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Abstract
Budget constraint is a challenge faced by investigators in planning almost every clinical trial. For a
repeated measurement study, investigators need to decide whether to increase the number of
participating subjects or to increase the number of repeated measurements per subject, with the
ultimate goal of maximizing power for a given financial constraint. This financially constrained
design problem is further complicated when taking into account things such as missing data and
various correlation structures among the repeated measurements. We propose an approach that
combines a GEE estimator of slope coefficients with the cost constraint. In the case where we
have no missing data and the compound symmetric correlation structure, the optimal design is
derived analytically. In the case where we have missing data or other correlation structures, the
optimal design is identified through numerical search. We present an extensive simulation study to
explore the impacts of cost ratio, missing pattern, dropout rate, and correlation structure. We also
present an application example.
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1. Introduction
Budget constraint is a challenge faced by investigators in planning almost every clinical
trial. When designing a repeated measurement study, investigators need to decide how to
make full use of the limited financial resources: increasing the number of participating
subjects (n) or increasing the number of repeated measurements per subject (m). The
ultimate goal is to maximize the testing power. The selection of n and m in repeated
measurement studies has been discussed by many authors (Snedecor and Cochran 1989;
Fleiss 1986; Maxwell 1998; Arndt et al. 2000; Ahn and Jung 2003, 2004). Ahn and Jung
(2003, 2004) presented a method to assess the relative benefit of adding subjects versus
adding measurements in terms of the efficiency of the generalized estimating equation
(GEE) estimator of slope coefficients. Without taking cost into account, such methods
effectively assume an infinite financial resource.

In relatively short-term efficacy clinical trials of perhaps a 6–8 weeks duration, a linearly
divergent treatment effect is often expected, where the expected difference between the
treatment groups increases linearly over time, possibly after a data transformation (Winkens
et al. 2005a,b; Overall and Doyle 1994; Jennrich and Schluchter 1986; DeGruttola, Lange,
and Dafni 1991; Frison and Pocock 1997). The analysis of data from the randomized
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parallel-group design often focuses on the difference between treatment groups in the
average rate of changes as represented by the slopes of regression lines fitted to the response
measurements. In this article, we propose an approach that combines a GEE estimator of the
slope coefficients with the cost constraint in clinical trials with a linearly divergent treatment
effect.

The cost incurred by an additional subject is usually different from that by an additional
measurement. Several papers have provided the sample size estimate for repeated
measurement studies incorporating costs for recruiting and measuring subjects (Bloch 1986;
Lai et al. 2003; Lui and Cumberland 1992; Winkens et al. 2006, 2007).

The determination of n and m is further complicated in the presence of missing data and
different types of correlation structures among repeated measurements. The GEE method
(Liang and Zeger 1986) has been widely used for the evaluation of treatment effects in
controlled clinical trials because it does not require the restrictive compound symmetric
(CS) correlation structure and it accommodates missing data. In this article, we derive the
optimal combination of n and m where the GEE estimator of the treatment effect yields the
smallest variance within a particular budget. In other words, the optimal combination of n
and m maximizes the testing power when making inference about the treatment effect under
a budget constraint.

In Section 2, we briefly review the GEE sample size formula (Jung and Ahn 2003), which
provides a closed form sample size solution for comparing the rates of changes in repeated
measurement studies. In Section 3, we introduce how to find the optimal combination of n
and m to maximize power under a budget constraint. In Section 4, we introduce how to find
the optimal choice of n and m to minimize cost for a prespecified power. An example is
provided in Section 5. We conclude with a brief discussion in Section 6.

2. Sample Size Estimation Using GEE
We introduce the following notation. For subject i (1 ≤ i ≤ n), let yij be the continuous
response variable obtained at time tj (1 ≤ j ≤ m). Here we assume a common measurement
schedule for all the subjects and m ≥ 2 is the number of repeated measurements. We assume
a fixed follow-up period T, and assume tj to be equally spaced time points in [0, T]. Thus,

We consider a linear regression model

(1)

where εij is the error term with mean zero and variance σ2. Serial correlation may exist
among εi1, …, εim. We define ρjj′ = corr(εij, εij′) for j ≠ j′ and ρjj = 1. Here ri is the treatment
indicator taking 0 for the control group and 1 for the treatment group. Our primary interest
lies in β4, which models the difference in slopes between the control and treatment groups.

Let δij = 0/1 denote that yij is missing/observed. We define pj = E(δij) to be the proportion of
subjects with measurement at tj, and pjj′ = E(δijδij′) to be the proportion of subjects with
measurements at both tj and tj′. Note that pjj = pj.
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Jung and Ahn (2003) investigated the experimental design problem for clinical trials with
repeated measurements using the GEE method under the assumption of missing completely
at random (MCAR). Different missing patterns and correlation structures have been
considered. In this study we assume the missing data mechanism to be MCAR. Letting β ̂4 be
the GEE estimator of β4,  is approximately normal with mean 0 and variance ,
where

(2)

and  for k = 1, 2,

. Here r ̄ is the
proportion of subjects who receive the experimental treatment. Different missing patterns
and correlation structures are accounted for by pj, pjj′, and ρjj′. Details of derivation can be
found in Jung and Ahn (2003). With a two-sided α and a power 1 − γ, the required sample
size to test H0: β4 = 0 versus Ha: β4 = β40 is

(3)

We reject H0 if , where Z1 − α/2 is the 100(1 − α/2)th percentile of the
standard normal distribution. Equivalently, given (n, m, α), we can compute the power of the
test,

(4)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Expression (4) suggests that the power 1 − γ is maximized when  is minimized.

3. Maximizing Power Under a Budget Constraint
In practice, the number of subjects and the number of repeated measures per subject are
often restricted by budget constraints. In this article, we assume that C1 and C2 are the costs
of recruiting one study subject and the cost of making one measurement on a subject for
both control and treatment groups. For simplicity, we further assume that there is no
overhead cost. We denote the total budget by C. Thus, the budget constraint is presented as

, which takes into account that some measurements might be
missing. The goal is to find (no, mo), the optimal combination of (n, m), that minimizes 
within a budget of C. The computation of  in (2) does not involve sample size n, which
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indicates that, for a given m, a larger n always leads to a smaller  and a greater power.
We define an integer function of m such that

(5)

Here I+ denotes the set of positive integers. Thus, for investigators, the action space
determined by the budget constraint is {(n(m), m): m ≥ 2}. Furthermore, in medical studies
investigators might also face logistic constraints. For example, within the study period T, the
maximum number of measurements is limited at mmax. Then we have

(6)

In Equation (2), the terms that are affected by m include , and . Thus, to find (no,
mo), our goal of minimizing  is equivalent to minimizing

(7)

under constraint (6). For the time being we ignore the integer constraint for n, and plug

 into (7). We have

(8)

where V = C1/C2. Thus, (no, mo) can be obtained by first identifying mo which minimizes

, and then solving no by no = n(mo). From (8) we have the following
fact.

Fact 1. For a financial constraint represented by (C, C1, C2), the optimal number of
repeated measurements (mo) is only affected by the cost ratio (C1/C2). Changing the total
budget C only affects the sample size no.

Proof. See Appendix A.1.

3.1 No Missing Data and CS Correlation Structure
Under no missing data (pj = 1, j = 1, …, m) and the CS correlation structure (ρjj′ = ρ for j ≠ j
′), (no, mo) can be obtained analytically. Specifically, mo is determined by the cost ratio V
=C1/C2,
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and no = n(mo). When C1/C2 ≤ 2, the testing power is always maximized when investigators
take mo = 2 measurements from each subject. WhenC1/C2 > 2, the maximum power is
achieved either at m = 2 or at m = mmax. More details can be found in Appendix A.2.

3.2 Numerical Analyses Under Other Scenarios
Under missing data or other correlation structures such as AR(1), the expression of Q in (8)
is too complicated to find (no, mo) analytically. We conduct numerical analyses to explore
the factors that impact (no, mo).

Since the optimal combination of (no, mo) depends on the relative costs of subjects and
repeated measures, a large range for the cost ratio, V =C1/C2 = 1, 10, 100, is considered. For
practical reasons, the number of repeated measures is bounded by m ≤ mmax = 10. Without
loss of generality, we fix the length of the study period at T = 1 and the true value of the
slope coefficient at β4 = 0.1. We search for the optimal choice of m and n that maximizes the
testing power under the budget constraint. The combinations of the following factors are
considered:

• Three cost ratios between recruiting a subject and making a measurement:C1/C2
=1, 10 and 100.

• Two missing patterns: random missing (RM) and monotone missing (MM). Under
the RM pattern, missing value occurs independently among the m measurements,
with pjj′ = pjpj′ for j ≠ j′. On the other hand, in some studies subjects missing at a
measurement time miss all the subsequent measurements, which is called an MM
pattern. In this case we have pjj′ = pj′ for j < j′ (p1 ≥ ··· ≥ pm).

• Two correlation structures: CS or AR(1). Since the length of the study period is
fixed at T = 1, for easy comparisons, we fix the correlation between the first and
last measurements at ρ, that is, ρ1m = ρ. Thus, under CS, we have ρjj′ = ρ for j ≠ j′.
Under AR(1), we have ρjj′ = ρ|j−j′|/(m−1).

• The range of ρ: 0.2 to 0.8. A baseline-to-end-point correlation of 0.5 has been
considered realistic in clinical trials with symptom rating scales in a clinical
psychopharmacology research (Poktin and Siu 2009). In order to explore the
impact of ρ, we conduct numerical analysis under a wide range of ρ.

• Three dropout levels: no dropout (no missing data), moderate dropout or high
dropout. We assume pj = 1 − tjθ. That is, a linear trend in the observation
probability. Thus, the dropout rate at the end of study is T θ = θ. In the labor pain
study provided in the Example section, the dropout rate was 59% (Davis 1991).
Most psychiatric clinical trials report dropout rates of >20% (Poktin and Siu 2009).
Here, we consider three values for θ: 0, 0.30, and 0.60, corresponding to no
dropout, moderate dropout and high dropout.

For a particular combination of (C1/C2, missing pattern, correlation structure, θ, ρ), we
evaluate the relative efficiency (RE) of the β4 estimator for every plausible number of
repeated measurements to that under m = 2. Specifically, RE is defined as
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Recall that n(m) is the sample size given m under a cost constraint, as defined in (5), and the
superscript (m) of  indicates that it is obtained based on the design with m repeated
measurements. We interpret RE as follows: In order to achieve the same testing power, a
trial with m measurements per patient needs to enroll 1/RE times as many patients as a trial
with two measurements per patient. Thus, the m with the highest RE is the optimal number
of repeated measurements (mo) under a certain design configuration. Using Fact 1, it can be
shown that RE is independent from the total budget C.

Tables 1–3 list the optimal numbers of repeated measurements and their RE, mo (RE(mo)),
under various combinations of designing factors. We have several observations. First, when
C1/C2 = 1, we have mo = 2 regardless of missing pattern, correlation structure, dropout rate,
and ρ. Second, the RE’s have a range of 1 to 2.63, indicating that the choice of m can greatly
impact the efficiency of a clinical trial. Third, under the CS correlation structure, the results
are identical under various combinations of missing pattern, dropout rate, and ρ. Fourth, mo

is affected by every factor considered in the numerical study. It is difficult to summarize a
single rule to describe the relationship between mo and the factors. However, one reasonable
intuition is that as V = C1/C2 increases, the optimal m value is nondecreasing for any given
combination of other factors, the reason being that it becomes more expensive to enroll a
new subject than to obtain an additional measurement. Such a nondecreasing behavior is
observed across Tables 1–3. We have conducted simulations under other values of V, which
also confirm this intuition (results not shown).

In order to provide a global view of the association between mo and the various factors, we
plot Figures 1–3. Figures 1–3 show the numerical analysis under C1/C2 = 1, 10, and 100,
respectively. From top to bottom, the four rows in each figure show results under the
configurations of (RM, CS),(RM, AR(1)),(MM, CS) and (MM, AR(1)). From left to right,
the three columns in each figure correspond to dropout rate θ = 0, 0.30, and 0.60,
respectively. In each of the three-dimensional graphs, the x-axis indicates m, the number of
repeated measurements. Note that under the cost constraint, n(m) is a one-to-one function of
m. Thus, the x-axis effectively denotes choices of (n(m), m). The y-axis indicates correlation
ρ, ranging from 0.2 to 0.8. The z-axis corresponds to the RE under different values of m and
ρ, given the assumed missing pattern, correlation structure, and dropout rate θ. Thus, each
vertical slice parallel to the x-axis provides a curve of RE versus m for a given configuration
of (C1/C2, missing pattern, correlation structure, θ, ρ). Note that in each graph we employ a
different scale on the z-axis to provide maximum detail in the change of RE.

For C1/C2 = 1, Figure 1 shows a decreasing trend in RE as m increases (or as n decreases),
over all missing pattern, correlation structure, ρ*, or θ. It is consistent with the observation
in Tables 1–3 that mo = 2 for C1/C2 = 1 under all designing configurations. In Appendix A.2
we have proved that under no missingness and the CS correlation structure, the power (or
RE) decreases with m when C1/C2 ≤ 2. Figure 1 suggests that this conclusion applies to
situations with missing data or AR(1) correlation structure. We have tried different cost
ratios, such asC1/C2 =0.5, 1.5, and 2, and obtained similar results (omitted due to space
limitations). This suggests that the above conclusion holds generally for C1/C2 ≤ 2. Thus,
when C1/C2 ≤ 2, the optimal strategy is to maximize the number of subjects. That is, to use
combination (n(2),2).

Zhang and Ahn Page 6

Stat Biopharm Res. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figures 2 and 3, on the other hand, suggest that the identification of mo is much more
complicated under greater cost ratios (C1/C2 = 10 or 100). There is no simple rule to locate
mo under different configurations and a numerical search is required. Note that the
unsmoothness in Figure 3 is due to the integer constraint on m and n.

The RE in Figures 1–3 is helpful to locate the optimal number of repeated measurements. It
does not, however, directly show how the choices of (n(m), m) under a cost constraint affect
the testing power. In Figure 4 we present the power curves against m under combinations of
RM/MM patterns, CS/AR(1) correlation structures, and different values of ρ*, given C =
2000, C1 = 10, C2 = 1, and θ = 0.60. We observe two features in Figure 4. First, in general
we observe an upward shifting in the power curves as ρ increases. One explanation is that,
given a high dropout rate (θ= 0.60), if the data are highly correlated, the missingness results
in less information loss. Second, Figure 4 demonstrates the importance of studying the
optimal design under a cost constraint. In the first graph (ρ = 0.2), the solid curve (RM and
CS) has a range of 0.62 to 0.81 depending on the choice of m. In practice, it will make the
difference between an under-powered and an adequately powered clinical trial.

4. Minimizing the Budget for a Given Power
In other studies (Moerbeck, van Breukelen, and Berger 2000), investigators might have a
prespecified power requirement, and a desire to find (no, mo) that minimizes the total cost,

. Plugging in the equation of n as given in (3), we can show that

(9)

Note that the first term does not depend on m and the second term is proportional to Q in (8).
Thus, the mo that minimizes Q also minimizes C in (9). In other words, whether to maximize
power for a given budget or to minimize the total cost for a given power, the search for mo is
the same. The difference lies in the computation of no after mo is identified. When
maximizing power for a given budget, we find no by no = n(mo), which incorporates the cost
constraint. When minimizing cost for a given power, we compute no by (3), which
incorporates the power requirement.

5. An Example
We apply the sample size method to a labor pain study (Davis 1991). In this study, 83
women in labor were randomly assigned to the pain medication group (43 women) or the
placebo group (40 women). Within a three-hour period, the self-reported amount of pain was
assessed repeatedly using a 100mm line, with 0 for no pain and 100 for extreme pain. We
assume that the cost to recruit a subject is C1 = $300, the cost to obtain a self-reported pain
measurement is C2 = $20, the standard deviation of measurement error is 30, the repeated
measurements follow a monotone missing pattern, and the correlation structure is AR(1)
with ρ = 0.2. The researchers adopted a balanced experimental design (r = 0.5) and the total
budget constraint is set at C = $80, 000. For practical reasons, m is bounded to a maximum
of six measurements. The goal is to find the optimal m and n to maximize the power in
detecting the difference in slopes between the two treatment groups. Assuming that the
dropout rate at the end of study is 48%, to detect a difference in slope of 3 points per hour
with 5% two-sided Type I error, the optimal combination is mo = 2 and no = 242. The
achieved power is 83.6%. If the observations follow an RM pattern, then the optimal
combination is mo = 3 and no = 231, with a power of 84.0% and an RE of 1.01. When there
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are no missing data (pj = 1), the optimal combination is mo = 2 and no = 235, achieving a
power of 0.95.

6. Discussion
In this article we take financial constraints into account in the design of repeated
measurement studies. We have shown that for a given configuration of missing pattern,
correlation structure, ρ, and dropout rate, mo is determined by cost ratio C1/C2. That is, no
matter how we change the overall cost constraint C, the optimal number of repeated
measurements will remain the same as long as the cost ratio C1/C2 is unchanged. Zhang and
Ahn (2010) evaluated the effects of correlation and missing data with MCAR and
nonignorable missing on sample size estimation without financial constraints in repeated
measurement studies. Further study is needed to investigate the effect of misspecified
correlation structure and missing data on the determination of optimal combination of n and
m under financial constraints.

This study has several limitations. First, it focuses on a linear regression model estimating
the difference in slopes between treatment groups. In many clinical trials, researchers are
often interested in the time-averaged difference in a response between groups (Diggle et al.
2002), in which case this approach is not applicable. Second, it identifies the optimal
number of repeated measurements based on a “statistical” criterion of maximizing the
power. Under this criterion, the simulation study suggests that given many test
configurations the preferred design is the one with only m = 2 observations. In many
longitudinal drug studies, however, researchers follow patients at intervals not only to
estimate the slope in treatment effect, but also to monitor the patients over time with respect
to safety and other endpoints. That is, the schedule of assessments is determined not only by
the cost, but also by regulatory implications. For example, patients might require one or
more follow-up visits after the primary assessments are completed. Blindly adopting the
statistically optimal design might prevent researchers from addressing these important
questions. One solution is to specify the minimal number of repeated measurements that is
required by clinical goals, and then conduct statistical searching to identify the optimal
design that maximizes power.

The computation of this study is performed in R. The program is available upon request
from the first author.
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Proof
From (8), it is obvious that Q is proportional to C2/C, and that where Q reaches the

maximum is solely determined by the term . Thus the financial
constraint affects the value of mo through V =C1/C2, the cost ratio.
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Because changing the total budget C does not affect mo, it only affects sample size no

through the function n(m), as defined in (5).

Appendix A.2
Under no missing data (pj = 1 for j = 1, …, m) and homogeneous correlation structure, we
have μ0 = m,

and

Thus

We also need . Note that pjj′ = 1, and ρjj′ = ρ for j ≠
j′ and ρjj′ = 1 for j = j′. Thus

Plugging μ0, , and  into (8), we have

We have the ≡ sign because (1− ρ), T, C, and C2 do not depend on (n, m). Recall that V =
C1/C2 ≥ 0 is the cost ratio between an additional subject and an additional measurement.
Setting

Zhang and Ahn Page 10

Stat Biopharm Res. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we have roots

For m ≥ 2, the denominator of (A.1) is always positive. For the numerator of (A.1), we
define f(m) = (2−V)m2+2Vm+V and discuss several scenarios.

• When 0 < V < 1, f(m) is a U-shape curve above 0. Thus, ∂log(Q)/∂m > 0 for m ≥ 2.
That is, Q is increasing with m and the minimum is achieved at mo = 2.

• When 1 ≤ V <2, f(m) is a U-shape curve centered at −V/(2−v) < 0. Thus we have
f(m) > f(2) = 8+v > 0 for m ≥ 2. As a result, Q is also increasing over m ≥ 2 and the
minimum is achieved at mo = 2.

• When V = 2, f(m) = 4m+2 is an increasing function of m. For m ≥ 2, we have f(m) >
f(2) = 10> 0. Thus Q is increasing over m ≥ 2 and the minimum is achieved at mo =
2.

• When V > 2, f(m) is a reversed U-shape curve with two roots

Lemma 1

Proof
Suppose Lemma 1 does not hold. Then solving inequality

yields that −8 ≤ V ≤ 2, which contradicts with the requirement that V ≥ 2. On the other
hand, solving

given V > 2 also yields an empty set. Thus we finish the proof of Lemma 1.
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Lemma 1 suggests that f(m) or ∂log(Q)/∂m changes from positive to negative at

that is, Q increases on the left of m* and decreases on the right of m*. Because 2 ≤ m* ≤
mmax, the maximum of Q is achieved at m*, and the minimum of Q is achieved at one of the
two extreme values of m (2 or mmax).
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Figure 1.
Under the cost ratio of C1/C2 = 1, the relative efficiency of the GEE treatment effect
estimate with m repeated measurements against that with two repeated measurements.
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Figure 2.
Under the cost ratio of C1/C2 = 10, the relative efficiency of the GEE treatment effect
estimate with m repeated measurements against that with two repeated measurements.
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Figure 3.
Under the cost ratio of C1/C2 = 100, the relative efficiency of the GEE treatment effect
estimate with m repeated measurements against that with two repeated measurements.
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Figure 4.
The power curves against m, fixing C = 2000, C1 = 10, C2 = 1, θ = 0.60. The three graphs
are under ρ = 0.2, 0.5, and 0.8, respectively. The solid line corresponds to (RM, CS), the
dashed line to (RM, AR(1)), the dotted line to (MM, CS), and the dashed-and-dotted line to
(MM, AR(1)).
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