb27 in such PSII complex remain
poorly defined. For example, it has been hypothesized that
Psb27 binds to the lumenal area of CP47 (37, 41) or CP43
(42). We are currently investigating the structural location of
Psb27 in the PSII assembly intermediate complexes
described in this report.
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