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Abstract
We have developed flowMeans, a time-efficient and accurate method for automated identification
of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional
K-means, flowMeans can identify concave cell populations by modelling a single population with
multiple clusters. flowMeans uses a change point detection algorithm to determine the number of
sub-populations, enabling the method to be used in high throughput FCM data analysis pipelines.
Our approach compares favourably to manual analysis by human experts and current state-of-the-
art automated gating algorithms. flowMeans is freely available as an open source R package
through Bioconductor.
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Introduction
FCM can be applied in a high-throughput fashion to process thousands of samples per day.
However, data analysis can be a significant challenge because each data set is a multi-
parametric description of millions of individual cells. Consequently, despite widespread use,
FCM has not reached its full potential due to the lack of an automated analysis platform to
assist high-throughput data generation [1–3].

A critical bottleneck in data analysis is the identification of groups of similar cells for further
study (i.e., gating). This process involves identification of regions in multivariate space
containing homogeneous cell populations of interest. Generally, gating has been performed
manually by expert users, but manual gating is subject to user variability [4–6] and is
unsuitable for high-throughput data analysis [7]. Several methods have been developed to
automate the gating process [8]. flowClust is a model-based clustering approach that models
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cell populations using a Box-Cox transformation to remove skewness followed by a
mixtures of t-distributions [9]. flowMerge [10] extends the flowClust framework by
applying a cluster merging algorithm [11] to allow multiple components to model the same
populations, enabling it to fit concave cell populations. FLAME [12] uses a mixture of
skew-t-distributions to make the model more flexible to skewed cell populations. curvHDR
[13] is a non-parametric density-based approach, and therefore is not limited to identifying
cell populations based on shape. curvHDR models cell populations based on the curvature of
the underlying distribution. However, it requires user-defined parameter values and cannot
be applied to more than three dimensional data. SamSpectral [14] uses an spectral clustering
algorithm to find cell populations, including non-convex ones. Given the high time and
memory requirements of the spectral clustering algorithm, SamSpectral finds cell
populations based on representative sub-sampling of the data; however, this can potentially
decrease the quality of the gating as some biological information can be lost during the
sampling process. SamSpectral also requires user-defined parameter values for each data set
of similar experiments.

With the advent of high-throughput FCM analysis, millions of cells can be analyzed for up
to 20 markers per sample. For these experiments, the runtime of gating algorithms is a
bottleneck of automated FCM data analysis pipelines [8]. The K-means clustering algorithm
was the first automated data analysis approaches applied to FCM data [15]. Given a d-
variable vector X1; X2; …; Xn, K-means aims to partition X into K < n sets S = S1; S2; …; Sk
so as to minimize the within-cluster sum of squares:

(1)

where ci is the centroid or center of Si estimated by its mean value.

However, the adoption of K-means has been restricted, because it requires the number of
populations to be pre-identified, it is sensitive to its initialization, and it is limited to
modelling spherical cell populations. To estimate the number of clusters, Pelleg et al. [16]
and Hamerly et al. [17] extended basic K-means by using the Bayesian Information
Criterion and a normality test, respectively. Voting-K-means [18] tries to achieve a good
clustering by running the K-means algorithm with a number of different settings and
combining the results using an ensemble clustering algorithm. However, the application of
these algorithms for automated FCM data analysis has not been successful since the first two
are sensitive to noise, and all three require user-defined parameter values [8, 14].

We have developed a new K-means-based clustering framework that addresses the
initialization, shape limitation, and model-selection problems of K-means clustering, and
can be applied to FCM data. We extended the flowMerge [10] approach by replacing the
statistical model with a faster clustering algorithm. By introducing a new merging criterion,
our approach finds non-convex cell populations, and we use a change point detection
algorithm to estimate the number of clusters.

Materials and Methods
Initial Number of Clusters

The K-means clustering algorithm relies on users to define the number of clusters (K) to
find. Using a predefined number of clusters for all FCM samples is not possible due to
intersample variability. We solved this problem by automatically choosing K based on a
reasonable maximum. The variants of the K-means algorithm discussed in the introduction
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try to estimate the exact number of clusters, and are not suitable for estimating the maximum
number of clusters. Using the number of cells as the maximum is also not practical due to
high runtime required for merging a large number of cells in FCM experiments (e.g.,
commonly in the hundreds of thousands). Instead, we use the number of modes found
individually in every eigenvector of the data. Using individual eigenvectors makes solving
the mode-counting problem practical, but results in overlapping clusters (since some cell
populations will be projected on more than one eigenvector and will be counted more than
once). These overlapping clusters are later merged.

While many mode-detection algorithms are available, we used an approach based on the
work of Duong et al. [19] for mode detection using kernel density estimation, which has has
previously proven to be successful on FCM data [13]. Formally, for a d-variable X1; X2; …;
Xn sampled randomly from the density function f, the kernel density estimator  is defined
to be the mean of n Gaussian kernel estimations:

(2)

where h is the bandwidth selected using Scott’s rule [20], and K(·) is the Gaussian kernel
function:

(3)

The gradient of the estimator is:

(4)

We then used a simultaneous significance test (based on Bonferroni’s correction) to find the
regions where the gradient is significantly different from zero [19]. Finally, the number of
modes in the data is estimated by the number of times that the gradient changes from
positive to negative for every one dimensional projection of the data on the eigenvectors.
The K-means algorithm is then initialized with the total number of modes across all
dimensions.

Merging
We solved the initialization problem at the cost of finding redundant clusters. To find the
correct populations, these clusters must be merged. In addition, to capture non-spherical
populations, we allow more than one cluster to model a single population (i.e., nearby
clusters are merged).

The merging procedure iterates between the following two steps until all of the points are
merged to a single cluster: (1) calculate/update the distance between every pair of clusters;
(2) identify and merge the closest pair of clusters.

Distance Metric
Given two populations X = (x1; x2; …; xN) and Y = (y1; y2; …; yM), we want to estimate the
probability that the point (in this case, cell) yi belongs to X. The closer yi is to the center of X
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(i.e., ), the more likely it is to belong to X. However, the probability also depends on the

dispersion of X. This can be estimated by the normalized Euclidean distance , where SX
is the sample standard deviation of X. In the multivariate case, the direction in which X is
spread is also important, so the normalization term should be replaced by the covariance
matrix. This results in a distance metric called the Mahalanobis distance. Formally, the
Mahalanobis distance between X and yi is defined as:

(5)

where SX is the covariance matrix of X.

Based on D(x; yi), we define a symmetric semi-metric (semi-distance) function between
populations X and Y :

(6)

Estimating the Number of Populations
As long as two clusters are overlapping (i.e., modeling the same cell population), the
distance between them will be very small, and these will be merged. After several merging
steps, when the remaining clusters are well separated, the distance between the next clusters
to be merged is significantly larger than the previous ones, indicating that these likely
represent separate cell populations. We implemented a segmented regression algorithm to
detect the change point in the distance between the merged clusters. This algorithm divides
the data to two subsets based on a given break point and fits a line to each of the subsets.
The break point that minimizes the error of this model represents the number of clusters for
which the clusters are well separated.

Formally, let N be the initial number of clusters, i = (1; …; N) the vector of iteration
numbers, NC = N − i the vector of number of clusters at each iteration, and Dist the distance
between the merged clusters at each iteration. The segmented regression model can be
described with the following equation:

(7)

where DistR is the vector of predicted values for Dist, BP is the break point at which we are
expecting an abrupt change of the distance between clusters, and (A1, B1) and (A2, B2) are
the slope and constant of the regression lines for the points before and after the break point,
respectively. The least squares method must be applied separately to each segment to
estimate the parameters of each line. Finally, the optimized break point BPopt value that
minimizes the sum of squared errors (SSE) can be found using exhaustive search over BP ∈
{2; 3; …; #Clusters − 1}:
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(8)

Figure 1 shows an example where the change point is in the solution with 6 clusters. An
animation demonstrating how the model works on this example is available in the
Supplemental Materials.

Evaluation
We compared flowMeans to flowMerge and FLAME, the current state-of-the-art automated
gating algorithms. Bayesian Information Criterion (BIC) and Scale-free Weighted Ratio
(SWR) were used to determine the initial number of clusters for flowMerge and FLAME,
respectively. The comparison was conducted using a computer running Ubuntu LTS 8.04
with a 3.2 GHz Intel Pentium CPU and 3 GB of RAM. For flowMeans and flowMerge, 10
random clustering solutions were used for initialization. To avoid model singularity issues
caused by the data transformations, a small uniform noise was added to every event before
the analysis by any of the algorithms. Convergence was determined using the default criteria
of each software. flowMerge and FLAME both have optional free parameters that the user
can use to adjust the behaviour of the algorithm (for example by specifying a threshold for
the boundary events). We left these parameters at their default values to study the
unsupervised performance of all three algorithms.

Our evaluation of the algorithms was based on comparison against manual analysis by
human experts that was performed using a set of two dimensional scatter plots. While
several metrics are available for comparison of clusterings [21], we used the F-measure
because it has proven to be successful for evaluation of the performance of automated gating
algorithms [22]. Let n be the number of data points, C the set of membership labels assigned
by the human expert, and K the set of membership labels calculated by the automated
algorithm. F-measure is formally defined as:

(9)

(10)

(11)

(12)

where nij is the number of points with label ci ∈ C that are assigned to kj ∈ K. The points
that the human expert had not included in the analysis (for example outliers or biologically
irrelevant populations) were excluded before calculating the F-measure.
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We measured the F-measure of every sample and reported the average as a single value
representative of the distribution. While the average F-measure value helps to evaluate the
overall performance of the algorithm across a dataset, it does not help in understanding how
these algorithms differ in the analysis of individual samples. We therefore selected four
cases where the F-measure values of one of these algorithms was significantly better for
further visual illustration of the performance of each method.

Since FLAME’s web-based interface does not provide CPU time measurement, all runtimes
were measured as wall-clock time on our reference machine. However, we verified that for
flowMeans, the difference between CPU time and wall-clock time never exceeded 200
milliseconds.

Datasets
We used two fully gated datasets to evaluate our approach:

Graft versus Host Disease (GvHD)
GvHD occurs in allogeneic hematopoietic stem cell transplant recipients when donor-
immune cells in the graft initiate an attack on the skin, gut, liver, and other tissues of the
recipient. FCM was used to collect data on bone marrow transplant patients with a goal of
identifying biomarkers to predict the development of GvHD. The GvHD dataset is a
collection of weekly peripheral blood samples obtained from 31 patients following
allogeneic blood and marrow transplant [23]. Cells were stained for four markers, CD4,
CD8b, CD3, and CD8.

Diffuse Large B-Cell Lymphoma (DLBCL)
DLBCL is an aggressive lymphoma that can quickly spread to different parts of the body. Its
diagnosis is usually performed via lymph node biopsy. The lymphoma dataset from the BC
Cancer Agency consists of 30 randomly selected lymph node biopsies from patients seen
between 2003 and 2008 [7]. These patients were histologically confirmed to have DLBCL.
Cells were stained for three markers, CD3, CD19, and CD5.

Results
Table 1 shows the average F-measure values for flowMerge, FLAME, flowMeans (using the
symmetric Mahalanobis semi-distance function), and flowMeans-Euclidean (using an
Euclidean distance function) against expert manual analysis. flowMeans and flowMerge
performed similarly on both of the datasets, while FLAME had a lower F-measure. As can
be seen from the CDF plots shown in Figure 2 in the supplemental information, these
averages are not distorted by the presence of outliers.

Figure 2 shows the number of clusters identified by each of the algorithms and the manual
analysis. For the GvHD dataset, the results obtained by flowMeans are the closest to those
from the manual analysis, followed by those from flowMerge. The number of clusters
identified by FLAME are in a much larger interval. For the DLBCL dataset, again, the
results obtained by flowMeans are the closest to those from the manual analysis, followed
by those from flowMerge. The difference between the results of flowMerge and flowMeans
is smaller in the DLBCL dataset. FLAME typically identifies a quite high number of clusters
(10 on average).

Table 2 shows that on average, the runtime of flowMeans was significantly lower than that
of flowMerge and FLAME. We next examined whether this difference was due to the time
requirement of the clustering method or the model-selection approach. Tables 1 and 2 show
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that while calculating the symmetric Mahalanobis semi-distance function increases the time
requirement, replacing it with a simple Euclidean distance function decreases the accuracy
of the identified populations to less than that obtained by the current state-of-the-art
methods. Table 3 shows the runtime of the clustering algorithm used by each of these
frameworks for identifying 10 clusters. This demonstrates that flowMeans’ simpler
clustering model is contributing to the lower runtime as well as its approach for estimating
the number of clusters without fitting multiple models. Figure 3 shows the agreement
between the F-measure of flowMeans and either flowMerge or FLAME. All F-measure
values were in the interval [0:5; 1] (shown in panels (a) and (b)), indicating that flowMerge
and flowMeans perform similar to each other, even for outlier samples in the correlation
plots. The flagged sample in panel (c) shows the extreme case in which FLAME’s
performance might be closer to the manual gates than that of flowMeans. In this sample,
flowMeans has identified an extra population while FLAME has avoided that at the cost of
not identifying one of the manually gated populations. Figure 3 panel (c) shows that the F-
measure of these two algorithms is rather close while FLAME is slightly higher. However,
in panel (d) (flowMeans’ best case) FLAME did not perform equally well, since it found too
many sub-populations.

The output of each algorithm for the four outlier samples (marked with red X’s in Figure 3)
is shown in Figure 4, with all other samples compared in the supplemental material. Panel
(a) in Figure 4 shows the sample chosen in Figure 3 (a). In this sample, the performance of
flowMerge is better than that of flowMeans, since flowMerge identified the four populations
found by the human expert, while flowMeans found only three. Panel (b) of Figure 4
illustrates the two out of three biologically interesting populations found by flowMeans; we
note that the remaining cluster is also missed by flowMerge, even though it identifies three
additional populations. Similarly, panels (c) and (d) in Figure 4 show two other samples for
which FLAME performed better than flowMeans and vice-versa.

Discussion
Model-based methods have proven to be successful in automating the FCM gating process
[10]. However, the time-requirement of these methods represents a bottleneck in applying
them to samples with millions of cells and tens of parameters. The application of simpler
models to speed up the population identification problem has not been successful as these
algorithms are limited by different factors (e.g., reliance on user-defined parameters or
specific shapes of populations). For example, while the K-means clustering algorithm (as a
special case of Gaussian Mixture Model (GMM)s with spherical variance constant across
clusters) is quick compared to other model based approaches, applying it to FCM data has
not been successful, since it is limited to spherical cell populations and relies on pre-defined
number of populations. A GMM can handle elliptical populations but has a higher running
time, since more iterations are required for fitting it to FCM data, which is generally quite
noisy. t and skew-t mixture models are more flexible with respect to kurtosis and skewness
at the cost of further increasing the running time [14]. These models can use model selection
criteria to estimate the number of populations; however, fitting multiple models compounds
runtime requirements.

Since FCM cell populations are not elliptical, flowMerge allows more than one elliptical
component to model the same population. We developed a similar framework to extend the
K-means algorithm by merging the clusters that belong to the same population. Using the
spherical model of the K-means algorithm, our framework has a significantly lower runtime
compared to more flexible but computationally expensive statistical models (e.g., a skew/t-
mixture model). Improvements in processing time are an important consideration in high-
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throughput data production environments. Savings in runtime also increase as the number of
measured parameters increases, as is the trend in FCM technology.

The use of more than one centroid to model the same population enabled our K-means based
approach to find non-convex cell populations. However, the initial number of clusters needs
to be determined before applying K-means. Choosing the correct number of clusters to
initialize K-means is not critical, as long as the number selected is larger than the number of
cell populations, since the extra (overlapping) clusters are later merged. We used the number
of modes in the data (orthogonally projected on one-dimensional sub-spaces) as an upper
bound for the number of clusters. Using one-dimensional projections of the data has the
drawback of not finding populations that can only be identified in multiple dimensions.
flowMeans addresses this problem, to some extent, by projecting the points on the
eigenvectors (instead of individual markers) followed by multi-dimensional clustering.
However, this can potentially be improved by designing a multi-dimensional procedure for
finding a more accurate upper bound for the number of clusters. Regardless of the specific
approach, an important advantage of flowMeans over the current model-based approaches is
that it doesn’t need to fit multiple models to estimate the correct number of clusters. This,
along with avoiding an expensive statistical model, resulted in a significantly improved
running time (>20 times on average) compared to the current state-of-the-art model-based
gating algorithms, without any decrease in accuracy.

We used the position and shape of clusters to identify candidate clusters for merging. We
defined a symmetric Mahalanobis semi-distance function that takes the covariance of the
clusters into account for calculating the distance between them. At every iteration of
flowMeans, these Mahalanobis semi-distances need to be recalculated for the modified
cluster. This recalculation procedure represents a bottleneck in the runtime of our
framework. However, Tables 1 and 2 show that replacing it with an Euclidean distance
function decreased the accuracy of the predicted populations. One possible approach to
preserve accuracy and increase speed would be to use a covariance matrix updating
procedure (e.g. [24]) to update the symmetric Mahalanobis semi-metric without
recalculating it.

Our empirical evaluation was based on comparison against manual analysis. While a wide
range of metrics are available for cluster evaluation, we used F-measure as it has been
shown to have a better performance in discriminating between the clustering solutions that
are similar or different from the manual analysis [22]. The F-measure values show that
flowMeans and flowMerge perform similarly, both on average and for individual samples
(distributions of F-measures are shown in supplemental materials). In spite of using a more
flexible statistical model, FLAME usually has a lower F-measure. Figure 2 suggests that this
might be due to the high number of populations that FLAME identifies. To further study the
characteristics of these algorithms, we used the F-measure values to select four extreme case
samples where the performance of the algorithms varies significantly for visual comparison.
While visual comparison generally confirmed the F-measure values, it is important to note
that due to the high dimensionality of the data, the margins of the populations could not be
effectively visualized. Using human gates as the gold standard for comparison is also
complicated as human results can be subjective and highly variable [4–6]. For example, in
Figure 4(d) it is not clear if the human has missed the green population found by flowMeans,
has intentionally decided to merge it with the blue population, or has marked those cells as
outliers. For cases similar to this, if a sample is critically important and the F-measure value
alone cannot be trusted, multi-dimensional visualization (i.e., looking at different bi-variate
plots as done in the back-gating procedure) can be used to check the margins using different
dimensions. Visualizing cell populations in multiple dimensions remains an area for future
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improvement. This includes finding the dimensions (or combination of dimensions) that can
effectively visualize the populations using feature selection and feature extraction strategies.

An implementation of flowMeans is publicly available as an R package through
Bioconductor, a free, open source and open development software project for the analysis
and comprehension of genomic data [25, 26].

Conclusion
We have introduced flowMeans, a fast yet accurate K-means-based automated gating
framework. flowMeans addresses all the issues that prevented the application of K-means to
FCM data in the past. This makes flowMeans a powerful tool for identification of cell
populations as part of high throughput and accurate FCM data analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
An example of finding the change point using segmented regression. The chosen solution
(shown in red) consists of 6 populations.
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Figure 2.
The number of clusters selected by manual analysis and the three algorithms for the
(a)GvHD and (b)DLBCL datasets.
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Figure 3.
Agreement between F-measures of flowMeans and either flowMerge(a,b) or FLAME(c,d)
on GvHD(a,c) and DLBCL(b,d) datasets. The cell populations for the samples indicated
with red X’s in panels (a)-(d) are shown in respective panels in Figure 4. The dashed line is
the agreement line (i.e., y = x) that indicates where the performance of the two algorithms is
equal. The correlation coefficient (CC) and concordance correlation coefficient (CCC) are
shown as legends.
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Figure 4.
Panels (a)-(d) illustrate the cell populations found by flowMeans, flowMerge, and FLAME
for the samples shown with red X’s in respective panels in Figure 3. In this figure, the >90th
percentiles of each cluster are visualized to make the boundaries more robust after projection
to a two dimensional scatter plot. Therefore the populations might be different from the real
distributions on the margins. The pink cluster in panel (d) is a multi-modal population with 2
high-density regions. In every panel, colors of each solution are matched with the solution
with the maximum number of clusters.
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Table 1

Comparison of F-measure of flowMeans, flowMerge, and FLAME.

Dataset Mean F-measure (SD)

flowMeans
Euclidean

flowMeans
Mahalanobis flowMerge FLAME

GvHD 0.63(0.10) 0.84(0.07) 0.80(0.06) 0.68(0.13)

DLBCL 0.65(0.11) 0.92(0.04) 0.92(0.05) 0.59(0.14)
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Table 2

Comparison of Average Wall-Clock (CPU) Runtime of flowMeans, flowMerge, and FLAME.

Dataset Average Runtime (mm:ss)

flowMeans
Euclidean

flowMeans
Mahalanobis flowMerge FLAME

GvHD 00:17 00:28 15:34 18:41

DLBCL 00:13 00:21 11:40 15:35

Cytometry A. Author manuscript; available in PMC 2012 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Aghaeepour et al. Page 17

Table 3

Comparison of Average Runtime of the Clustering Algorithms used for each Framework for Identifying 10
Clusters.

Dataset Average Runtime (mm:ss)

K-means
(flowMeans)

Gaussian Mixture Model
(flowMerge)

t Mixture Model
(flowMerge)

skew-t Mixture Model
(FLAME)

GvHD 00:07 04:26 05:37 07:36

DLBCL 00:05 03:31 04:07 05:51
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