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Abstract
This article is motivated by the need of biological and environmental scientists to fit a popular
nonlinear model to binary dose-response data. The 4-parameter logistic model, also known as the
Hill model, generalizes the usual logistic regression model to allow the lower and upper response
asymptotes to be greater than zero and less than one, respectively. This article develops an EM
algorithm, which is naturally suited for maximum likelihood estimation under the Hill model after
conceptualizing the problem as a mixture of subpopulations in which some subjects respond
regardless of dose, some fail to respond regardless of dose, and some respond with a probability
that depends on dose. The EM algorithm leads to a pair of functionally independent 2-parameter
optimizations and is easy to program. Not only can this approach be computationally appealing
compared to simultaneous optimization with respect to all four parameters, but it also facilitates
estimating covariances, incorporating predictors, and imposing constraints. This article is
motivated by, and the EM algorithm is illustrated with, data from a toxicology study of the dose
effects of selenium on the death rates of flies. Other biological and environmental applications, as
well as medical and agricultural applications, are also described briefly. Computer code for
implementing the EM algorithm is available as supplemental material online.
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1. Introduction
The general problem of modeling binary data as a function of covariates is important in
many research areas. This article focuses on the dose-response problem of modeling the
probability of a binary response as a function of some measure of dose, which has
applications in the biological and environmental sciences, as well as in many other
disciplines. The data that motivated this research, and that are used to illustrate the proposed
analysis, come from a toxicology study of the dose effects of selenium on the death rates of
flies (Jeske et al, 2009). In other areas, one might have a clinical interest in the proportion of
subjects experiencing pain relief after ingesting a specific dose of an analgesic drug (Finney,
1978) or an environmental interest in the dose-response relationship between dioxin-like
compounds and tumor rates (Walker et al, 2005).
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Often, a simple 2-parameter logistic regression model provides an adequate summary of
how a binary response relates to dose. This model specifies that the logit-transformed
response probability is linear in the dose metric. Consequently, the parameters of interest are
an intercept and a slope. Under this model, the dose-response curve has a lower asymptote
of zero and an upper asymptote of one, the limits of the expected range of response
probabilities.

That [0,1] range may not always be appropriate for modeling response probabilities. For
example, some flies may die from causes unrelated to selenium toxicity while others may
survive the study no matter how high the dose of selenium. Similarly, some patients may get
pain relief from a placebo with no analgesic drug while others may get no pain relief
regardless of analgesic dose; and some rodents may develop tumors from non-dioxin causes
while others may remain tumor-free despite dioxin exposure. Finney (1978) gives several
other biological assay examples and labels such subjects as natural responders and resistants,
which we refer to as obligate responders and obligate non-responders, respectively. In these
cases, the dose-response probabilities range over a subinterval of [0,1]. Thus, a natural
generalization of the 2-parameter logistic model adds two more parameters so that the lower
response asymptote may be greater than zero and the upper response asymptote may be less
than one. The resulting 4-parameter logistic model provides increased flexibility at the cost
of a higher dimensional optimization.

The notion that some subjects will or will not respond, independently of dose, while others
have response probabilities that depend on dose suggests reformulating the problem as a
mixture model with missing data. One observes indicators of whether or not subjects
responded, but not indicators of which subjects were obligate responders and non-
responders. Viewing the latter indicators as missing data, we developed an EM algorithm
(Dempster et al, 1977) to estimate the proportions of subjects “destined” to respond and
“unsusceptible” to response. Under a 2-parameter logistic model for the dose-response
relationship among subjects who were neither obligate responders nor obligate non-
responders, the EM algorithm provides maximum likelihood estimates (MLEs) of the
intercept and slope, plus the destined and unsusceptible proportions, which together
constitute the four unknowns in the full 4-parameter logistic model.

In analyzing the selenium data, Jeske et al (2009) applied a probit model, which is similar to
a logistic model. They assumed the upper asymptote was one, but allowed for a nonzero
lower asymptote representing the proportion of deaths unrelated to selenium toxicity. They
obtained an estimate of the lower asymptote from the control (dose zero) data only and
treated it as a known value when estimating the intercept and slope in the probit model.
Differences between probit and logistic analyses aside, this article extends the basic model
of Jeske et al (2009) in three ways. It permits the upper asymptote to be less than one to
allow a proportion of “immune” flies to survive the study regardless of the selenium dose; it
simultaneously estimates the intercept, slope, and two asymptotes; and it estimates the
asymptotes using data from all dose groups.

The proposed EM algorithm is easy to program and can take advantage of existing software
for standard logistic regression. Specifically, we show that at each M-step, the estimates of
the two asymptotes are simple proportions, and the estimates of the intercept and slope can
be obtained via ordinary 2-parameter logistic regression methods. The observed information
matrix and the estimated covariance matrix of the estimators are straightforward to compute
using the Louis (1982) method. Finally, this EM algorithm performs a pair of 2-parameter
optimizations, which may provide computational advantages over simultaneous optimization
involving all four parameters. Incorporating covariates in the EM algorithm is
straightforward, and perhaps more importantly, some of the required parameter constraints
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are satisfied automatically. The proposed EM algorithm is illustrated with one of the
selenium data sets provided by Jeske et al (2009).

2. Background
2.1 Observed Data

Suppose binary response data are observed from k+1 groups, say a control group and k
treated groups, where all N subjects are independent and ni subjects are randomly assigned
to group I and exposed to dose di of the test chemical (i=0,1,…,k). Control subjects (i = 0)
are unexposed, and thus d0 = 0. Let Yij be a binary indicator of whether subject j (j=1,…,ni)
in group i responds (Yij = 1) or not (Yij = 0), let Y = {Yij: j=1,…,ni; i=0,1,…,k} be the vector
of all responses, and let y be the observed value of Y.

2.2 Hill Model
Assume the probability of response for subject j in group i (j=1,…,ni; i=0,1,…,k) is given by
the Hill (1910) model, a specific form of the 4-parameter logistic model. This non-linear
model often is expressed as the following monotone function of dose di, with parameters ϕ =
(ϕ1, ϕ2, ϕ3, ϕ4):

(1)

where ϕ1 is the baseline response probability (at dose 0), ϕ2 is the maximum response
probability (at an infinite dose), ϕ3 is the dose producing a response probability halfway
between ϕ1 and ϕ2, and ϕ4 is a shape parameter. As ϕ3 is a dose, it must be non-negative.
Without loss of generality, assume the probability of response increases with dose, which
implies ϕ4 > 0 and 0 ≤ ϕ1 < ϕ2 ≤ 1; otherwise one can simply reverse these constraints or
recode Yij as 1−Yij. The parameter ϕ3 is typically called the ED50, or the median effective
dose, and ϕ4 is often called the Hill coefficient. The Hill model produces a sigmoidal dose-
response curve, such as displayed in Figure 1.

To see that model (1) is a special case of a 4-parameter logistic model, one can rewrite it in
terms of log-dose, zi = ln(di), by substituting di = exp(zi) into (1) and rearranging terms. If
one reparameterizes by setting α = −ϕ4ln(ϕ3), β = ϕ4, γ = ϕ1, and δ = ϕ2 − ϕ1, then model (1)
becomes

(2)

a 4-parameter logistic model; see Volund (1978) for a discussion of 4-parameter logistic
models for continuous responses. Set pi = Pr(Yij = 1|zi) and note that α and β are an intercept
and slope for a response on a modified logit scale, ln[(pi − γ)/(γ + δ − pi)]. The bounds on ϕ
imply bounds on Ω = (α, β, γ, δ): −∞ < α < ∞, β > 0, and 0 ≤ γ < γ + δ ≤ 1. Note that d0 = 0
implies z0 = −∞.

2.3 Likelihood of Observed Data
Conditional on the dose values and ignoring combinatoric factors, the likelihood of the
observed response data is proportional to
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(3)

where . Note that z0 = −∞ and β > 0 imply that p0 = γ. Thus, the log-likelihood
of the parameter vector Ω = (α, β, γ, δ), apart from additive constants, is LY (Ω; y) = LY,
where

(4)

2.4 Maximum Likelihood Analysis
The maximum likelihood estimates (MLEs) are usually calculated by iteratively optimizing
LY. For example, one might use a Newton-Raphson method, which requires both first and
second derivatives of LY; a quasi-Newton method, which only requires first derivatives of
LY; or a downhill simplex method, which does not require any derivatives. These approaches
typically work well unless the data are too sparse and lead to ill-conditioned matrices or the
starting values are too far from the MLEs. With any of these methods, however, constraints
to honor the bounds on Ω must be imposed explicitly or circumvented through
reparameterization.

3. Missing-Data Reformulation
3.1 Complete Data

The original problem can be reformulated into one amenable to EM iterations by
incorporating latent variables. Suppose one observes whether or not each subject responded,
but not whether a responder was destined to respond, nor whether a non-responder was
unsusceptible to response. Thus, each subject is regarded as belonging to one of four
mutually exclusive categories, but exact category membership is unknown. Regardless of
dose, subjects in Category 1 are destined to respond, whereas subjects in Category 4 are
unsusceptible and will not respond. All other subjects are susceptible to response but not
destined to respond; they may respond (Category 2) or not respond (Category 3), and the
probability of response can depend on dose.

Define a collection of latent indicators (X1ij, X2ij, X3ij, X4ij), where Xhij is 1 if subject j from
group i belongs to Category h (j=1,…,ni; i=0,1,…,k; h=1,2,3,4) and is 0 otherwise. The
observed indicators (Yij) and their additive complements (1−Yij) can be partitioned into sums
of unobserved indicators: Yij = X1ij + X2ij and 1−Yij = X3ij + X4ij. One observes whether a
subject responded (Yij =1) or not (1−Yij = 1), but not whether a responder was destined to
respond (X1ij = 1) or not (X2ij = 1), nor whether a non-responder was susceptible (X3ij = 1) or
not (X4ij= 1).

3.2 Relationship to Hill Model
Let γ be the proportion of subjects in the population who are destined to respond (Category
1), let δ be the proportion who are susceptible but not destined to respond (Categories 2 and
3), and let 1 − γ − δ be the proportion who are unsusceptible to response (Category 4).
Among subjects who are susceptible but not destined to respond, let θ(zi) and 1 − θ(zi)
denote the dose-dependent proportions who respond (Category 2) and do not respond
(Category 3), respectively.
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For the jth subject in the ith group, the expected values of X1ij, X2ij, X3ij, X4ij are

(5)

respectively, where θi = θ(zi). Note that X1ij, X2ij, X3ij, and X4ij sum to 1, as do their expected
values. Also, the fact that X1ij and X2ij are binary and mutually exclusive implies that

(6)

which reduces to the Hill model in (2) under the logistic model: θi = [1 + exp(−α – βzi)]−1.

3.3 Likelihood of Complete Data
The likelihood of the complete data is proportional to a product of terms such as those in (5).
Note that z0 = −∞ and β > 0 imply θ0 = 0 and X20j = 0 for j=1,…,n0. Apart from additive
constants, the log-likelihood of the complete data is LX(Ω; x) = LX, where X = {Xij: j=1,
…,ni; i=0,1,…,k}, Xij = (X1ij, X2ij, X3ij, X4ij), x is a particular realization of X, and

(7)

Modeling θi by [1 + exp(−α − βzi)]−1 and collecting terms yields LX = LX1 + LX2, where

(8)

(9)

and the “+” subscript indicates summation over the corresponding index. Note that LX1 and
LX2 are functionally independent, with the former involving only α and β, and the latter
involving only γ and δ, which simplifies the maximization of LX and the calculation of the
information matrix. Also, LX2 does not involve zi, consistent with the asymptotes being
dose-independent.

3.4 EM Algorithm
The MLE of Ω can be obtained via an EM algorithm (Dempster et al, 1977). After choosing
a starting value for Ω, the EM algorithm iterates between expectation (E) and maximization
(M) steps until convergence. At each iteration, the E-step calculates the expectations of the
sufficient statistics for the complete data, conditional on the observed data and the current
parameter estimates, and the M-step calculates the value of Ω that maximizes the log-
likelihood of the current complete data. Each EM iteration increases the likelihood of the
observed data.

At the E-step, conditional on the observed response yij and the current parameter estimate Ω̂
= (α̂, β̂, γ̂, δ ̂), the expected values E(X1ij|yij, Ω ̂) and E(X4ij|yij, Ω ̂) are estimated by
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(10)

respectively, where θ̂0 = 0 and θ̂i = [1+ exp(−α̂ − β̂zi)]−1 for i > 0. By subtraction, estimates
of the expected values of X2ij and X3ij are x̂2ij = yij − x̂1ij and = x̂3ij = 1− yij − x̂4ij,
respectively.

At the M-step, conditional on x̂2i+ and x̂3i+, the estimates of α and β that maximize LX1 are
the MLEs for a 2-parameter logistic regression problem with log-likelihood (8).
Furthermore, substituting x̂1++, x̂2++, x̂3++, and x̂4++ into (9), the estimates of γ and δ that
maximize the trinomial log-likelihood LX2 are

(11)

where N = n+ = x̂+++ is the total number of subjects. Although only two of the four
complete-data MLEs (γ̂, δ ̂) are available in closed form, the iterative procedure for obtaining
the other pair (α̂, β̂) is simpler than maximizing the entire 4-parameter observed-data log-
likelihood LY.

Continue iterating until successive differences are suitably small for both the observed-data
log-likelihood LY and the estimate Ω̂, and then declare the latter to be the MLE of Ω.

Computer code for implementing the EM algorithm is available online.

3.5 Variance Estimation
Let GX(Ω; X) and HX(Ω; X) be the gradient (first derivative) vector and negative Hessian
(second derivative) matrix, respectively, of LX(Ω; X) with respect to Ω, and define GY and
HY similarly. Louis (1982) showed that the observed information matrix for Y at the MLE
Ω ̂, say HY(Ω ̂; y), is

(12)

Simplification of the observed information matrix in (12) is possible because X is a

multinomial. The variance-covariance matrix for Ω̂, say Σ, can be estimated by .
This method of estimating Σ involves only LX and is generally simpler than working with LY
directly.

4. Application to Selenium Data
Jeske et al (2009) presented data from a toxicology study of the dose effects of four types of
selenium on the death rates of flies. We focused on selenocysteine, which they labeled as
type 4 selenium, and fitted the Hill model via the EM algorithm. The data are given in Table
1. Of the ni flies receiving dose di of selenocysteine (i = 0,1,2,3,4), let Yij indicate whether
fly j died during the study (j = 1,…, ni). Specify the probability of dying during the study by
the Hill model in (2), where γ and 1 − γ − δ are the respective proportions of flies destined
to die from causes other than selenocysteine toxicity and to survive the study despite
selenocysteine toxicity. The remaining proportion δ die during the study with dose-
dependent probability θi = [1 + exp(−α – βzi)]−1.
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We selected EM starting values for α and β by fitting a 2-parameter logistic model to the
observed data, assuming no predestined or unsusceptible subpopulations. However, one
cannot set γ=0 and δ=1 as starting values because the EM algorithm will not move from
these boundary values. Instead, we defined p̃i = (yi++½)/(ni + 1) to guarantee estimated
response rates in (0,1), and then we initially set the lower asymptote (γ) to the smallest p̃i
and the upper asymptote (γ+δ) to the largest p̃i, with the initial value of δ being the
difference. This procedure produced starting values Ω = (−5.814, 1.289, 0.023, 0.568). The
resulting MLEs of (α, β, γ, δ) are given in Table 2, along with estimates of their standard
errors based on the Louis (1982) method. The MLEs of (ϕ1, ϕ2, ϕ3, ϕ4), which are simple
transformations of (α, β, γ, δ), are also given in Table 2, along with estimates of their
standard errors based on applying the delta method (Rao, 1973) to Σ̂.

The Hill model fits these data well, as seen from the empirical (symbols) and fitted (solid
curve) death rates in Figure 1; the dashed curves show pointwise 95% confidence bands
obtained by applying the delta method. The usual observed-minus-expected goodness-of-fit
statistic is 1.59 (Table 1), which suggests no significant lack of fit (P = 0.21, based on the
chi-squared distribution with one degree of freedom). The MLEs of the lower (ϕ̂1 = 0.033)
and upper (ϕ̂2 = 0.673) asymptotes are more than 1.96 standard errors above zero and below
one (Table 2), respectively, suggesting that the full 4-parameter Hill model fits better than a
reduced model.

Though Jeske et al (2009) fitted a 3-parameter probit model rather than a 4-parameter
logistic model, they obtained similar results for the median effective dose. In their second
table, they reported an MLE of 4.42 with a standard error of 0.19 for ln(ED50). After taking
natural logs, the MLE and standard error from the EM algorithm are 4.02 and 0.17,
respectively.

As a check, a quasi-Newton method gave the same estimate of Ω as the EM algorithm. Also,
as a further check, we verified that the first derivative of the observed-data log-likelihood
with respect to each parameter was zero when evaluated at the MLE: GY(Ω̂; y) = 0.

Optimization procedures can be sensitive to initial values, so we tried several sets. First, we
set the lower asymptote (ϕ1) to 0.023 and the upper asymptote (ϕ2) to 0.591, which were the
starting values used earlier, and then investigated a grid of starting values for the ED50 (ϕ3)
and shape (ϕ4) parameters. The MLEs of ϕ3 and ϕ4 were roughly 56 and 3, so we examined
starting values of 40, 60, 80, and 100 for ϕ3 and values of 1, 2, 3, and 4 for ϕ4. All 16
combinations of these starting values gave the same final estimates as before, as did several
other sets of starting values, suggesting that the EM algorithm is not overly sensitive to the
choice of initial values.

5. Discussion
We developed an EM algorithm for fitting a Hill model, or more generally a 4-parameter
logistic model, to binary (quantal) dose-response data. The EM algorithm is simple to
program and leads to a pair of 2-parameter optimizations at each iteration, one of which has
a closed-form solution. Thus, in this non-linear setting, the EM approach may provide
computational advantages over conventional iterative approaches that optimize with respect
to all 4 parameters simultaneously, at least for some data sets, though a rigorous
investigation was not performed. Also, certain constraints that other methods impose
explicitly are satisfied automatically in the EM algorithm.

Expanding on this last point, estimates of the lower (ϕ1) and upper (ϕ2) asymptotes must
satisfy 0 ≤ ϕ1 < ϕ2 ≤ 1 if the dose-response curve is increasing, as assumed in the
development. The EM algorithm produces estimates of ϕ1 and ϕ2 (or γ and δ) that are simple
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proportions, which always lie in the unit interval. In contrast, conventional methods must
either explicitly restrict the asymptotes to fall in [0,1] or else circumvent constraints via
reparameterization. For example, ϕ1 and ϕ2 can be forced to lie in (0,1) by applying a
logistic transform to each. Typically, both EM and conventional methods will satisfy ϕ1 < ϕ2
and ϕ4 > 0 if the observed response rates mostly increase with dose, or ϕ1 > ϕ2 and ϕ4 < 0 if
the rates mostly decrease with dose.

This article focused on the Hill model, a special case of the 4-parameter logistic model in
which the dose metric is the natural logarithm of dose. The same methods can be applied
with other dose metrics, though, such as zi = di or zi = i. Also, the notation was developed to
allow for a control group having a dose of zero (d0 = 0), but the same methods can be
adapted easily to handle studies without a control group by simply ignoring the terms with a
subscript of i = 0. Furthermore, although the usual dose-response study involves multiple
observations per dose group, the proposed approach can still be applied with only ni = 1
observation per dose group. Finally, the EM algorithm can be modified trivially to fit a
reduced 3-parameter logistic model, such as under the constraint ϕ2 = 1 (i.e., δ = 1 − γ) used
by Jeske et al (2009). However, the 2-parameter model, which constrains ϕ1 = γ = 0 and ϕ2
= δ = 1, does not require any EM iterations.

Note that the proposed conceptualization, involving a mixture model with missing data,
need not correspond precisely to reality; it is simply a convenient construction for
calculating the MLEs under a 4-parameter logistic (or Hill) model. We hypothesize three
mutually exclusive groups of subjects: those who always respond, those who never respond,
and those who respond with a dose-dependent probability specified by a logistic curve with
asymptotes of 0 and 1. This formulation may not mimic reality, but the MLEs it produces
are identical to those obtained by other methods under a 4-parameter logistic model with
asymptotes that need not equal 0 and 1.

Several extensions of the proposed method are possible. One is the incorporation of
additional covariates. The M-step of the EM algorithm maximizes a 2-parameter logistic
regression likelihood with an intercept and a slope for a single covariate equal to ln(dose).
The incorporation of more covariates is straightforward when modeling response rates of
susceptible subjects who are not destined to respond; that is, when maximizing LX1. Also,
since the two pieces of the complete-data log-likelihood are functionally independent,
polytomous regression methods can be used to separately maximize LX2 after modeling the
destined and unsusceptible proportions as functions of covariates unrelated to dose. This
would allow formal assessment of explanatory variable effects on the destined and
unsusceptible proportions, as well as on the response rate of susceptible subjects who are not
destined to respond, say through a likelihood ratio test of whether certain regression
coefficients are zero.

Another extension is incorporation of survival adjustments in studies where estimation of
dose-response relationships might be biased by differential mortality. For example, Walker
et al (2005) fitted a 3-parameter logistic model to binary tumor incidence data from a
carcinogenicity study and incorporated a poly-3 survival adjustment (Bailer and Portier,
1988) to account for the reduced tumor risk of animals dying before the end of the study.
The EM algorithm can be easily adapted to incorporate this same survival adjustment. As an
alternative survival adjustment, one could use time as a covariate explaining response. This
approach would generalize the nonlethal tumor analysis of Dinse and Lagakos (1983), which
applied standard logistic regression methods. By including both dose and time metrics as
covariates, one could allow non-boundary values for the asymptotes and also could provide
an alternative to the poly-3 correction to adjust for survival effects on the incidence rates of
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nonlethal tumors. This extension represents ongoing research and will be the subject of a
future article.

In summary, the EM algorithm provides a natural solution to the problem of modeling
binary responses when some subjects are obligate responders or obligate non-responders.
This approach leads to a straightforward way to estimate the covariance matrix of the MLEs
and to incorporate explanatory variables. Furthermore, as seen in other contexts (e.g.,
forcing positive variance component estimates), the EM algorithm automatically satisfies
certain constraints that are more complicated to implement with other methods. Though the
example and some of the terminology focused on dose-response analysis of toxicology data,
the proposed EM algorithm has general applications for various binary outcomes observed
in a broad range of research areas. For instance, consider a clinical trial evaluating a new
therapy where the probability of disease remission generally increases with dose, but some
patients improve even if not treated, while others regress no matter how high the dose. Or,
consider an agricultural study of an herbicide, where the death rates of targeted plants
generally increase with dose, but some plants may die from causes unrelated to the
herbicide, while others may appear resistant within the range of doses applied. The proposed
EM algorithm should handle these situations and many others.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Probability of response as a function of dose for the selenocysteine data. The empirical
response rate for each dose group is shown by a diamond, the dose-response curve fitted
under a 4-parameter Hill model is shown by a solid curve, and the pointwise 95%
confidence bands are shown by dashed curves.
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