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Competition for Visual Selection in the Oculomotor System
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During behavior, the oculomotor system is tasked with selecting objects from an ever-changing visual field and guiding eye movements
to these locations. The attentional priority given to visual targets during selection can be strongly influenced by external stimulus
properties or internal goals based on previous experience. Although these exogenous and endogenous drivers of selection are known to
operate across partially overlapping timescales, the form of their interaction over time remains poorly understood. Using a novel choice
task that simultaneously manipulates stimulus- and goal-driven attention, we demonstrate that exogenous and endogenous attentional
biases change linearly as a function of time after stimulus onset and have an additive influence on the visual selection process in rhesus
macaques (Macaca mulatta). We present a family of computational models that quantify this interaction over time and detail the history
dependence of both processes. The computational models reveal the existence of a critical 140 –180 ms attentional “switching” time, when
stimulus- and goal-driven processes simultaneously favor competing visual targets. These results suggest that the brain uses a linear sum
of attentional biases to guide visual selection.

Introduction
Visual selection is the process by which the brain’s attentional
mechanisms target one location in the visual field for the purpose
of perceptual enhancement or saccade planning (Awh et al.,
2006). In the primate oculomotor system, two distinct atten-
tional processes are known to drive visual selection: sensory-
driven exogenous (“bottom-up”) attention and goal-driven
endogenous (“top-down”) attention (Desimone and Duncan,
1995; Egeth and Yantis, 1997; Kastner and Ungerleider, 2000;
Awh et al., 2006; Knudsen, 2007). Exogenous attention is auto-
matic and can reliably be “captured” by a flashed object (Yantis
and Jonides, 1984, 1996; Nakayama and Mackeben, 1989; Egeth
and Yantis, 1997) or pop-out stimulus (Joseph and Optican,
1996), even if these cues are uninformative or task-irrelevant (Liu
et al., 2005; Giordano et al., 2009). Endogenous attention is a
voluntary process that supports the monitoring of peripheral tar-
gets or locations, has been shown to improve discriminability and
speed of information accrual at monitored locations, and varies
flexibly with task demands such as cue validity (Giordano et al.,
2009).

Recent work has shown that sensory- and goal-driven atten-
tion are subserved by distinct brain mechanisms (Kastner and
Ungerleider, 2000; Corbetta and Shulman, 2002; Giordano et al.,
2009; Ross et al., 2010). These mechanisms are likely to interact,

based on the observation that exogenous attention to a distractor
location interferes with endogenous attention to a target located
elsewhere in the visual field (Theeuwes and Burger, 1998). How-
ever, the nature of this interaction remains unknown, because
endogenous and exogenous manipulations of competition have
been studied in isolation only (Beck and Kastner, 2009). How is
competition resolved when stimulus- and goal-driven factors si-
multaneously drive the selection of different targets in the visual
field?

To address this problem, we developed a simple two-target,
free reaction time decision task, in which we simultaneously ma-
nipulate sensory- and goal-driven attentional processes by vary-
ing the relative luminance and relative reward values of the
targets. Through parametric variation of luminance contrast and
expected reward, and by using reaction time as a proxy for inter-
nal selection dynamics, we investigate how attentional biases de-
rived from these stimulus properties evolve in time after target
onset. In particular, when luminance and reward favor different
targets, we find that the selected target location is strongly influ-
enced by reaction time: fast reaction times lead to a stronger
sensory-driven attentional bias, while slow reaction times lead to
a stronger goal-driven attentional bias. We present a family of
computational models to quantify the interaction between lumi-
nance and reward biases in time, as well as their dependence on
prior experience. Our best-fitting model demonstrates that
bottom-up and top-down biases combine linearly at all times to
drive visual selection, and although reward bias is shaped by pre-
vious experience, luminance bias is not.

Materials and Methods
Experimental preparation
Two adult male rhesus macaques (Macaca mulatta) participated in the
study (monkey A and monkey S, 9.5 kg of and 8.4 kg, respectively at the
start of the experiments). Both animals had been used previously in other
experiments studying eye movements but were naive to the choice task
used in this study. Identical training protocols were used for both animals
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(see below). Before behavioral training, each animal was instrumented
with a head restraint prosthesis to allow fixation of head position and
tracking of eye position. All surgical and animal care procedures were
approved by the New York University Animal Care and Use Committee
and were performed in accordance with the National Institute of Health
guidelines for care and use of laboratory animals.

Each monkey was behaviorally trained for several weeks in an unlit
sound-attenuated room (ETS Lindgren). Eye position was constantly
monitored with an infrared optical eye tracking system sampling at 120
Hz (ISCAN). Eye positions were digitized at 1 kHz. Visual stimuli were
presented on an LCD screen (Dell Inc) placed 34 cm from the subjects’
eyes. The visual stimuli were controlled via custom LabVIEW (National
Instruments) software executed on a real-time embedded system (NI
PXI-8184, National Instruments).

Luminance-reward selection task
To test a simple conceptual model of selection (Fig. 1a), each monkey
performed the two-alternative choice task shown in Figure 1b. Two iden-
tically sized rectangular stimuli with a 3-to-1 aspect ratio served as the
targets in this task, with each target associated with a different value of
liquid reward. The long axis of each target subtended 2° of visual arc.
Target 1 (T1) was oriented so that the long axis was vertical, and target 2
(T2) was oriented so that the long axis was horizontal (Fig. 1b). The
monkeys were motivated to find the target associated with the highest
value of liquid reward. The mean value of the liquid reward associated
with each target was kept constant for blocks of 40 –70 trials, after which
a new mean for each target was assigned. We randomized the number of
trials in each block to discourage an influence by the number of trials
completed in a block. The mean of the reward values tested varied be-
tween 0.04 ml/trial and 0.21 ml/trial across blocks. Changes in reward
magnitude between block transitions were unsignaled, and a Gaussian-
distributed variability (SD � 0.015 ml) was added to the value associated
with both targets on every trial. Adding variability to reward magnitude
across trials ensured that we could perform regression analyses and in-
creased the subjects’ uncertainty about the times of reward block
transitions.

The luminance of T1 was randomly chosen on each trial from a log-
uniform distribution of values ranging from 0.01 to 12.15 cd/m 2. The
minimum of this distribution was set above the psychophysical threshold
for stimulus detection during a single-target delayed saccade task for
both monkeys. After the luminance parameter for T1 was chosen, the
luminance of T2 was assigned such that the mean luminance across both
targets was 6 cd/m 2. Although the luminance of one target was informa-

tive about the luminance of the other target,
the randomized target locations guaranteed
that subjects could not determine the location
of a dim target from the location of a bright
target. On each trial, target luminance values
were chosen independently from the rewards
associated with T1 and T2.

Each monkey performed saccadic eye move-
ments for liquid rewards. The monkeys started
each trial by placing both hands on proximity
sensors, after which a red square was centrally
presented. The monkeys were required to fix-
ate within 2° of the center of the red square for
a 500 – 800 ms baseline period. After the base-
line, the central red square was extinguished
and two red targets (T1 and T2) were presented
at random locations in the visual periphery at a
10° eccentricity from the central fixation. We
randomized the spatial locations of each target
on each trial to reduce the influence of previous
experience on the allocation of spatial atten-
tion at the start of each trial. The separation
between target pairs was constrained to be at
least 90° on each trial. Target onset cued the
subjects to perform a free-choice saccade to
one of the two targets. After the saccade was
completed, fixation was maintained for 300 ms

at the chosen target, following which the appropriate reward was deliv-
ered �500 ms after the eye movement was completed. Each trial lasted
890 –1400 ms, and only one choice could be made per trial. Trials were
separated by a 1000 –1500 ms intertrial interval (ITI) beginning at the
end of the time of reinforcer delivery. No visual stimuli were presented
during the ITI. The range of trial durations derives from the variability in
the amount of time taken by the monkeys to select and execute their eye
movements. Relative to the duration of the trial, this time was short
(mean � SD reaction time 168 � 31 ms for monkey A, 192 � 30 ms for
monkey S). Reaction times shorter than 100 ms, mediated by express
saccades (Sommer, 1997), were rare in data from each animal: 1060 trials
in monkey A and 480 trials in monkey S, or 3% and 1% of all trials,
respectively. These data were included in all model fits shown here, and
our results were unaffected by their exclusion.

A trial was aborted if the monkey failed to align its gaze within 2° of the
center of the fixation or choice targets. When an abort was detected, all
visual stimuli were extinguished immediately, no reinforcers were deliv-
ered, and the trial was restarted after a 1200 –1800 ms intertrial interval.
Both monkeys rarely aborted trials (4% for monkey A, 5% for monkey S).
Aborted trials were excluded from further analyses. The data analyzed
were 37,816 completed trials for monkey A (30,938 after excluding the
first 10 trials from each block) and 54,026 completed trials for monkey S
(43,774 after excluding the first 10 trials from each block). Data reported
here were collected after at least 3 weeks of training on the choice task.

Computational models of choice behavior
We developed computational models of choice behavior to describe
steady-state choice behavior and dynamic choice behavior.

Steady-state choice behavior. A generalized linear model (GLM) was fit
to steady-state choice behavior to explain choices in terms of choice
biases derived from luminance contrast and reward difference after the
current reward distribution was learned:

ln�pT1

pT2
� � BL � BR � constant, (1)

where pT1 and pT2 are the probability of choosing T1 or T2, respectively,
BL is the luminance-driven choice bias, and BR is the reward-driven
choice bias. The exact form of the model is as follows:

ln�pT1

pT2
� � L�� � �LT� � R�� � �RT� � constant, (2)

Figure 1. Conceptual motivation and behavioral task. a, Schematic of the oculomotor selection process. Target selection may
be driven by sensory drive and/or expected reward, after which the selected target is used to guide choice behavior. b, LRS task.
Following baseline fixation, two iso-eccentric targets appear at random locations and the subject is immediately free to choose
either target. Target reward magnitudes and differences are fixed in blocks of 40 –70 trials and reward block transitions are
unsignaled. Target luminance magnitudes and differences are randomly chosen on each trial (see Materials and Methods). c,
Expected target choice behavior, plotted as a function of luminance contrast and reward difference between the two targets. When
both properties favor selection of the same target (congruent condition), we expect a strong choice bias toward that target. When
luminance contrast and reward difference each favor a different target (conflict condition), however, it is unclear which target will
be selected.
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where L encodes the luminance contrast [log10(LT1/LT2)] on the cur-
rent trial, R encodes the mean reward difference for the current block,
and T encodes reaction time on the current trial. In all fits of this
model, L and R are in the range [�1, 1], and T is in the range [0, 1].
This required us to map luminance contrast ( L) from the domain
(�2, 2) cd/m 2 onto (�1, 1) for both monkeys. Reward difference ( R)
was mapped from (�0.2, 0.2) ml onto (�1, 1) for monkey A, and
from (�0.07, 0.07) ml onto (�1, 1) for monkey S. This threefold
decrease in range was used to correct for monkey S’s comparatively
higher sensitivity to reward differences.

To allow for the possibility that reward information does not be-
come available until a fixed delay after target onset, the reward bias,
BR, was treated as a piecewise linear function that has value � � R at
reaction times between 0 and Tmin ms, and follows the time-
dependent form R(� � �RT ) when T � Tmin. To enforce this piece-
wise linearity, reaction time ( T) was mapped from (128, 300) ms onto
(0, 1) for monkey A, and from (81, 300) ms onto (0, 1) for monkey S.
Reaction times less than Tmin � 128 or 81 ms, respectively, were
linearly mapped onto negative values of T in the BL expression, but
clamped to 0 in the BR expression. These Tmin values were chosen
from the range 0 –300 ms to minimize the deviance of model fits based
on Equation 2 (see below). In practice, these optimal fits resulted in
� 	 0 for both monkeys. Therefore, we omitted � from both steady-
state fits with only minimal increase of deviance (Table 1). In all
models, the fit quality was similar whether BR was piecewise linear or
not, because most of the reaction times in our data are �128 ms.

The � and � coefficients in Equation 2 measure the initial choice bias
derived from luminance contrast and reward difference, respectively,
when T � 0. The �L and �R coefficients specify the rate of change of these
choice biases over time. Model parameters were fit through a logistic
regression of luminance contrast and reward difference on individual
trials, excluding the first 10 trials after each block transition. Therefore,
this model studies competitive interactions between contrast and reward
at steady state, i.e., after the animal has learned the current reward dis-
tribution. The independent variable specified a binary encoding of choice
behavior on individual trials, with 1 indicating choice of T1 and 0 indi-
cating choice of T2. All parameters of Equation 2 were fit using the glmfit
command in Matlab (MathWorks) using a logit link function. Although
the constant term was unconstrained in the GLM, all constants were zero
in the fits and therefore are not reported here. Model predictions for a

given set of regressor values were obtained using the glmval command in
Matlab. This function returns an estimate of pT1, the probability of
choosing target 1.

We performed model selection to determine the relationship between
all regressors and choice behavior. We fit multiple models using subsets
of the coefficients specified by Equation 2 and tested the reduction in
deviance between each pair of models using a likelihood-ratio statistic
called Akaike’s information criterion (AIC) (Akaike, 1974). The AIC
estimates the information lost by approximating the true process under-
lying the data by a particular model (Burnham and Anderson, 1998). For
each candidate model, the AIC is computed as

AIC � Deviance � 2k, (3)

where the deviance is the maximized log-likelihood of the model fit and
k is the number of parameters. This measure balances the quality of each
fit against the increase in model complexity due to the addition of more
model parameters (Lau and Glimcher, 2005). The differences in AIC
values across models represent the degree of evidence in favor of the best-
fitting model, and give a sense of the contribution of each model component
when two models differ by inclusion of one parameter. The larger the differ-
ence in AIC, the less plausible a model is compared to the best model; values
�10 on this scale provide strong support for the model with the smallest AIC
value (Burnham and Anderson, 1998). We checked goodness of fit by
using the best model to predict mean choice behavior (excluding 10 trials
following transitions between reward blocks) as a function of reaction
time (see Fig. 6). We chose not to use cross-validation or bootstrapping
methods to further test goodness of fit because the AIC already provides
a conservative estimate of fit quality and the mean predicted choice be-
havior was consistent with experimental data using a model with only
four parameters.

We also extended the steady-state computational model to test other
forms of the dependence between choice behavior, reaction time, lumi-
nance, and reward. Specifically, we tested an extension of the steady-state
model that adds a (�TT 
 �LRL � R) term to Equation 2. The �T and �LR

coefficients describe the influence of reaction time alone and the multi-
plicative interaction between luminance contrast and expected reward
on choice behavior, respectively. AIC values for these model extensions
are presented to test whether these terms significantly improve model
performance (Tables 1, 2).

Table 2. Dynamic choice model (10-trial lag)

Model parameters # Parameters AIC �AIC

Monkey A (sample total � 36,500 trials)
Bias only 1 50,576 3719
�i 12 48,985 2128
�i 11 49,416 2559
�i, �i 22 47,787 930
�i, �i, �i

T 33 47,765 908
�i, �i, �i

LR 32 47,196 339
�i, �i, �i

R 32 47,349 492
�i, �i, �i

L 33 47,767 910
�i, �i

L, �i
R 33 46,857 0

�i, �i, �i
L, �i

R 43 (lost significance) 46,823 �34
�i, �i, �i

L, �i
R, �i

LR 53 (lost significance) 46,803 �54
Monkey S (sample total � 53,424 trials)

Bias 1 74,037 15,038
�i 12 73,854 14,855
�i 11 59,684 685
�i, �i 22 59,430 431
�i, �i, �i

T 33 59,408 409
�i, �i, �i

LR 32 59,410 411
�i, �i, �i

R 32 58,960 �39
�i, �i, �i

L 33 59,197 198
�i, �i

L, �i
R 33 58,999 0

�i, �i, �i
L, �i

R 43 (lost significance) 58,749 �250
�i, �i, �i

L, �i
R, �i

LR 53 (lost significance) 58,729 �270

Table 1. Steady-state model

Model parameters # Parameters AIC �AIC

Monkey A (sample total � 30,938 trials)
Bias only 1 42,887 3356
� 2 41,376 1845
� 2 41,855 2324
�, � 3 40,298 767
�, �, �T 4 40,296 765
�, �, �LR 4 40,296 765
�, �, �R 4 39,896 365
�, �, �L 4 39,834 303
�, �L , �R 4 39,531 0
�, �, �L , �R 5 39,528 �3
�, �, �L , �R , �LR 6 39,526 �5

Monkey S (sample total � 43,774 trials)
Bias only 1 60,682 7139
� 2 60,574 7031
� 2 54,235 692
�, � 3 54,104 561
�, �, �T 4 54,102 559
�, �, �LR 4 54,102 559
�, �, �R 4 53,723 180
�, �, �L 4 53,898 355
�, �L , �R 4 53,543 0
�, �, �L , �R 5 53,541 �2
�, �, �L , �R , �LR 6 53,539 �4
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Dynamic choice behavior model. To investigate the dependence of
choice behavior on previous experience, we extended the steady-state
choice behavior model in Equation 2 to incorporate the influence of
luminance contrast and experienced reward values during previous
trials:

ln�pT1

pT2
� � �

i�0

�t

��iLi � �i
LT0L�

� �
i��1

�t

�Ri
T1 � Ri

T2���i � �i
RT0� � constant,

(4)

where the subscript i indexes the value of a coef-
ficient or regressor on trial i with respect to the
current trial. Ri

T1 and Ri
T2 represent experienced

reward on trial i if the subject chose T1 or T2,
respectively. The reward regressor associated
with the unchosen target was set to zero on each
trial. Therefore, unlike the steady-state choice be-
havior model, the dynamic choice behavior
model makes no assumptions about steady-state
behavior and can be used to model changes in
choice biases both within and across trials.

The reaction time regressor, T0, represents re-
action time on the current trial (i � 0) only, and
uses the same piecewise-linear encoding for each
animal described previously. This resulted in
�i 	 0 for both animals. We generated variants of
Equation 4 using subsets of parameters from the
full model, and tested the reduction in deviance
between each pair of models using the AIC statis-
tic (Table 2). All model fits presented here reflect
p � 0.05 confidence (Student’s t test) for all pa-
rameter values. Here, we present a 10-trial lag in
the dynamic choice model to discover the influ-
ence of nonzero regressor coefficients on previ-
ous trials while still achieving the desired level of
confidence for all fits. We tested models with a lag
parameter �10 trials and found that higher-
order lag coefficients either were not statistically
significant (Student’s t test) or, when significant,
the coefficients at lags �10 trials were all approx-
imately equal to zero. These results indicate that
including �10 trials in the past is not relevant for
understanding choice behavior under the cir-
cumstances studied here.

The dynamic choice behavior model is
more informative than the steady-state
choice behavior model about the drivers of
choice behavior on each trial as a function of
trial lag. However, this advantage occurs at
the expense of significantly increased model
complexity. The large number of coefficients
necessary to model changing choice biases
means we cannot test nonlinear interactions
between luminance contrast and reward with
the limited numbers of trials available. By
contrast, we can use the steady-state choice
behavior model to study both linear and
nonlinear models of selection. For this rea-
son, both steady-state and dynamic choice
behavior models are useful for understand-
ing the processes that drive selection.

Results
A simple conceptual model of selection is
that “top-down” expected reward and
“bottom-up” sensory input channels drive
visual selection, which then drives choice

behavior (Fig. 1a) (Awh et al., 2006; Knudsen, 2007; Theeuwes,
2010). To understand how these drivers interact, we parametrically
varied the strength of each driver by training two monkeys to per-
form a luminance-reward selection (LRS) task (Fig. 1b, see Ma-
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Figure 2. Reaction time governs the influence of luminance contrast and reward difference on choice behavior. ai, Histogram
of free choice reaction times for monkey A. Data are partitioned into “fast,” “medium,” and “slow” categories to illustrate the
variability of choice behavior over time. aii, Summary of target choice probability versus log10(LT1/LT2) for the two targets, grouped
according to the three reaction time categories described in ai. aiii, Summary of target choice probability vs reward difference for
the two targets, grouped according to the three reaction time categories described in ai. b, Same as a for monkey S. Reaction time
category boundaries were chosen so that marginal choice curves were qualitatively similar.

Figure 3. Predicted choice behavior using different parameterizations of the linear model described in Equation 2. a, Lumi-
nance contrast dependence when �� 1 and all other parameters � 0. b, Reward difference dependence when ���1 and all
other parameters � 0. c, Joint dependence on luminance contrast and reward difference when � � 1, � � �1, and all other
parameters � 0. d, Target choice transitions from pure luminance contrast dependence at fast reaction time (i), to joint
luminance-reward dependence at intermediate reaction time (ii), to pure reward difference dependence at slow reaction time (iii)
when � � 1, � � 0, �L � �1, and �R � �1. In each panel, the probability of choosing target 1, pT1, is shown in grayscale.
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terials and Methods) and treating choice behavior as a proxy for
visual selection in our analysis. We reasoned that each monkey
would show a strong choice bias for one target when reward and
luminance differences both favored the selection of the same tar-
get (congruent scenarios) (Fig. 1c). However, it was unclear
which target would be selected when reward and luminance
drove selection of different targets (conflict scenarios).

Figure 2 summarizes behavioral data from two monkeys that
performed the LRS task (37,816 trials monkey A; 54,026 trials
monkey S). Saccade reaction times for both animals were typi-
cally within 100 –300 ms (Fig. 2ai,bi; express saccades not
shown). Since perceptual deficits caused by exogenously cap-
tured attention become weaker over time (Bisley and Goldberg,
2003; Giordano et al., 2009), we analyzed the relationship be-
tween luminance contrast [calculated using log10(LT1/LT2)],
where Lk represents the luminance of target k, and target choice
probability as a function of reaction time.

We partitioned each monkey’s reaction time histogram into
three categories (fast, medium, and slow) (Fig. 2ai) using boundaries
chosen to illustrate the variability of choice behavior over time.
These boundaries were different across animals, due to idiosyncratic
differences in reaction time distributions and time-dependent selec-
tion biases. Then we calculated the marginal probability of choosing
a target as a function of luminance contrast for all trials with zero
reward difference, and grouped these data according to the three
reaction time categories. Figure 2aii shows that luminance contrast
strongly influences choice probability when reaction time is fast
(�140 ms), but these variables become weakly related when reaction
time is slow (�200 ms). We observed the opposite relationship
when the same analysis was applied to trials with variable reward and
zero luminance contrast (Fig. 2aiii). In these data, reward is weakly
related to choice probability when reaction time is fast, but these
variables become strongly related when reaction time is slow.
These results are qualitatively consistent across reaction time cat-
egories for both monkeys (Fig. 2bii– biii). However, when com-
pared over absolute time, these data suggest that the reward
sensitivity of monkey S is larger and increases more rapidly after
target onset than that of monkey A.

The marginal choice probability profiles shown in Figure 2
suggest that exogenous and endogenous attention evolve over
different timescales, with sensory-driven attention dominating
early after target onset, and reward-driven attention dominating
later in the trial. Given that these processes are supported by
distinct mechanisms in the brain (Kastner and Ungerleider, 2000;
Corbetta and Shulman, 2002; Giordano et al., 2009), their influ-
ence over choice behavior could be additive when reward differ-
ence and luminance contrast are varied simultaneously. To test
this hypothesis, we developed the steady-state choice behavior
model (Eqs. 1, 2, and see Materials and Methods).

Figure 3 presents the steady-state model for four special cases.
When � � 1 and all other parameters are set to zero, the model
specifies that target choice probability is a function of luminance
contrast alone (Fig. 3a). Similarly, when � � �1 and all other
parameters are zero, target choice probability is a function of
reward difference alone (Fig. 3b). When � � 1 and � � �1, target
choice probability depends jointly on luminance contrast and
reward difference (Fig. 3c). Finally, Figure 3d shows a model
parameterization that qualitatively reproduces the reaction time
dependence of L and R implied by the marginal choice curves in
Figure 2. This parameterization is described in Equation 5 below:

ln�pT1

pT2
� � L�1 � T� � TR. (5)

For fast reaction times (T � 0), Equation 5 specifies that target
choice probability is a function of luminance contrast only. For
intermediate reaction times (T � 0.5), target choice probability
depends jointly on luminance contrast and reward difference.
For slow reaction times (T � 1), target choice probability is a
function of reward difference only.

The model parameterization shown in Equation 5 also makes
specific predictions concerning the time evolution of the bias
terms, BL and BR, during congruent and conflict scenarios (Fig.
4). During congruent scenarios, when both L and R favor the
same target, the net choice bias (BL � BR) favors a single target for
all reaction times. During conflict scenarios, when L and R favor
different targets, the net choice bias transitions from favoring T1
to T2, or vice versa, at a critical “switching” point, Tswitch.

Figure 5a summarizes T1 choice probability, pT1, for monkey
A’s behavior during trials when luminance contrast and reward
difference were varied simultaneously. Behavioral data are
grouped according to the reaction time categories shown in Fig-
ure 2ai. In these data, luminance contrast is the primary driver of
choice probability when reaction time is fast, luminance contrast
and reward difference jointly drive choice probability when reac-
tion time is intermediate, and reward difference is the primary
driver of choice probability when reaction time is slow. These
behavioral results are consistent across animals (Fig. 5c) when
grouped by reaction time category.

In separate analyses, we fit the steady-state choice behavior
model to behavioral data from each animal on a single trial basis,
excluding the first 10 trials from each reward block (see Materials
and Methods). Table 1 presents the AIC values for variants of
Equation 2 that include subsets of parameters from the full
model. Of all linear models tested, the lowest AIC value occurs for
models of the form described in Equation 2. A nonlinear exten-
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Figure 4. Time evolution of GLM bias predictions for congruent and conflict scenarios.
a, In the first conflict scenario, luminance contrast favors T2 and reward difference favors
T1. The sum over bias terms transitions from �1 to 
1 with increasing reaction time,
illustrating a change in the selected target from T2 to T1 over time. b, In the first congruent
scenario, both luminance contrast and reward difference favor T1. The sum over bias terms
is maintained at 
1 for all reaction times. Therefore, the model predicts T1 as the selected
target regardless of reaction time. c, The opposite congruent scenario from b, favoring T2.
d, The opposite conflict scenario from a, favoring T1 and then T2. Each panel assumes the
parameterization described in Figure 3d.

9302 • J. Neurosci., June 22, 2011 • 31(25):9298 –9306 Markowitz et al. • Competition for Visual Selection



sion to Equation 2 that incorporates an additional �LRLR term
did not significantly improve the model fit (Table 1).

The optimal parameterization of Equation 2 for each animal is
described in Equations 6 and 7 below:

Monkey A ln�pT1

pT2
� � L�1.9 � 3.0T� � R��3.3T� (6)

Monkey S ln�pT1

pT2
� � L�1.5 � 2.4T� � R��3.5T�. (7)

Figure 5, b and d, shows the T1 choice probabilities predicted by
these models for both monkeys. As suggested by their low AIC

values (Table 1), the models shown in Equations 6 and 7 provide
a good quantitative fit to the behavioral data. These fits do not
change substantially when express saccades are included (as
shown) or excluded (not shown) from the training data.

A prediction of the steady-state choice behavior model is that
target choice bias switches from one target to the other over time
during conflict scenarios. We tested this prediction by summa-
rizing T1 choice probability for all congruent and conflict scenar-
ios in our behavioral data and plotting this as a function of
reaction time (Fig. 6). We then overlaid the T1 choice probability
values that are predicted by Equations 6 and 7. The model pre-
dictions provide a strong quantitative fit to the behavioral data,

Figure 5. GLM fits reproduce the behaviorally observed time-dependent transition from luminance to reward dependence of target choice. a, Summary of T1 choice probability, pT1, as a function
of log luminance ratio (x-axis), reward difference ( y-axis), and reaction time for monkey A behavioral data. In each panel, data are pooled over the corresponding reaction time interval from Figure
2ai. b, Statistical fit of the data from a using the GLM described in Equation 6. c, Choice plots for monkey S, obtained by grouping behavioral data using the reaction time intervals from Figure 2bi.
d, Statistical fit of the data from b using the GLM described in Equation 7.

Figure 6. Time evolution of predicted and observed choice probabilities during congruent and conflict scenarios. a, Monkey A. i, In the first conflict scenario, luminance favors T2 and reward favors
T1. The bias favors selection of T2 at 100 ms and T1 at 300 ms, with the transition point occurring at 180 ms. ii, In the first congruent scenario, both luminance and reward favor T1. The bias favors
selection of T1 throughout the range of observed reaction times. iii, The opposite congruent scenario from ii, favoring T2. iv, The opposite conflict scenario from i, favoring T1 and then T2. b, Same
as a for monkey S. In i, the transition point occurs at 137 ms.

Markowitz et al. • Competition for Visual Selection J. Neurosci., June 22, 2011 • 31(25):9298 –9306 • 9303



consistent with the low AIC values shown
in Table 1. Notably, during conflict sce-
narios, the choice probability transitions
between targets at times near Tswitch � 180
ms for monkey A and Tswitch � 137 ms for
monkey S, which are predicted by the
steady-state choice models.

To relax the assumption of reward-
driven behavior at steady-state and there-
fore study the influence of prior
experience on choice bias, we extended
the model from Equation 2 to include
data from the previous 10 trials (see Ma-
terials and Methods, Eq. 4). In this dy-
namic choice behavior model, T0 encodes
reaction time on the current trial, Li en-
codes luminance contrast on the current
trial, and (Ri

T1 � Ri
T2) encodes the experi-

enced reward on preceding trial i (see Ma-
terials and Methods). All variables are
scaled for consistency with the GLM fits
shown in Equations 6 and 7. The coeffi-
cients �i, �i, �i

L, and �i
R specify the weight-

ing of the associated parameter values on
indexed trial i. Table 2 shows the AIC val-
ues for variants of Equation 4 that include
subsets of parameters from the full model,
similar to the analysis shown in Table 1. We were unable to fit a
nonlinear interaction parameter, �i

LRLi(Ri
T1 � Ri

T2), while main-
taining p � 0.05 for all parameters in the model, likely due to
sampling limitations. Of all models tested, the lowest AIC value
occurs for linear models of the form described in Equation 4.

Figure 7 presents the parameter fits for the dynamic choice
behavior model. For monkey A, �i � 2.85 on the current trial, but
drops to approximately zero for previous trials (Fig. 7a). �i

L ex-
hibits similar behavior. By contrast, ��i

R decays monotonically
from 1.99 on the previous trial to 0.36 at a 10-trial lag. These
results are qualitatively similar for monkey S (Fig. 7b). This con-
firms that, in the context of the LRS task, the luminance contrast
kernel is dominated by the current trial only, whereas the reward
difference kernel takes a weighted sum of rewards experienced at
a trial lag of at least 10 trials.

Discussion
In this study, we use a novel LRS task to demonstrate that choice
biases derived from top-down and bottom-up processes combine
linearly in time to drive selection. We quantify the dependence of
these biases on reaction time and prior experience using compu-
tational models of steady-state and dynamic choice behavior.
Based on this quantification, the models in Equations 6 and 7
predict—and the behavioral data in Figure 6 confirm—that com-
peting sensory and reward-driven processes drive a “switch” in
target selection bias at Tswitch 	 140 –180 ms. Our findings in
monkeys agree with and build substantially on the human atten-
tional literature, which has shown that visual selection is com-
pletely stimulus driven at timescales �150 ms, while volitional
control based on expectancy drives selection at later times
(Theeuwes, 2010).

Two features of the LRS paradigm were critical to the recovery
of our findings: simultaneous manipulation of top-down and
bottom-up attention, and spatial randomization of target loca-
tions. Most previous studies of the competitive interaction be-
tween top-down and bottom-up processes manipulate attention

using separate target and distractor stimuli. Typically, a precue
illuminates first, followed by a distractor at some delay, followed
by a cue to perform a movement (Reynolds et al., 1999; Bisley and
Goldberg, 2003; Giordano et al., 2009; Liu et al., 2009). In such
paradigms, spatial attention is allocated to the precue before at-
tention is captured by the distractor, and reward-driven endoge-
nous attention is allocated when the cue appears after the
distractor. Therefore, multiple forms of attention are deployed
over partially overlapping time intervals. In such cases, the time
course of their evolution and interaction is difficult to map with-
out presenting competing stimuli simultaneously and allowing
the subject to react immediately, as we do here.

Presenting the two targets at random spatial locations on each
trial allowed us to control for the influence of spatial attention on
choice behavior. Previous work has shown that spatial biases in-
duced by cueing have a suppressive influence on exogenous at-
tention (Liu et al., 2009) and can improve acuity in the attended
area at the expense of unattended areas (Montagna et al., 2009).
These data suggest that preexisting spatial attention may bias
competition between stimulus- and goal-driven attention. We
reasoned that repeated presentation of two targets to a predict-
able set of locations might lead to similar biases. In principle,
randomization should lead to the deployment of reward-driven
attention only and provide an unbiased measurement of its com-
petitive interaction with sensory drive.

Reaction time dependence of selection biases
The timescales underlying top-down and bottom-up selection
processes have been a major focus of experimental work over the
last 20 years. Human behavioral studies using the additional sin-
gleton task (Theeuwes, 1992; Kim and Cave, 1999; Theeuwes et
al., 2000), in which a distractor singleton is presented at a variable
delay before a target singleton, have established that the interfer-
ence effect of a distractor is present at stimulus onset asynchro-
nies of up to 150 ms before the target singleton. These results in
humans are consistent with our observation in monkeys that
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time-varying stimulus- and reward-driven selection biases can
have a balanced influence on behavior at “switching” times that
range from 140 to 180 ms. It is interesting that monkey S appears
to pursue a reward-maximizing strategy by waiting until well
after this transition (mean reaction time � 192 � 31 vs Tswitch �
137 ms), while monkey A exhibits greater exogenously driven
behavior (mean reaction time � 168 � 30 vs Tswitch � 180 ms).

Although the physiology of top-down and bottom-up compe-
tition remains poorly understood, there is experimental support
at the single neuron level for “switching” between bottom-up and
top-down selection biases at the timescales discussed here. Re-
cordings from isolated V4 neurons in behaving monkeys show
that firing rate modulations occur after 175 ms when the animal
is looking for a color singleton among an array of targets (Ogawa
and Komatsu, 2004), while these modulations do not occur when
the monkeys search for a shape singleton. Other studies have
demonstrated the dominant influence of salient stimuli on neural
activity at times �150 ms in inferior temporal cortex (Chelazzi et
al., 1998; Chelazzi et al., 2001), posterior parietal cortex (Con-
stantinidis and Steinmetz, 2005), and lateral intraparietal cortex
(LIP) (Buschman and Miller, 2007). These timescales are consis-
tent with the time-varying stimulus- and reward-driven choice
biases described here, and the neural activity may therefore reflect
attentional “switching” during competition.

Evidence for additive drivers of selection
An extensive literature has investigated the nature of competitive
interactions between top-down and bottom-up attention. The
biased competition theory of selective attention (Desimone and
Duncan, 1995; Desimone, 1998) has been especially influential.
One of its three basic principles of control suggests that compe-
tition can be biased by reward-driven and stimulus-driven fac-
tors. In this framework, competition between systems is
integrated, and the target that is selected in the up-stream pro-
cessors will be biased-for by down-stream processors. Impor-
tantly, biased competition implies a joint—and potentially
nonlinear— dependence of choice behavior on sensory and goal-
directed processes. Here we show that the effects of these pro-
cesses on choice behavior are additive over the 100 –300 ms
reaction timescale studied. One interpretation of these findings is
that competition between systems may not be integrated over this
timescale. Instead, the dissociable influence of luminance and
reward biases on selection implies that top-down and bottom-up
processes are functionally independent during the LRS task.

The brain is known to combine information about decision
variables using a weighted sum in the auditory (Green, 1958) and
visual (Young et al., 1993; Kinchla et al., 1995; Landy et al., 1995)
systems, and there is recent evidence for this in parietal associa-
tion cortex (Ipata et al., 2009). Our steady-state model fits dem-
onstrate that a relatively simple linear model is sufficient to reveal
the time evolution of choice biases and their influence on behav-
ior at reaction times from 100 to 300 ms. Future work can inves-
tigate the deviation of observed choice behavior from model
predictions at reaction times longer than 250 ms during congru-
ent scenarios for monkey A, and during conflict scenarios for
monkey S.

The behavioral data shown here are consistent with a race
between two signals that favor separate targets. The race para-
digm has been used previously to model the dynamics of behavior
(Logan and Cowan, 1984; Boucher et al., 2007). These models
connect with our analysis, in which the luminance and reward
signals shown in Equation 1 could serve as inputs to the race
signals for each target. Future analysis of our data using a race

model may provide greater insight into the reaction time distri-
butions shown in Figure 1.

Changing selection bias as changing utility
One interpretation of the time-dependent selection biases shown
here is that the utility of targets changes as a function of reaction
time. For the monkeys to make a choice on each trial, they must
integrate information regarding the luminance and reward mag-
nitudes of the targets by first converting these values into a “com-
mon currency” from which they can be compared (Sugrue et al.,
2005; Kable and Glimcher, 2009). Only then can the monkeys
form a subjective value for each target and make a choice. Inter-
estingly, the manner in which luminance and reward are con-
verted to this common currency changes over time in the LRS
task. Early in a trial, the subjective value of choosing the bright
target is highly driven by exogenous attention. As time pro-
gresses, however, endogenous attention increases the weighting
placed on the high reward magnitude target.

Implications for priority map formation
On a physiological level, our findings are consistent with the
formation of two spatial priority maps in the brain that drive the
selection process in an additive manner. In area LIP, there is
evidence for priority map formation based on visual salience
(Gottlieb et al., 1998; Bisley and Goldberg, 2003) and expected
reward (Platt and Glimcher, 1999; Bendiksby and Platt, 2006;
Rorie et al., 2010). Since LIP receives direct input from dorsal
visual areas, it is possible that this area encodes spatial priority
based on exogenously captured attention, in addition to expected
reward. This interpretation could reasonably be extended to
frontal areas such as the frontal eye fields, which share strong
reciprocal connections with LIP.
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