
[15:37 14/7/2011 Bioinformatics-btr319.tex] Page: 2031 2031–2037

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 15 2011, pages 2031–2037
doi:10.1093/bioinformatics/btr319

Genome analysis Advance Access publication June 2, 2011

Comparative studies of de novo assembly tools for
next-generation sequencing technologies
Yong Lin1,2, Jian Li3, Hui Shen3, Lei Zhang1,2, Christopher J. Papasian2

and Hong-Wen Deng1,2,3,∗
1Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093,
P. R. China, 2School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108 and 3Department of
Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
70112, USA
Associate Editor: Alex Bateman

ABSTRACT

Motivation: Several new de novo assembly tools have been
developed recently to assemble short sequencing reads generated
by next-generation sequencing platforms. However, the performance
of these tools under various conditions has not been fully
investigated, and sufficient information is not currently available for
informed decisions to be made regarding the tool that would be
most likely to produce the best performance under a specific set
of conditions.
Results: We studied and compared the performance of commonly
used de novo assembly tools specifically designed for next-
generation sequencing data, including SSAKE, VCAKE, Euler-sr,
Edena, Velvet, ABySS and SOAPdenovo. Tools were compared
using several performance criteria, including N50 length, sequence
coverage and assembly accuracy. Various properties of read data,
including single-end/paired-end, sequence GC content, depth of
coverage and base calling error rates, were investigated for their
effects on the performance of different assembly tools. We also
compared the computation time and memory usage of these
seven tools. Based on the results of our comparison, the relative
performance of individual tools are summarized and tentative
guidelines for optimal selection of different assembly tools, under
different conditions, are provided.
Contact: hdeng2@tulane.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Recently developed next-generation sequencing platforms, such as
the Roche 454 GS-FLX System, Illumina Genome Analyzer and
HiSeq 2000 system, and ABI SOLiD™ System, have revolutionized
the field of biology and medical research (Schuster, 2008).
Compared to traditional Sanger sequencing technology (Bentley,
2006; Sanger et al., 1977), these new sequencing platforms generate
data much faster and produce much higher sequencing output,
while decreasing costs by more than a thousand fold (Shendure
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and Ji, 2008). The ability to rapidly generate enormous numbers of
sequence reads at markedly reduced prices has greatly extended the
scope of economically feasible sequencing projects. The prospect of
sequencing the entire human genome for a large number of samples
has become a reality.

These new sequencing technologies also pose tremendous
challenges to traditional de novo assembly tools designed for Sanger
sequencing, as they are incapable of handling the millions to billions
of short reads (35–400 bp each) generated by next-generation
sequencing platforms (Dohm et al., 2007). Therefore, several novel
de novo assembly tools have been developed, such as SSAKE
(Warren et al., 2007), VCAKE (Jeck et al., 2007), SHARCGS
(Dohm et al., 2007), Euler-sr (Chaisson and Pevzner, 2008), Edena
(Hernandez et al., 2008), Velvet (Zerbino and Birney, 2008), Celera
WGAAssembler (Miller et al., 2008), ABySS (Simpson et al., 2009)
and SOAPdenovo (Li et al., 2009).

With the recent introduction of multiple de novo assembly tools,
it has become necessary to systematically analyze their relative
performance under various conditions so that researchers can select
a tool that would produce optimal results according to the read
properties and their specific requirements. Zhang et al. (2011)
recently compared the performance of several of these tools for
assembling sequences of different species. Although they evaluated
multiple criteria such as runtime, RAM usage, N50 and assembly
accuracy, their results were based on simulation reads using only a
single depth of coverage (100×) and a single base call error rate
(1.0%). Further investigation is necessary to determine whether,
and how, these assembly tools are differentially affected by varying
depths of coverage, sequencing errors, read lengths and extent
of GC content of the sequence reads. Furthermore, the assembly
performance of SOAPdenovo (v1.05) has dramatically improved
for long read assembly. Consequently, sufficient information is not
currently available for informed decisions to be made regarding the
tool that would be most likely to produce the best results, based on
variations in the practical conditions identified above.

Accordingly, in this study, we systematically studied and
compared the performance of seven commonly used de novo
assembly tools for next-generation sequencing technologies, using
a number of metrics including N50 length (a standard measure
of assembly connectivity, to be more specifically defined later),
sequence coverage, assembly accuracy, computation time and
computer memory requirement and usage. To imitate different

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2031



[15:37 14/7/2011 Bioinformatics-btr319.tex] Page: 2032 2031–2037

Y.Lin et al.

practical conditions, we selected a number of experimentally
derived benchmark sequences with different lengths and extent
of GC content, and simulated single-end and paired-end reads
with varying depths of coverage, base calling error rates and
individual read lengths. Based on the results of our analyses,
we have developed guidelines for optimal selection of different
assembly tools under different practical conditions. Identifying and
recognizing the various limitations of specific tools under different
practical conditions may also provide useful guidance and direction
for improving current tools and/or designing new high-performance
tools.

2 METHODS AND MATERIALS

2.1 De novo sequencing tools
Seven tools, SSAKE (v3.7), VCAKE (vcakec_2.0), Euler-sr (v1.1.2), Edena
(2.1.1), Velvet (v1.0.18), ABySS (v1.2.6) and SOAPdenovo (v1.05 for 64bit
Linux), were selected for studies and comparative analyses. These tools are
all publicly available, and most of these tools are currently often used to
assemble short reads generated by next-generation sequencing platforms,
such as Illumina Genome Analyzer (read length = 35–150 bp) and ABI
SOLID (read length = 35–75 bp). Of these seven tools, all are capable of
assembling single-end reads, but only SSAKE, Euler-sr, Velvet, ABySS and
SOAPdenovo support paired-end reads assembly.

2.2 Benchmark sequences
Eight experimentally determined sequences (Table 1) were obtained from
the NCBI database (http://www.ncbi.nlm.nih.gov/) and used as benchmark
sequences to test the performance of the seven assembly tools. These
sequences range from ∼99 kb (base pair) to ∼100 Mb, each with a different
extent of GC content.

2.3 Sequencing read simulations
Simulated single-end and paired-end reads were generated from benchmark
sequences with several variable parameters, including depth of coverage,
base calling error rate (BCER) and individual read length. Depth of coverage
is the average number of reads by which any position of an assembly is
independently determined (Taudien et al., 2006). BCER is the estimated
probability of error for each base call (Ewing and Green, 1998).

Single-end reads simulation method was the same as that used previously
(Dohm et al., 2007), that is, each read was generated as a DNAfragment of the
preset read length from any position in the benchmark sequence with equal

Table 1. Information for the eight benchmark sequences used in this study

Species GenBank Chr. Seq len (bp) GC (%)

D.mel AC018485 2L 99 441 36.90
H.inf NC_007146 — 1 914 490 38.16
T.bru AE017150 2 1 193 948 44.38
H.sap NT_037622 4 1 413 146 49.81
E.coli NC_009800 — 4 643 538 50.82
C.ele NC_003283 V 20 919 568 35.43
H.sap NT_007819 7 50 360 631 41.03
H.sap NT_005612 3 100 537 107 38.96

D.mel: Drosophila melanogaster, H.inf: Haemophilus influenza, T.bru: Trypanosoma
brucei, H.sap: Homo sapiens, E.coli: Escherichia coli, C.ele: Caenorhabditis elegans;
GenBank: GenBank accession number; GC: percentage of GC contents reported by
Tandem repeats finder (v4.40, http://tandem.bu.edu/trf/trf.html). H.inf and E.coli are
the complete genomes. For clarity, H.sap-1 was used to refer to NT_037622, H.sap-2
was NT_007819 and H.sap-3 was NT_005612.

probability. Each base of the read was then randomly and independently
changed into another base with probability of BCER. In paired-end read
simulation, a fragment with length of fragment size was randomly obtained
from the benchmark sequence, then two reads of the preset read length
were generated simultaneously from the two ends of this fragment, which
were considered as one pair. We applied the fragment size distribution based
on the empirical distribution of the experimental read dataset of the E.coli
library (GenBank accession no. SRX000429) (Supplementary Fig. S1). The
simulation of base calling errors was the same as that of single-end read
errors.

The total number of reads was determined by the following formula:

NumRead= Benchmark sequence length × depth of coverage
Individual read length

To study and compare the seven selected de novo assembly tools, sequencing
reads were simulated as follows.

(1) To determine how assembly performance was affected by different
depths of coverage and GC contents, single-end reads (BCER = 0.6%,
read length = 35, 50 and 75 bp) and paired-end reads (BCER = 0.6%,
read length = 35 bp*2, 75 bp*2, 125 bp*2) were generated from four
benchmark sequences (sequences 1–4 in Table 1), in which GC
content was ∼36–50%.

(2) To determine how the assembly performance was affected by different
BCER, sequencing reads were generated with BCER set to 0.0, 0.2,
0.4, 0.6, 0.8 and 1.0%. Three benchmark sequences (sequences 1–
3 in Table 1) were selected for the simulation. In single-end reads
assembly, read length was 35 bp, and depth of coverage was set to
30× and 70×. In paired-end reads assembly, read length was 35bp*2
and depth of coverage was 30× and 70×.

(3) To compare required computational demand (runtime and computer
memory usage) of the seven tools, four benchmark sequences with
gradually increasing lengths ranging from ∼5 million bp to ∼100
million bp (sequences 5–8 in Table 1) were selected for simulation.
BCER was set to 0.6%, individual read lengths were set to 35 bp for
single-end and 35bp*2 for paired-end reads, and depth of coverage
was set to 70×.

2.4 Runtime settings
Runtime parameters for the seven assembly tools were generally set to the
default or recommended values of each method with a few exceptions: for
VCAKE, the runtime parameter c was set as 0.7 in order to make it consistent
with SSAKE. [Each base call in VCAKE was dependent on a voting result;
when the votes were totaled and the base proportion exceeded a threshold, c,
that base was added to the output contig (Jeck et al., 2007).] Parameter k for
Velvet, ABySS, SOAPdenovo and parameter m for Edena should vary with
read length in order to get good N50 lengths. Since no clear default settings
for these parameters were presented in the manuals for the corresponding
tool, we established values for k and m that produced relatively optimal
N50 lengths, based on our own preliminary empirical testing of conditions
for each tool. Specific values of the parameters k and m are provided in
Supplementary Table S1.

Most of the assembly was carried out on a cluster with eight computer
nodes, with each node consisting of dual Quad-Core (2.40 GHz) processors
and 12 GB RAM. Comparison tests of required computational demand were
performed on a server with dual Quad-Core (2.40 GHz) Processors and
32 GB RAM.

2.5 Performance evaluation
The seven selected de novo assembly tools were applied to assemble the
simulated sequencing reads into contigs. In paired-end assembly, tools
that support paired-end reads performed an additional step of scaffold
construction to get the final output contigs. Contigs with lengths >100 bp
were used to evaluate the performance of each tool. Each simulation and
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assembly was conducted five times, and the assembly results were set as the
average values.

The performance of each tool was measured by a number of metrics,
including N50 length, sequence coverage, assembly error rate, computation
time and computer memory usage. N50 length is the longest length such
that at least 50% of all base pairs are contained in contigs of this length
or larger (Lander et al., 2001). N50 length provides a standard measure of
assembly connectivity, reflecting the nature of the bulk of the assembly rather
than the cutoff which defines the smallest reportable assembly unit (Jaffe
et al., 2003). Higher N50 length indicate better performance of the assembly
tool. Sequence coverage refers to the percentage of the benchmark sequence
covered by output contigs. In the calculation of assembly error rates, we
aligned the output contigs to the benchmark sequence, and calculated the
number of mismatched bases from alignment results. The assembly error
rate was the percentage of these mismatched bases in the total bases of
aligned contigs in the reference sequence. Sequence coverage and assembly
error rates were analyzed by blastz (Schwartz et al., 2003).

3 RESULTS

3.1 Assembly performance affected by depth of
coverage and GC content

To determine whether, and how, the assembly performance of the
seven tools was differentially affected by the depth of coverage and
extent of GC content in the source sequences, these tools were used
to assemble simulated sequence reads (BCER = 0.6%) generated
from different benchmark sequences (GC content = ∼36–50%) at
different depths of coverage. Assembly performance of the seven
tools is illustrated in Figure 1 and Tables 2–5. Figure 1 and Tables 4
and 5 present test results for part of a benchmark sequence as an
example, but similar results were obtained for the other benchmark
sequences tested (Supplementary Tables S2–9).

With increasing depths of coverage, the performance of these
seven tools showed some interesting patterns (Fig. 1) in assembly
connectivity measured by N50 length. Although there was an initial
increase in N50 lengths with increasing depth of coverage, N50
lengths reached a plateau when the depth of coverage reached a
certain threshold. For simplicity, DCAP will be used here to refer
to the depth of coverage at which the N50 length plateau was
reached.

In single-end assembly, DCAP for SSAKE and Edena (∼50×)
was greater than that for VCAKE, Velvet, ABySS and SOAPdenovo
(30−40×); DCAPs for Euler-sr varied with read length (∼50×
when read length was 35 bp and ∼20× when read length was 75 bp).
In paired-end assembly, DCAPs for most tools were lower than
those observed in single-end assembly. DCAPs for SSAKE (∼40×)
was still greater than that for Velvet, ABySS and SOAPdenovo
(20−30×); DCAPs for Euler-sr varied with read length (∼40×
when read length was 35bp*2 and ∼20× when read length was
75bp*2).

To compare N50 values among the various tools, we chose N50
values at a depth of coverage of 70×, because this exceeded the
DCAP for all tools (Tables 2 and 3). General observations for N50
values of these tools under these various conditions are described
below. Comparison results varied with different read lengths and
GC content. Sequences with a GC content of 36.90 and 38.16%
are referred to as ‘Low GC content’, whereas, those with a GC
content of 44.38 and 49.81% are referred to as ‘High GC content’.
Similarly, ‘short read’ and ‘long read’ refer to 35 and 75 bp read
lengths, respectively.

Fig. 1. Comparison of the effect of various coverage depths on N50 length in
T.bru assembly when BCER was 0.6%. (A) Single-end reads assembly, read
length (RL) = 35 bp; (B) single-end assembly, RL = 75 bp; (C) paired-end
reads assembly, RL = 35 bp; (D) paired-end assembly, RL = 75 bp.

Table 2. Comparison of N50 lengths in assembly of single-end reads when
depth of coverage was 70× and BCER was 0.6%

Seq RL (bp) SS VC Eu Ed Ve AB SO

D.mel 35 6717 2215 9064 4917 4085 4087 4145
H.inf 25 558 2669 26 491 19 231 17 988 18 547 22 036
T.bru 3264 963 3528 2934 2667 3014 3504
H.sap-1 1177 653 1393 1053 910 961 1202

D.mel 75 28 646 3683 23 676 22 695 22 679 22 673 25 115
H.inf 46 069 3235 38 667 38 724 38 715 38 361 42 778
T.bru 8205 2682 9733 10 847 10 682 10 814 11 108
H.sap-1 2706 691 2169 4315 3810 3358 5227

RL, read length; Seq, benchmark sequence; SS, SSAKE; VC, VCAKE; Eu, Euler-sr;
Ed, Edena; Ve, Velvet; AB, ABySS; SO, SOAPdenovo.

In single-end reads assembly, with:

• low GC content and short read: N50EULER-sr ≥N50SSAKE >
N50SOAPdenovo ≈ N50Edena >N50Velvet ≈N50ABySS >

N50VCAKE;
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Table 3. Comparison of N50 length in assembly of paired-end reads when
depth of coverage was 70× and BCER was 0.6%

Seq. (GC %) RL (bp) SS Eu Ve AB SO

D.mel (36.90) 35 29 771 27 326 28 604 29 892 30 308
H.inf (38.16) 91 821 90 275 92 349 93 956 1 19 805
T.bru (44.38) 14 470 9498 14 948 9998 15 598
H.sap-1 (49.81) 3188 3116 4730 4281 14 972

D.mel (36.90) 75 29 963 29 029 29 676 30 923 30 863
H.inf (38.16) 1 22 151 1 07 232 1 20 699 1 20 175 1 20 886
T.bru (44.38) 16 768 17 051 16 094 17 566 16 326
H.sap-1 (49.81) 7436 4041 34 592 33 429 34 265

GC, GC content.

Table 4. Comparison of sequence coverage and assembly error rates in
assembly of single-end reads with various GC contents and depths of
coverage (BCER = 0.6%)

RL Seq DC SS VC Eu Ed Ve AB SO
(bp) (GC%)

SC (%) 35 D.mel
(36.90)

30× 79.48 78.76 75.44 77.17 77.43 77.55 78.70
50× 79.74 77.60 76.33 78.55 77.97 78.29 78.59
70× 79.54 77.70 76.40 78.33 77.86 78.06 78.62

T.bru
(44.38)

30× 72.64 71.01 68.07 67.02 67.78 67.19 68.74
50× 73.16 70.39 68.40 67.45 67.94 67.21 68.65
70× 73.56 70.40 68.59 67.27 67.58 67.15 68.76

75 D.mel
(36.90)

30× 80.93 79.44 78.94 78.41 79.93 79.92 80.09
50× 80.13 79.45 78.69 80.58 79.83 79.82 80.49
70× 80.99 79.83 79.40 80.02 79.99 79.83 80.82

T.bru
(44.38)

30× 77.92 77.12 71.02 75.67 74.84 74.83 76.99
50× 77.57 78.43 70.60 76.20 74.91 74.66 76.59
70× 78.68 78.38 71.48 76.99 74.86 75.02 76.70

AER (%) 35 D.mel
(36.90)

30× 0.31 0.27 0.34 0.23 0.28 0.26 0.32
50× 0.39 0.29 0.36 0.33 0.29 0.23 0.32
70× 0.32 0.24 0.38 0.26 0.23 0.26 0.39

T.bru
(44.38)

30× 0.27 0.17 0.25 0.08 0.07 0.04 0.16
50× 0.32 0.14 0.26 0.07 0.05 0.04 0.14
70× 0.33 0.16 0.26 0.09 0.06 0.04 0.10

75 D.mel
(36.90)

30× 0.42 0.75 0.42 0.53 0.28 0.23 0.39
50× 0.42 0.76 0.45 0.49 0.37 0.29 0.41
70× 0.45 0.79 0.49 0.53 0.35 0.31 0.43

T.bru
(44.38)

30× 0.63 0.67 0.47 0.59 0.46 0.42 0.66
50× 0.56 0.84 0.52 0.46 0.49 0.48 0.63
70× 0.65 0.88 0.48 0.53 0.46 0.49 0.67

SC, sequence coverage; AER, assembly error rate.

• low GC content and long read: N50SSAKE >

N50SOAPdenovo > N50Edena ≈ N50Velvet ≈ N50ABySS ≈
N50EULER-sr > N50VCAKE;

• high GC content and short read: N50EULER-sr
≥N50SOAPdenovo ≈N50SSAKE > N50Edena ≈N50Velvet ≈
N50ABySS > N50VCAKE; and

• high GC content and long read: N50SOAPdenovo >

N50Edena ≥N50Velvet ≈N50ABySS >N50SSAKE >

N50EULER-sr > N50VCAKE.

Table 5. Comparison of sequence coverage and assembly error rates in
assembly of paired-end reads with various GC contents and depths of
coverage (BCER = 0.6%)

RL (bp) Seq (GC%) DC SS Eu Ve AB SO

SC (%) 35 D.mel (36.90) 30× 77.05 71.12 78.75 79.53 78.85
50× 79.16 71.98 79.03 79.65 78.52
70× 79.11 70.61 78.95 79.71 78.92

T.bru (44.38) 30× 72.69 71.07 71.37 73.46 70.07
50× 72.50 71.67 71.50 73.11 70.34
70× 73.59 69.08 71.32 73.27 70.78

75 D.mel (36.90) 30× 79.77 71.31 79.18 81.00 80.20
50× 79.88 70.17 78.79 80.82 80.36
70× 79.73 69.54 78.43 81.59 79.69

T.bru (44.38) 30× 77.19 71.56 76.52 81.97 76.25
50× 78.29 70.12 76.66 81.97 76.54
70× 78.49 70.86 78.17 81.10 76.55

AER (%) 35 D.mel (36.90) 30× 0.33 0.54 0.17 0.14 0.28
50× 0.32 0.52 0.19 0.16 0.29
70× 0.34 0.44 0.21 0.19 0.33

T.bru (44.38) 30× 0.30 1.30 0.25 0.19 0.21
50× 0.34 0.87 0.22 0.17 0.23
70× 0.40 0.73 0.21 0.21 0.20

75 D.mel (36.90) 30× 0.47 0.37 0.27 0.13 0.35
50× 0.41 0.48 0.21 0.14 0.42
70× 0.62 0.38 0.23 0.16 0.35

T.bru (44.38) 30× 0.52 0.79 0.55 0.45 0.39
50× 0.52 0.61 0.57 0.39 0.43
70× 0.61 0.72 0.61 0.42 0.42

In paired-end reads assembly:

• SOAPdenovo generated the greatest N50 lengths in almost all
tests;

• SSAKE generated relatively high N50 lengths when GC
content was low;

• N50 lengths for Velvet and ABySS were comparable to one
another for all tests;

• N50 lengths for Velvet and ABySS were comparable to
SOAPdenovo when assembling long reads; and

• N50 lengths for Euler-sr were the lowest for almost all tests.

3.2 Assembly performance with regard to sequence
coverage and assembly error rate

Using benchmark sequences D.mel and T.bru as examples, we
compared assembly performance of the seven tools with regard
to sequence coverage and assembly error rate (Tables 4 and 5).
Generally, long reads resulted in high sequence coverage and
assembly error rates.

In single-end reads assembly:

• SSAKE and VCAKE were comparable to one another, and
provided higher sequence coverage than the other tools.
Sequence coverage for SOAPdenovo was a little lower, but
very close to SSAKE when assembling long reads (75 bp);
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• Edena, Velvet and ABySS were clustered together, with slightly
lower sequence coverage than SOAPdenovo;

• Euler generated the lowest sequence coverage for almost all
tests;

• ABySS showed the lowest assembly error rates for almost all
tests; and

• SSAKE, VCAKE, SOAPdenovo and Euler-sr generated higher
assembly error rates than Edena, Velvet and ABySS.

In paired-end reads assembly:

• sequence coverage comparisons had the following
relationships: SCABySS >SCSOAPdenovo ≈SCSSAKE ≈
SCVelvet > SC Euler-sr;

• ABySS showed the lowest assembly error rates for almost all
tests;

• SOAPdenovo generated more assembly errors than Velvet in
assembly of sequences with low GC content (e.g. D.mel) but
fewer assembly errors than Velvet in assembly of high GC
content sequence (e.g. T.bru). The assembly error rate for
SOAPdenovo and Velvet were both lower than SSAKE; and

• Euler-sr generated the highest assembly error rates for almost
all tests.

3.3 Assembly performance affected by different BCER
To determine whether, and how, assembly performance of the seven
tools was differentially affected by changes in BCER, these tools
were applied to assemble sequencing reads simulated from three
benchmark sequences (D.mel, H.inf and T.bru) with variable BCER
(0.0–1.0%, with a 0.2% incremental change at every step).

Since similar results were obtained with the three benchmark
sequences (Supplementary Tables S10–15), we present the results
for sequence T.bru as an example (Fig. 2).

N50 lengths for all seven tools showed decreasing trends, with
increases in BCER, but generated different patterns.

• When depth of coverage was below the DCAP of a tested
tool, N50 lengths for the specific tool decreased exponentially
with increases in BCER. When depth of coverage was below
the DCAP (e.g. 30×), increases in BCER produced more
significant decreases in N50 lengths for SSAKE, Edena and
Euler-sr than for Velvet, ABySS and SOAPdenovo.

• When depth of coverage exceeded the corresponding DCAP,
however, N50 lengths were essentially unaffected by changes
in BCER.

• For instance, in Figure 2A, N50 lengths decreased with
increasing BCER when depth of coverage was at 30× for all
tools, but were essentially unaffected by changes in BCER
when depth of coverage exceeded their DCAP (e.g. 70×,
Fig. 2B and D).

• Similarly, for paired-end assembly at a depth of coverage
of 30×, N50 lengths for SSAKE and Euler-sr decreased
exponentially with increases in BCER, but N50 lengths for
Velvet, ABySS and SOAPdenovo remained stable as BCER
increased (Fig. 2C). Thus, the pattern described above is
sustained, because 30× is below DCAP of SSAKE and

Fig. 2. Comparison of the effects of various BCER on N50 length in T.bru
assembly when read length was 35 bp. (A) Single-end reads assembly, depth
of coverage (DC) = 30×; (B) single-end assembly, DC = 70×; (C) paired-end
reads assembly, DC = 30×; (D) paired-end assembly, DC = 70×.

Euler-sr (∼50×), but exceeded DCAP of Velvet, ABySS and
SOAPdenovo (20−30×).

3.4 Computational demand
When selecting a tool for de novo sequence assembly, computational
demand by the tool should also be considered. This is particularly
important when analyzing large genome sequence data (e.g. human
genomes) for large samples. The utility of a tool can be seriously
limited if it takes up excessive memory space, consumes too much
CPU time and exceeds reasonable execution time. Consequently,
we compared the runtime (RT) and resident memory usage (RM)
required for the seven tools to assemble large datasets. The test
results are presented in Table 6.

• It was not feasible to use some of these tools to assemble large
sequences because memory required for the assembly process
was beyond our computer power. For instance, SSAKE could
not assemble sequences >20 Mb (C.ele, H.sap-2 and H.sap-3).
VCAKE and Euler-sr could not assemble sequences >50 mega
bps (H.sap-2, H.sap-3). Edena could not assemble sequence
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Table 6. Comparison of runtime and RAM in the computational demand
test

Bench.Seq E.coli C.ele H.sap-2 H.sap-3
(length: bp) (4.6M) (20.9M) (50.3M) (100.5M)

Runtime (s)
SE SSAKE 2776 – – –

VCAKE 1672 16 742 – –
Euler-sr 1689 11 961 29 622 –
Edena 895 8450 17 043 –
Velvet 205 1003 2786 6098
ABySS 265 1300 3307 6608
SOAPdenovo 62 253 560 1029

PE SSAKE 9163 – – –
Euler-sr 1455 15 068 – –
Velvet 229 1351 55 581 –
ABySS 458 3081 9199 21 683
SOAPdenovo 78 374 889 2257

RAM (MB)
SE SSAKE 9933 – – –

VCAKE 4099 17 408 – –
Euler-sr 1536 7065 13 312 –
Edena 1741 7557 30 720 –
Velvet 1229 4045 9830 22 528
ABySS 1126 3993 8909 18 432
SOAPdenovo 935 2867 8089 18 227

PE SSAKE 16 384 – – –
Euler-sr 1638 7578 – –
Velvet 1331 5324 30 720 –
ABySS 950 4505 9830 18 432
SOAPdenovo 1638 5939 10 342 19 456

Bench.Seq, benchmark sequence; SE, single-end reads assembly; PE, paired-end reads
assembly. ‘–’ denotes the RAM of computer is not enough or runtime is too long (>10
days) to get assembly results.

>100 mega bps (H.sap-3). Velvet could not assemble paired-
end reads of the H.sap-3 sequence.

• Runtime and RM usage varied dramatically in this test. For all
tools, there was an approximately linear increase in memory
consumption with increasing benchmark sequence lengths,
with RMSSAKE > RMVCAKE > RMEdena > RMEuler-sr >

RMVelvet > RMABySS ≥ RMSOAPdenovo in single-end reads
assembly and RMSSAKE > RMEuler-sr > RMSOAPdenovo >

RMABySS in paired-end reads assembly.

• The runtime of these tools also increased approximately
linearly with increasing benchmark sequence lengths, with
RTSSAKE > RTVCAKE > RTEuler-sr > RTEdena > RTABySS >

RTVelvet > RTSOAPdenovo.

• Runtime and RM usage for Velvet sometimes became abnormal
in paired-end reads assembly of large genomes. For example, in
paired-end reads assembly of H.sap-2, Velvet consumed much
more memory and runtime than ABySS and SOAPdenovo; in
paired-end reads assembly of H.sap-3, Velvet could not even
finish the assembly.

• In general, SOAPdenovo and ABySS were more efficient than
other tools in terms of runtime and memory usage. SSAKE
consumed the greatest amount of computational resources.

In this test, we also analyzed N50 lengths, sequence coverage
and assembly error rate. The results were consistent with several
conclusions in previous sections (Supplementary Table S16).

4 CONCLUSIONS AND DISCUSSIONS
This study compared seven publically available and commonly used
de novo assembly tools: SSAKE, VCAKE, Euler-sr, Edena, Velvet,
ABySS and SOAPdenovo. These tools are specifically designed to
assemble large numbers of short reads generated by next-generation
sequencing platforms.

In analyzing these tools, stronger performance is indicated by
higher N50 values, higher sequence coverage, lower assembly
error rates and lower computational resource consumption (to
enable assembly of larger genomes). The performance of different
assembly tools was dependent, to some extent, on the test
conditions. Based on the results of our investigation, we propose
the following guidelines for tool selection. Generally, SSAKE,
Edena and Euler-sr need higher depths of coverage (∼50×) than
Velvet, ABySS and SOAPdenovo (∼30×) to generate higher N50
lengths; SOAPdenovo was the fastest of all tools, and ABySS almost
always consumed the least memory space. We have developed a
tentative reference/guidelines for selecting optimal de novo tools
under varying conditions (Table 7). Specific comments regarding
the performance of individual tools under different conditions are
summarized below.

SSAKE provided good sequence coverage, and also generated
good N50 lengths when assembling sequences with low GC content.
On the other hand, SSAKE tended to generate more assembly errors
and needed more depth of coverage to reach DCAP than most of the
other tools tested. The time and memory usage of SSAKE was also
the highest of the tools tested. Our results indicated that assembly of
large sequences (e.g. Homo sapiens) was not feasible with SSAKE.

VCAKE produced the shortest N50 lengths in most situations,
and the sequence coverage by VCAKE was comparable to SSAKE.
VCAKE also generated many assembly errors, even higher than
that of SSAKE under certain test conditions. The computational
resources required to run VCAKE were a little less than those
required for SSAKE.

In assembling single-end short reads, Euler-sr produced the
longest N50 values, but it also generated high assembly error rates,
comparable to that of SSAKE. In addition, sequence coverage
of Euler-sr was the lowest under most test situations. Euler-sr
consumed intermediate computational resources.

Under most conditions tested, Velvet and ABySS show similar
assembly performance; they generated similar N50 lengths,
their DCAPs were relatively low and they required acceptable
computational resources. Consequently, it is feasible to use these
tools for assembling large sequences, such as those obtained
for Homo sapiens. ABySS produced fewer assembly errors, and
consumed a little less memory and more runtime than Velvet.
When assembling paired-end reads, ABySS produced the highest
assembly coverage of all tools tested. When assembling larger
genomes, Velvet sometimes used exceptionally high runtimes and
memory.

Edena needs a high depth of coverage, comparable to SSAKE,
to reach the DCAP. It produced similar, or greater, N50 values to
Velvet in most single-end assemblies, and generated assembly error
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Table 7. Recommendations for de novo tool selection under varying conditions

Read property Small genome Large genome

GC Read High N50 High SC Low AER High N50 High SC Low AER

SE Low Short Eu, SS SS Ed, AB, Ve Eu, SO, Ed SO, Ed, AB, Ve Ed, AB, Ve
Long SS, SO SS AB, Ve SO SO, Ed, AB, Ve AB, Ve

High Short Eu, SO SS, SO AB, Ve, Ed SO, Eu SO AB, Ve, Ed
Long SO, Ed, AB, Ve SS, SO AB, Ve SO, Ed SO AB, Ve

PE Low Short SO, SS, AB, Ve AB, SS, Ve, SO AB, Ve, SO SO, AB, Ve AB, SO, Ve AB, Ve, SO
Long SO, SS AB, SS, SO, Ve AB, Ve, SO SO, AB, Ve AB, SO, Ve AB, Ve, SO

High Short SO AB AB, Ve, SO SO AB AB, Ve, SO
Long SO, AB, Ve AB AB, Ve, SO SO, AB, Ve AB AB, Ve, SO

Requirements of assembly performance includes high N50, high sequence coverage (SC), low assembly error rate (AER). For different requirements, we recommend some de novo
tools with order of priority according to properties of sequence reads, including single-end/paired-end, GC content, read length and sequence length. SE, single end reads; PE, paired
end reads; Eu, Euler-sr; SS, SSAKE; Ed, Edena; AB, ABySS; Ve, Velvet; SO, SOAPdenovo.

rates that were comparable to Velvet. The computation demands of
Edena were intermediate, between SSAKE and ABySS.

SOAPdenovo was the fastest assembler. Its DCAP was as low
as that of ABySS and it produced among the highest N50 values
in paired-end read assembly, and relatively high N50 values in
single-end assembly. SOAPdenovo generated higher assembly error
rates and lower sequence coverage than ABySS. It also consumed
more memory than ABySS when assembling paired-end reads.
The appropriate setting for SOAPdenovo (SOAPdenovo31mer,
SOAPdenovo63mer and SOAPdenovo127mer that support kmer
≤31,≤63 and ≤127, respectively) must be selected based on
read length. SOAPdenovo63mer/SOAPdenovo127mer consumed
two/four times as much RAM as SOAPdenovo31mer.

In light of our results, investigators may choose the most
appropriate assembly tool(s) to use based on their specific
experimental setting and available computational resources. Our
results may also serve as a reference, when designing sequencing
projects, for selecting targeted depths of coverage, control levels
of sequencing error rates, etc. Given the rapid increase in use
of next-generation sequencing technologies, our results should be
of value to both empiricists, during experimental design, and to
bio-informaticians who seek guidance for selecting appropriate
assembly tool(s) for data analyses and who attempt improvement
of the assembly tools.
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