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ABSTRACT

Motivation: The genetic basis of complex traits often involves
the function of multiple genetic factors, their interactions and the
interaction between the genetic and environmental factors. Gene–
environment (G×E) interaction is considered pivotal in determining
trait variations and susceptibility of many genetic disorders such as
neurodegenerative diseases or mental disorders. Regression-based
methods assuming a linear relationship between a disease response
and the genetic and environmental factors as well as their interaction
is the commonly used approach in detecting G×E interaction. The
linearity assumption, however, could be easily violated due to non-
linear genetic penetrance which induces non-linear G×E interaction.
Results: In this work, we propose to relax the linear G×E assumption
and allow for non-linear G×E interaction under a varying coefficient
model framework. We propose to estimate the varying coefficients
with regression spline technique. The model allows one to assess
the non-linear penetrance of a genetic variant under different
environmental stimuli, therefore help us to gain novel insights into
the etiology of a complex disease. Several statistical tests are
proposed for a complete dissection of G×E interaction. A wild
bootstrap method is adopted to assess the statistical significance.
Both simulation and real data analysis demonstrate the power and
utility of the proposed method. Our method provides a powerful and
testable framework for assessing non-linear G×E interaction.
Contact: cui@stt.msu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The genetic basis of a complex trait often involves multiple genetic
factors functioning in a coordinated manner. The extent on how our
genetic blueprint expresses also depends on the interactions between
genetic and environmental factors. Increasing evidences have shown
that gene–environment (G×E) interactions play pivotal roles in
determining the risk of diseases, for instance, the psychiatric diseases
(reviewed in Caspi and Moffitt, 2006), the neurodegenerative and
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cardiovascular diseases (Costa and Eaton, 2006), and cancer (Ulrich
et al., 1999). Due to the complex nature of the form and mechanism
of G×E interaction in different living organisms, hunting down the
molecular machinery of G×E interaction has been a daunting task in
the post-genomic era. There is a pressing need in developing efficient
and powerful statistical methods for a rigorous investigation of G×E
interaction.

G×E interaction refers to how genotypes influence phenotypes
differently in different environments (Falconer, 1952). From a
biological point of view, G×E interaction can be better viewed as
the genetic responses to environment changes or stresses (Hoffmann
and Parsons,1991; McClintock, 1984). In a typical G×E interaction
study design, environment is often defined as different conditions
coded as a discrete variable in a statistical model. For example, in
a study of G×E interaction related to lung cancer, smoking status
can be defined as an environment condition coded as 1 (smoking) or
0 (no smoking). In many other studies, the environment condition
is defined as a continuous measure. For one example, studies show
that ∼80% of type II diabetes and 70% of cardiovascular disease
are related to obesity [defined by body mass index (BMI)]. To
track down genetic factors responsible for diabetes or cardiovascular
disease, obesity can be defined as an environment factor that may
induce or reduce the expression of particular genes to affect the
disease status. The contribution of the same gene to a disease status
may be largely different under different BMI levels. As another
example, the peak bone mineral density (BMD) in adulthood varies
a lot across different age groups. The amount of nutrition intake (e.g.
vitamin D) is also an important environment factor influencing the
variation of BMD (Peacock et al., 2002). Individuals carrying the
same gene may respond differently to the rate of density decrease
as they get older. Also the peak BMD measure may vary a lot
across groups with different nutrition intake, potentially due to the
interaction of specific genes with the amount of nutrition intake (e.g.
vitamin D).

Statistical methods for testing G×E interaction can be broadly
categorized into two areas: the model-based method, either
parametrically, non-parametrically or semi-parametrically (e.g.
Chatterjee and Carroll 2005; Guo 2000; Kraft et al.,. 2007; Maity
et al.,. 2009), and the model-free method such as the multifactor
dimensionality reduction method (Hahn et al., 2003). In a model-
based regression framework, traditional parametric methods need
strong model assumptions such as assuming linear G×E interaction
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as given in model (1). This assumption, however, could be easily
violated due to the underlying nonlinear machinery between the
genetic and environment factors. Mis-specification in parametric
models could lead to large bias. Non-parametric modeling as an
alternative way reduces modeling bias by imposing no specific
model structure and enables people to explore the data more
flexibly at the cost of interpretability. The information about the
relationship between the dependent and independent variables from
the estimates is often difficult to interpret. Moreover, the variances
of the resulting estimates tend to be unacceptably large when the
dimension of the covariates is high, which is the so-called ‘curse
of dimensionality’. To overcome these difficulties, many different
semi-parametric models have been proposed and developed, among
which varying coefficient (VC) models have gained considerable
attention in recent years and are becoming very popular in data
analysis, see for example, the work of Cleveland et al. (1991), Hastie
and Tibshirani (1993), Hoover et al. (1998), Fan and Zhang (1999),
Cai et al. (2000), Fan and Zhang (2000), Huang et al. (2004) among
others. VC models as natural extensions of linear models allow the
coefficients to change smoothly with the value of other variables so
that one can explore dynamic feature of datasets successfully with
good interpretability and flexibility. See Fan and Zhang (2008) for a
detailed review. In this article, we apply varying coefficient models
to investigate G×E interactions.

In G×E interaction problems, one is interested in understanding
how genes respond differently across different environment
conditions in determining the variation of a trait or the risk of a
disease. We focus our attention to environment conditions measured
on a continuous scale. From a statistical point of view, ‘interaction’
is typically modeled as a product term. A simple model to detect
interaction would be a simple linear regression model with the form

Y =α0 +α1X +β1G+β2XG+ε, (1)

where Y is the phenotypic response; α0 is the overall mean; α1 and
β1 are the effects of the environment (X) and genetic (G) variables,
respectively; β2 is the effect for G×E interaction; and ε is the error
term with mean 0 and variance σ2. A simple rearrangement of model
(1 ) leads to

Y =α0 +α1X +(β1 +β2X)G+ε. (2)

With this representation, it is clear that the contribution of a gene to
the variation of a phenotype Y is restricted to a linear function in X.
The form and pattern of the responses are typically unknown and
may not follow a linear relationship as described in model (1).

In addressing the limitation of the linear model assumption in
dissecting the role of a gene under different environment conditions,
one can relax the linearity assumption of G×E interaction and allow
for a non-linear interaction by replacing the linear G×E interaction
coefficient β1 +β2X in model (2) by a smooth non-linear function
β(X) and apply a VC model to detect non-linear G×E interaction.
A VC model has the form

Y =α (X )+β (X )G+σ (X )ε, (3)

for given covariates (X,G )T and the response Y with E (ε|X,G )=0
and Var (ε|X,G )=1. β (X ) is a smoothing function in X and
σ2 (X )=Var (Y |X,G ) is the conditional variance function. Under
the VC modeling framework, the effect of a gene is allowed to vary
as a function of environmental factors, either linearly or non-linearly,

captured by the model itself. Thus, the VC model has the potential
to dissect the non-linear penetrance of genetic variants.

Methods for the estimation of VC models have flourished in
the literature, which can be grouped into three categories. One is
local polynomial kernel smoothing, see Fan and Zhang (1999), Xia
and Li (1999) and Cai et al. (2000). One is spline-based method,
see Huang et al. (2004) for polynomial spline, and Hoover et al.
(1998) and Chiang et al. (2001) for smoothing spline. The last one is
wavelet estimation, see Zhou and You (2004). In this work, we adopt
the polynomial spline approach in Huang et al. (2004) to estimate
the coefficient functions β(·) for several major reasons. First, the
coefficient functions are approximated by a linear combination of
B-spline basis functions, which provides a simple global solution
to estimation and inference for VC models, and great flexibility
is achieved by using different basis expansions for approximating
different coefficient functions, which are stated in Huang et al.
(2004). Secondly, because of its global nature in computation,
B-splines are computationally expedient compared with kernel-
based methods, which is much necessary for analyzing high-
dimensional genetic data with hundreds of thousands of markers.
Moreover, it is theoretically reliable guarded by the asymptotic
consistency and normality property of the spline estimator β̂ (· ),
see Huang et al. (2004).

Besides estimation, to test whether the coefficient function of
β (X ) in model (3) is significantly different from zero or a constant
or has a presumed parametric form is also of our interest. Because
of the distribution-free nature of semi-parametric models, the
likelihood ratio test for traditional parametric models cannot be
applied. We adopt the wild bootstrapping approach as in Härdle
and Mammen (1993) to assess the significance of the tests. The
integrated squared difference between the parametric and the non-
parametric functional estimates is used as a test statistic, and the
critical value is determined by the bootstrap method described in
Härdle and Mammen (1993).

The article is organized as follows. In Section 2, we introduce
the methodology of applying VC models to genetic data to detect
G×E interaction. We introduce the B-spline fitting technique and
its necessary notations. We introduce the test statistics for the
hypothesis testing evaluated by the wild bootstrap strategy. In
Section 3, we study the finite sample properties of the proposed
procedure using the simulated example. Furthermore, the utility of
the method is illustrated through the analysis of a real dataset detailed
in Section 4, followed by the discussion in Section 5.

2 STATISTICAL METHODS

2.1 A two-parameter VC model
In model (3), we only consider the additive effect of a genetic variant.
In real life, we do not know the true gene action mode, hence a
more flexible model is to consider both additive and dominance
penetrance effects. We assume a continuous response variable Y
which is a function of an environment variable X and the additive
and dominance scales G1 and G2 of a genetic factor. Each genetic
factor has three possible genotype categories represented by AA,
Aa and aa. The three genotype categories can be coded as 1, 0
and −1 for the additive scale G1, and as −1/2, 1/2 and −1/2
for the dominance scale G2, corresponding to genotypes AA, Aa
and aa, respectively. We assume allele A is the minor allele with
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its frequency represented by pA. We model the coefficients of
G1 ∈ (1,0,−1 ) and G2 ∈ (−1/2,1/2,−1/2 ) for each genetic factor
as smooth functions of the environment variable X. Since our
major interests are the estimation and inference about the coefficient
functions for G1 and G2, for simplicity we impose a linear structure
on the intercept function α (X ) defined in model (3) by letting
α (X )= α0 +α1X, although a non-parametric smooth function can
also be fitted. Thus, the redefined VC model is given as

Y =α0 +α1X +β1 (X )G1 +β2 (X )G2 +σ (X )ε, (4)

for given covariates (X,G1,G2 ), with E (ε|X,G1,G2 )=0,
Var (ε|X,G1,G2 )=1 and the conditional mean function of Y given
X, G1 and G2 is E (Y |X,G1,G2 )=m (X,G1,G2 )=α0 +α1 (X )+
β1 (X )G1 +β2 (X )G2. The same model is fitted separately for each
marker, followed by multiple testing corrections. The two-parameter
model given in (4) is not only biologically more meaningful than
the one-parameter model given in (3), but also statistically attractive
since it is invariant to allele coding (i.e. whether code AA as 1 or
code aa as 1 for variable G1).

Remark: varying coefficient models can be considered as locally
linear models. By assuming specific expressions for β1 (· ) and
β2 (· ), model (4) would become a parametric model. For example,
by letting β1 (X )=β1 +β3X , and β2 (X )=β2 +β4X, where β1, β2,
β3 and β4 are constants, model (4) can be written as

Y =α0 +α1X +β1G1 +β2G2 +β3XG1 +β4XG2 +σ(X)ε, (5)

which is a linear regression model with main effects for X and
(G1,G2 ) as well as their interaction effects (denoted hereafter as
LM-I). If we assume a homogeneous residual variance, this is
the commonly applied linear regression model for testing G×E
interaction which reduces to model (1) if only additive effect is
considered. If we impose a constant structure on β1(X) and β2(X),
i.e. β1(X)=β1 and β2(X)=β2, then model (4) is reduced to

Y =α0 +α1X +β1G1 +β2G2 +σ(X)ε, (6)

which is a linear regression model without the interaction terms
(denoted hereafter as LM). Therefore, the traditional linear
regression model for testing G×E interaction is a special case of
model (4).

Although, their properties are very well established, the
conventional parametric approaches are infeasible in this case, since
the functional forms of β1 (· ) and β2 (· ) are unknown to us due to
the complexity of the underlying interaction mechanism. Any mis-
specification of the model would lead to uncertainty estimates and
low power (see Fig. 1 in Section 3 Monte Carlo simulation). By
relaxing the linear assumption for the coefficients β1(X) and β2(X),
model (4) has much flexibility to capture the non-linear penetrance
of a genetic variant under different environmental stimuli, thus
ensures the power of the proposed VC model in detecting non-
linear G×E interactions. In this article, we apply the B-spline
smoothing technique to estimate β1 (· ) and β2(·), which solves
only one least squares problem to get the estimators. The great
advantages of B-spline estimation are simple implementation and
fast computation.

As in most works on non-parametric smoothing, estimation of the
functional coefficients β1 (· ) and β2(·) is conducted on a compact
interval [a,b ]. In this article, we denote the space of p-th order

smooth function on [a,b ] as C (p ) [a,b ]=
{

g
∣∣∣g (p ) ∈C [a,b ]

}
, and

C [a,b ] is the space of continuous functions on [a,b].
We make the following assumptions on the functional coefficient

model, where Assumptions (A1)–(A3) are identical with (A1), (A4)
and (A5) in Härdle and Mammen (1993), while Assumption (A4) is
the same as (A1) in Wang and Yang (2009):

(A1) The marginal density f (· ) of X is bounded away from zero
and f (· )∈C [a,b].

(A2) σ2 (· )=Var (Y |X =x,G ) is bounded away from 0 and ∞.

(A3) E[exp (tε )] is bounded for |t| small enough.

(A4) For k =1,2, βk (x )∈C (q ) [a,b], for a given integer q≥1, and
the spline order p satisfies p≥q.

2.2 Parameter estimation
Given a random sample { (Xi,Gi,Yi )}n

i=1 from model (4), the
polynomial spline modeling is adopted to estimate β (· ). Let Fn
be the space of polynomial splines of order p≥1. We introduce a
knot sequence with Nn interior knots

k− (p−1 ) = ...=k−1 =k0 =a<k1 <

... < kN <b=kN+1 = ...=kN+p,

where N ≡Nn increases when sample size n increases, and the
precise order is given in Assumption (A5). Then Fn consists of
functions � satisfying (i) � is a polynomial of degree p−1 on each
of the subintervals Is =[

ks,ks+1 ), s=0,...,Nn −1, INn =[
kNn

,b
]
;

and (ii) for p≥2, � is p−2 time continuously differentiable on
[a,b]. Let Jn =Nn +p, where Nn is the number of interior knots. We
define the normalized B-spline basis as {Bs :1≤s≤Jn}T as given
in Wang and Yang (2009). Equally spaced knots are used in this
article for simplicity. The distance between neighboring interior or
boundary knots is h=hn = (b−a ) (Nn +1 )−1. For positive numbers
an and bn and for n≥1, let an ∼bn mean that limn→∞an/bn =c,
where c is some non-zero constant. The number of interior knots
satisfy Assumption (A5) below.

(A5) The number of interior knots N =Nn ∼n1/ (2p+1 ), i.e.
cN n1/ (2p+1 ) ≤N ≤CN n1/ (2p+1 ) for some positive constants
cN and CN .

For each marker, and k =1,2, the coefficients βk (x ) is
estimated by β̂k (x )≡∑Jn

s=1 λ̂s,kBs (x ) where the coefficients{
(α̂0,α̂1,λ̂s,1,λ̂s,2 )1≤s≤Jn

}T are solutions of the following least
squares problem

argmin{ (α0,α1,λs,1,λs,2 )1≤s≤Jn }∈R2Jn+2

∑n

i=1
{Yi −α0 −α1Xi

−
∑2

k=1

∑Jn

s=1
λs,kBs (Xi )Gki

}2
. (7)

2.3 Number of knots N and spline order p selection
For the proposed model, it is necessary to select appropriate knots
and spline order to avoid over- and undersmoothing. For simplicity,
we assume the same spline basis {Bs :1≤s≤Jn}T to approximate the
coefficient functions β1 (x ) and β2 (x ), even though the spline order
and knots can be different for the two functions. We use the Bayesian
information criterion (BIC) criteria to select the ‘optimal’N , denoted
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by N̂opt, from
{

max
([

0.5n1/ (2p+1 )
]
,1

)
,
[
1.5n1/ (2p+1 )

]}
, where

[b] denotes an integer part of b, and the ‘optimal’ order p for the
spline basis, denoted by p̂opt, from (3,4 ), which minimize the
BIC value BIC (N,p )= log (̂σ2 )+ (N +p )log (n )/n, where σ̂2 =∑n

i=1 {Yi −m̂F (Xi,G1i,G2i )}2/n. p=3 and 4 are the orders for
quadratic and cubic splines, respectively. A grid search for the
combination of hypothesized values for N and p can be done and
the values of N and p corresponding to the minimum of the BIC
values are the ‘optimal’ results.

2.4 Hypothesis testing
Before we test possible G×E interaction, the first step is to assess
whether a genetic marker is associated with a phenotype. This can
be done by formulating the hypotheses⎧⎨

⎩
H0 :β1 (· )=β2 (· )=0

H1 :at least one functional coefficient is not zero
(8)

If the null is rejected, then we test significance of the additive effect
(G1 ) and the dominance effect (G2 ), by formulating the hypotheses⎧⎨

⎩
Ha

0 :β1 (· )=0

Ha
1 : β1 (· ) 	=0

, and

⎧⎨
⎩

Hd
0 :β2 (· )=0

Hd
1 : β2 (· ) 	=0

(9)

When either the null in (9) is rejected, we then test if the coefficient
functions β1 (X ) and β2 (X ) in model (4) are varying or not. The
hypotheses for this test are formulated by⎧⎨

⎩
HVC

0 :βk (· )=βk , for k =1,2

HVC
1 :not null

(10)

where βk , k =1,2, are unknown constants, for the selected genetic
markers from the first step. Under HVC

0 , the reduced model can
be written as Y =α0 +α1X +β1G1 +β2G2 +σ (X )ε, which implies
that there is no G×E interaction. Thus, Hypothesis (10) is essentially
a test for G×E interaction. Upon rejecting the null, one can also
proceed to test HL

0 : β1(X)=β1 +β3X and β2(X)=β2 +β4X. Under

HL
0 , the reduced models can be written as Y =α0 +α1X +β1G1 +

β2G2 +β3G1X +β4G2X +σ (X )ε, a model commonly applied for
assessing linear G×E interaction assuming both additive and
dominance effects. Rejecting the null implies non-linear G×E
interaction.

2.5 Wild bootstrap to assess statistical significance
Note that the current model does not assume any specific
distribution for the error term ε, thus there is no likelihood
function for the data. Borrowing the idea from Härdle and
Mammen (1993), we use the integrated squared deviation between
the estimators denoted by m̂F (· ) and m̂R (· ) of m (X,G1,G2 )
for the full and reduced models as the test statistic, which
would be Tn =∑n

i=1 {m̂F (Xi,G1i,G2i )−m̂R (Xi,G1i,G2i )}2/n,
where { (Xi,G1i,G2i,Yi ),i=1,...,n} is a random sample of
(X,G1,G2,Y ). For the superiority of Tn over other goodness-of-
fit tests, see the discussion in Härdle and Mammen (1993). The
authors pointed out that a way of computing critical values could
possibly be based on resampling from the entire dataset. However, it
was shown that this bootstrapping method (the classical bootstrap)
failed, since the bootstrapped statistic does not have the same limit

behavior. Thus, a new variant of the bootstrap method called wild
bootstrap was proposed, which is adopted in this work.

For the i-th observation, recall that m̂R (Xi,G1i,G2i ) and
m̂F (Xi,G1i,G2i ) are the estimators of m (Xi,G1i,G2i ) for
the reduced and full model, respectively. As discussed
in Härdle and Mammen (1993), in order to mimic the
i.i.d. structure of (Xi,G1i,G2i,Yi ), we need to construct
the bootstrap procedure so that E∗ (Y∗

i

∣∣X∗,G∗
1i,G

∗
2i )=

m̂R (X∗,G∗
1i,G

∗
2i ), where

{
(X∗

i ,G∗
1i,G

∗
2i,Y

∗
i )

}n
i=1 is the

bootstrap sample drawn from the set { (Xi,G1i,G2i,Yi )}n
i=1.

For this purpose, we define ε̃i =Yi −m̂F (Xi,G1i,G2i ) and
construct ε∗

i =Uĩεi, where Ui is a two-point distributed
random variable independent of (Xi,G1i,G2i,Yi ) satisfying
Ui =1/2−√

5/2 with probability (1+√
5 )/ (2

√
5 ),

Ui =1/2+√
5/2 with probability 1− (1+√

5 )/ (2
√

5 ). By
simple calculation, we obtain that E (ε∗

i |Xi,G1i,G2i )=0,

E (ε∗2
i |Xi,G1i,G2i )= ε̃2

i and E (ε∗3
i |Xi,G1i,G2i )= ε̃3

i . Then
we use (Xi,G1i,G2i,Y

∗
i = m̂R (Xi,G1i,G2i )+ε∗

i ) as bootstrap
observations and create T ∗,W like Tn by the squared
deviation between the coefficient estimators under H0 and
H1. From the Monte Carlo approximation of L∗ (T ∗,W

l )=
L (T ∗,W

∣∣ (Xi,G1i,G2i )n
i=1 ), then the P-value pv is obtained

by finding the (1−pv )-th quantile t̂Wv which satisfies t̂Wv =Tn.
Multiple testing should be then adjusted among the tests for all
markers using a method such as the false discovery rate (FDR)
procedure (Benjamini and Hochberg, 1995).

3 MONTE CARLO SIMULATION
A continuous environment measure (e.g. age, diet and body mass),
denoted as X, was generated from a normal distribution. Then
we transformed X by Z =�{ (X −µX )/σX } in order to make
X distributed more evenly on each subinterval Is, where µX
and σX are the mean and SD of X, estimated by the sample
mean and SD, and � (· ) is the cumulative distribution function
for the standard normal. We then used the transformed Z to
generate the B-spline basis. For k =1,2, βk (x ) was estimated by
β̂k (x )≡∑Jn

s=1 λ̂k,sBs [�{ (x−µX )/σX }]=∑Jn
s=1 λ̂k,sB∗

s (x ) where

the coefficients
{

(̂α0,α̂1,λ̂1,s,λ̂2,s )1≤s≤Jn

}T are solutions of the
least squares problem given in Equation (7).

Given a minor allele frequency (MAF) of pA and assuming
Hardy–Weinberg equilibrium, SNP genotypes (AA, Aa and aa)
were simulated from a multinomial distribution with frequency (p2

A,

2pA(1−pA), (1−pA)2) for (AA, Aa, aa). The genetic variables G1i
and G2i were coded as (1,0,−1) and (− 1

2 , 1
2 ,− 1

2 ) for genotypes
(AA, Aa, aa), respectively, following an orthogonal quantitative
genetic model (Cockerham, 1954). The random error term εi was
simulated from N (0,1 ). Different sample sizes (i.e., n=200, 500,
1000), and different heritability levels (i.e., H2 =0.01,0.03,0.05)
were assumed. For a given genetic effect and a heritability level,
σ(Xi) varies for different Xi, and detailed calculation can be found
in the following sections. Data were simulated assuming different
gene action modes and were subsequently analyzed by three models,
i.e., the proposed VC model, the linear regression model without
interaction (denoted as LM), and the linear regression model with
interaction (denoted as LM-I). The likelihood ratio test was applied
to evaluate the power for testing H0 :β1 =β2 =0 for the LM model
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Table 1. The lists of SNPs with P < 0.005 when fitting the data with three different models (VC, LM and LM-I)

SNP ID Gene name Location P_VC P_const P_linear P_LM P_LMi P_i

Fitted with VC model
rs8178750* PLAT Intron 6a 1E-05 <1E-05 3E-05 0.8827 0.0823 0.0182
rs9622979 PDGFB Intron 2 0.0008 0.0034 0.0056 0.0655 0.0471 0.1237
rs11701 ANG Exon 1 0.0013 0.0041 0.0156 0.0930 0.0477 0.0883
rs17876032 F12 Intron 10 0.0018 0.0071 0.0074 0.0234 0.0070 0.0369
634043245a FGF4 Exon 3 0.0019 0.0046 0.0016 0.0808 0.1452 0.4070
rs12722477 HLA-G Exon 3 0.0020 0.0120 0.0239 0.0089 0.0029 0.0360
rs2301643 COL1A2 Intron 28 0.0024 0.0103 0.0038 0.0182 0.0222 0.1811
rs2242213 FLT4 Intron 13 0.0027 0.0017 0.0452 0.4106 0.0090 0.0028
rs383483 IL12RB1 Intron 15 0.0027 0.0011 9E-05 0.8376 0.5946 0.2968
rs2521206 COL1A2 Intron 19 0.0038 0.0254 0.0381 0.0148 0.0066 0.0544
rs5743836 TLR9 Promoter 0.0048 0.0243 0.1250 0.0061 0.0053 0.1040

Fitted with LM model
rs1143634 IL1B Exon 5 0.0053 0.1818 – 0.0006 – –
rs3783550 IL1A Intron 6 0.0213 0.629 – 0.0007 – –
rs17231534 CETP Intron 1 0.0056 0.2073 – 0.0020 – –

Fitted with LM-I model
rs2069882* IL9 Intron 4 0.0024 0.0477 0.4773 0.0009 4.9E-05 0.0039
rs16944 IL1B Promoter 0.0011 0.0019 0.2477 0.0899 0.0005 0.0005
rs3740938 MMP8 Exon 6 0.0014 0.0009 0.1249 0.4743 0.0009 0.0002
rs9332607 F5 Exon 13 0.0038 0.0237 0.0965 0.0178 0.0032 0.0201
rs439154 IL1RN Intron 2 0.0314 0.0136 0.4848 0.9035 0.0041 0.0005
rs2296849 COL4A2 Intron 37 0.0154 0.013 0.1005 0.2072 0.0044 0.0025

aSNP not in dbSNP. Note: P_VC is the P-value for testing hypothesis (8); P_const is the P-value for testing hypothesis (10); P_linear is the P-value for testing linear coefficient
(HL

0 ); P_LM is the P-value for testing H0: β1 =β2 =0 for fitting a linear model without interaction; P_LMi is the P-value for testing a genetic effect when fitting a linear model
with interaction [model (5)], i.e. H0: β1 =β2 =β3 =β4 =0; P_i is the P-value for testing H0: β3 =β4 =0 with model (5), a 2 df likelihood ratio test. SNPs shown significance after
the FDR control method (Benjamini and Hochberg, 1995) are indicated by *.

and H0 :β1 =β2 =β3 =β4 =0 for the LM-I model. The likelihood
ratio statistics follows a chi-square distribution with 2 and 4 degrees
of freedom for the two models. Wild bootstrap was applied to assess
the test significance of the VC model.

We generated the phenotype data assuming the following VC
model

Yi =α0 +α1Xi +β1 (Xi )G1i +β2 (Xi )G2i +σ (Xi )εi

where α0 =3.0, α1 =0.1 and β1 (x ) and β2 (x ) were generated
from the B-spline basis functions such that β1 (x )=∑4

s=1λ1sBs (x )

and β2 (x )=∑4
s=1λ2sBs (x ), in which λ11 =−0.53, λ12 =0.31

λ13 =−0.44, λ14 =0.50, λ21 =−0.87, λ22 =0.71, λ23 =−1.27
and λ24 =1.15. These spline coefficients were calculated from
Equation (7) based on SNP 22 265 753 from a real dataset
(Table 1). The reason we generated β(X) this way is to
mimic real data, even though we could generate β(X) from a
parametric function such as a sin or a polynomial function. The
variance function σ2 (x ) was obtained by solving H2 =VG/(VG +
VE ), where H2 is the heritability level; VG (x ) =β2

1 (x )var (G1 )

+β2
2 (x )var (G2 ) +2β1 (x )β2 (x )cov (G1,G2 ) is the genetic variance

in which var (G1 )=2pA (1−pA ), var (G2 )=1/4{1− (2pA −1 )4},
and cov (G1,G2 )=2pA (1−pA ) (2pA −1 ); and VE =σ2(x). Simple
algebra shows that H2 =[1+σ2 (x )/VG (x )]−1, which gives
σ2 (x )= (1/H2 −1 )VG (x ). Assuming different heritability levels,
i.e. H2 =0.01, 0.03, 0.05, the phenotype Yi can be generated
assuming εi ∼N(0,1). As can be seen that the genetic variance is
a function of the MAF, so does for the residual variance σ(X).

For a fixed MAF, the residual variance decreases as the heritability
increases. Thus, we expect high power under high H2 value.
However, due to the way we defined the calculation of VG, it is
no longer true that σ(X) decreases as the MAF increases for a
fixed H2 level. So the power no longer monotonically increases
with the increase of the MAF as usually assumed in human genetic
association studies. Based on the estimated frequency (pA =0.08)
of the SNP from the real data, we fixed the allele frequency
and evaluated the power performance of the three methods under
different heritability levels. Empirical power was recorded based on
1000 simulation repetitions, each with 10 000 bootstrapped samples.

Figure 1 shows that the testing power increases as the sample
size n and heritability level H2 increase for the three models. For
a fixed genetic effect, large heritability level leads to small residual
variance, and consequently leads to increased power. It is clear
that the VC model outperforms the other two models in all cases.
Since the linear model with interaction (LM-I) is closer to the VC
model in structure, it achieves higher power than the linear model
without interaction (LM). The simulation results indicate that when
the nature of the G×E interaction is non-linear, i.e. when a variant
shows a strong non-linear penetrance effect, a mis-specification of
an analytical model assuming a linear structure suffers tremendously
from power loss.

We also evaluated the performance of the VC model when the
underlying true interaction follows a linear structure or no interaction
at all. False positive control of the methods were also studied
(see Supplementary Material). Here, we provide a summary of
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Fig. 1. The power plot under different sample sizes and heritability levels
for the three methods. Data were generated with the VC model and were
analyzed with the VC, LM and LM-I models.

the simulation: (i) when the underlying true interaction model is
non-linear, the proposed VC model has the highest power among the
three. The other two parametric linear models suffer tremendously
from power loss (Fig. 1); (ii) when the underlying true model is linear
with or without interaction, the linear model assuming interaction
or no interaction has the best power. However, as the sample size
and heritability level increase, the power difference between the
VC model and the other two decreases significantly; and (iii) in
real data analysis, the VC model cannot substitute the other two
models before we know the true functional effect. We can first
do a hypothesis testing to check if the coefficient functions βk(X),
k =1,2, are constant or linear in X , then apply the optimal model in
the analysis. The non-linear VC model would be the choice if the
constant or linear function is rejected. Otherwise, a linear model is
suggested, especially when sample size is small.

4 REAL DATA ANALYSIS
We applied the method to a real dataset which contains 1536
new born babies, recruited through the Department of Obstetrics
and Gynecology at Sotero del Rio Hospital in Puente Alto, Chile.
Total 648 single nucleotide polymorphisms (SNPs) covering 189
unique genes were analyzed after eliminating SNPs with MAF
<0.05 and those departure from Hardy–Weinberg equilibrium. When
fitting to the VC model, we found that the spline design matrix
could be singular when there are extremely unbalanced genotype
distributions, especially when only two genotypes categories were
present for an SNP. Thus, we eliminated additional 143 SNPs
and only 505 SNPs were included in our analysis. (Note that the
143 SNPs can also be analyzed by fitting a one-parameter VC
model assuming only additive effect. To demonstrate the model
application, we omitted the results of the 143 SNPs.) Phenotypes
were initially dichotomized as small for gestational age (SGA) or
large for gestational age (LGA) depending on the babies’ birth
weight and the mother’s gestational age. The initial study were
designed to identify genetic risk factors associated with SGA or
LGA. We took the original birth weight (kg) measure as the response
and merged the two datasets together to form one dataset for an
analysis.

It is postulated that baby’s birth weight might be related to
mother’s body mass index (MBMI). When a baby resides inside
of its mother’s womb, the environmental conditions are defined
through its mother, for instance, mother’s age and obesity condition
(measured by MBMI). Under different environmental stimuli (e.g.

A B

C D

Fig. 2. The plot shows: (A) the fitted birth weight (kg) for the three genotype
categories; (B) the estimated heritability value Ĥ2; (C) the VC function
β̂1(X); and (D) the VC function β̂2(X), against MBMI for SNP rs9622979
located in gene PDGFB. The horizontal dashed line in (A) denotes the
sample mean.

MBMI), fetus carrying the same genes might trigger different
responses, consequently leading to different birth weights. This is
due to the complex interaction between a mother’s obesity condition
and fetus’ genes. With the combined data, we were interested in
identifying genetic factors that can explain the normal variation of
birth weight, and if any, influenced by MBMI. The results were
tabulated in Table 1. Additional information for real data analysis
can be found in Supplementary Material.

The first three columns list the SNP ID, the gene and location
each SNP belongs to. When we applied the FDR control method
(Benjamini and Hochberg, 1995), only two SNP showed statistical
significance (indicated by * in Table 1). To illustrate the method, we
also listed SNPs with P-values that are <0.005. The P-values for the
overall genetic effect tests, i.e. H0: β1 (· )=β2 (· )=0, are given in
the column denoted by P_VC, P_LM and P_LMi when fitting the
data with the VC, LM and LM-I models, respectively. The upper
panel shows the results with the VC model fit. Testing constant
coefficients (HVC

0 ) indicates that the function of these SNPs does

vary across MBMI (P_const<0.05). Further tests (HL
0 ) show that

the function of these SNPs do not follow a linear structure either.
Therefore, it is not surprising that the P-values obtained with the
VC model are all smaller than the ones obtained by fitting the LM
and LM-I models.

SNPs with P<0.005 when fitting the LM model are listed in the
middle panel of the table. Testing results show that the coefficients of
these three SNPs do not vary across MBMI (P_const>0.05). Thus,
we observed the smallest P-values for the three SNPs when they
were fitted with the LM model. The bottom panel lists six SNPs
when the best fitting model is the LM-I model (P_LMi<0.005).
As a result, the smallest P-values were observed for the six SNPs
when fitted with the LM-I model. Testing linear interaction indicates
that the six SNPs do have strong interaction effects (P_i<0.05).
In summary, the real data analysis results are consistent with the
simulation results in which optimal P-value is always obtained by
fitting the data with the ‘true’ model. If we only fit the data with a
linear model with or without interaction, we could potentially miss
the ones detected by the VC model.
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We picked SNP rs9622979 located in gene PDGFB as an
example to further demonstrate the performance of the VC model.
Figure 2A plots the fitted baby’s birth weight (in kg) against
MBMI for individuals carrying different genotypes. The three curves
correspond to the fitted BW for three different genotypes. The
sample mean is indicated by the dashed straight line. The minor allele
for this SNP is T and the estimated MAF is 0.1. From the fitted plot,
we can see the non-linear interaction effect between this SNP and
MBMI on infant’s birth weight. When MBMI is low, infants carrying
genotype CC have low birth weight, but not for those carrying the
other two types of genotype.As MBMI increases, mother’s body size
has a positive effect on infant’s birth weight, so we saw a slightly
increasing trend for infant birth weight. However, infants carrying
different genotypes show a clearly different response pattern on
birth weight corresponding to the increase of MBMI. For example,
infants carrying genotype TT show a sharp increase in their body
weight compared with other two genotypes as MBMI passing 25. So
mother’s obesity condition triggers a stronger effect on TT genotypes
than the other two genotypes.

Figure 2B plots the heritability estimation under different
mother’s BMI conditions. The plot also shows the non-linear
penetrance of the variant under different MBMI conditions. Strong
penetrance effects (corresponding to large H2 values) are observed
when MBMI is between 25 and 30. The genetic effect (penetrance)
tends to stabilize when MBMI reaches 35. This result fits to
our intuition as we do not expect a fetus grow unlimited when
mother’s body size increases. If the phenotype of interest is a disease
status measurement, prevention efforts should be geared toward
those environment conditions corresponding to large heritability
estimate.

The spline estimators β̂k (· ) of the coefficient functions βk (· ),
k =1,2 are plotted in Figure 2C and D. It is clearly seen that β̂k (x ),
k =1,2, does vary across MBMI. The additive effect β1(X) shows
a quadratic pattern and levels off as MBMI passes 33. This implies
that the additive effect of this SNP variant approaches a limit for
obese mothers (MBMI>33), so does for the dominance effect but
with a more varying pattern of effect under low MBMI. Due to the
non-linear penetrance effect of this SNP under different environment
stimuli (measured by mother’s obese condition), this SNP could be
missed if we fitted the data with the traditional linear interaction
model. This example demonstrates the advantage of the VC model
in the identification of important genetic variants with non-linear
penetrance under different environment stimuli.

5 DISCUSSION
The natural variation of a quantitative phenotype is not only
determined by the inherited genetic factors, but also can be explained
by how sensitive a genetic factor responds to environmental stimuli.
Gene–environment interaction, the genetic control of sensitivity to
environment, plays a pivotal role in determining trait variations. In
humans, most diseases results from a complex interaction between
an individual’s genetic blueprint and the associated environmental
condition. For example, type II diabetes and cardiovascular disease
are often due to the complex interaction between an individual’s
genes and obesity condition. The more we learn about how genes
interact with environment in determining trait variations and disease
risks, the more we can achieve in prevention and treatment of
illnesses.

The importance of G×E interaction in human disease has been
historically recognized (e.g. Costa and Eaton, 2006). Many statistical
methods have been proposed to target G×E interaction. In this
work, we relaxed the linear G×E interaction assumption, and
proposed a new method considering non-linear G×E interaction. We
focused our attention on environment with continuous measurement
(e.g. dietary intake, obesity condition and the amount of addictive
substances). We adopted the well-known VC model into a genetic
mapping framework and proposed to estimate the functional
coefficient by the non-parametric B-spline technique. The superior
performance of the VC model in detecting non-linear G×E
interaction has been demonstrated with extensive Monte Carlo
simulations. When the genetic contribution to the variation of
a phenotype varies largely across environmental conditions, the
proposed VC model achieves the optimal power compared with
models assuming constant or linear coefficient.

Although in theory, the B-spline estimator converges to the true
underlying function, depending on various factors, the VC model
may not achieve the optimal power when the true function is constant
or linear. In real data analysis, often the heritability level is unknown
before we fit a model. Thus, it is necessary to conduct a hypothesis
test to assess the true underlying functional coefficient. Based on
the results from simulation and real data analysis, we conclude that
the VC model cannot completely substitute the linear parametric
model in G×E analysis. Our practical recommendation is to do a
hypothesis test first to assess the function of the coefficients, then fit
the appropriate model. In many cases, linear or constant coefficients
are preferred, and a linear model can be fitted. Noted that the
estimation of the varying coefficients is essentially a least-squares
problem, hence is computationally fast. The computational cost
comes with the wild bootstrap procedure to assess the significance
of the coefficients. By first assessing the function of the coefficients,
we could save computation time dramatically.

We applied the method to a real dataset to identify genetic factors
interacting with mother’s MBI to explain the normal variation of
baby’s birth weight. We adopted a two-parameter model which
is biologically more attractive than a one-parameter model. We
found a few SNPs showing non-linear penetrance across different
environmental stimuli (i.e. different MBMI levels) (Table 1). Even
though only two SNPs showed statistical significance after multiple
testing adjustments following the FDR procedure (Benjamini and
Hochberg, 1995), we still found a few others with relatively
strong signals (P<0.005). In checking the function of the SNPs,
some of those are growth factors that are directly related to fetal
growth, for example, platelet-derived growth factor B (PDGFB) and
fibroblast growth factor 4 (FGF4). FGF4 is essential for mammalian
embryogenesis and fetal growth (Lamb and Rizzino, 1998). SNP
634043245 in exon 3 located in FGF4 was also identified by a
different model showing a strong dominance effect on small for
gestational age along with maternal body weight when searching
for genetic conflict effect (Li et al., 2009).

Like many other statistical methods in association analysis,
genotyping errors and missing data are certainly obvious issues as
pointed out by one referee. In the current analysis, we focused on
the model in a general setting. These issues need to be evaluated
with extensive simulations and will be considered in our future
work. In addition to these two issues, our method does not apply
to rare variants either. Further model development is needed to take
rare variants into consideration. For SNPs with highly unbalanced
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genotype distributions, a one-parameter additive model without the
dominance effect can be imposed if there is a singular issue in the
spline matrix during parameter estimation.

In this study, we focused on a continuous quantitative phenotype.
Extension to other types of phenotype such as a binary disease
phenotype is straightforward. A generalized linear model can be
adopted with appropriately chosen link function. However, the
estimation and inference procedure developed in this work cannot be
directly applied. Such investigation will be considered in our future
work.
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