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Purpose: Nanophthalmos is a rare genetic ocular disorder in which the eyes of affected individuals are abnormally small.
Patients suffer from severe hyperopia as a result of their markedly reduced axial lengths, but otherwise are capable of
seeing well unlike other more general forms of microphthalmia. To date one gene for nanophthalmos has been identified,
encoding the membrane-type frizzled related protein MFRP. Identification of additional genes for nanophthalmos will
improve our understanding of normal developmental regulation of eye growth.
Methods: We ascertained a cohort of families from eastern Canada and Mexico with familial nanophthalmos. We
performed high density microsatellite and high density single nucleotide polymorphism (SNP) genotyping to identify
potential chromosomal regions of linkage. We sequenced coding regions of genes in the linked interval by traditional
PCR-based Sanger capillary electrophoresis methods. We cloned and sequenced a novel cDNA from a putative causal
gene to verify gene structure.
Results: We identified a linked locus on chromosome 2q37 with a peak logarithm (base 10) of odds (LOD) score of 4.7.
Sequencing of coding exons of all genes in the region identified multiple segregating variants in one gene, recently
annotated as serine protease gene (PRSS56), coding for a predicted trypsin serine protease-like protein. One of our families
was homozygous for a predicted pathogenic missense mutation, one family was compound heterozygous for two predicted
pathogenic missense mutations, and one family was compound heterozygous for a predicted pathogenic missense mutation
plus a frameshift leading to obligatory truncation of the predicted protein. The PRSS56 gene structure in public databases
is based on a virtual transcript assembled from overlapping incomplete cDNA clones; we have now validated the structure
of a full-length transcript from embryonic mouse brain RNA.
Conclusions: PRSS56 is a good candidate for the causal gene for nanophthalmos in our families.

Nanophthalmos [OMIM 600165] is characterized by a
very small but structurally intact and functional eye, leading
to extreme farsightedness or hyperopia. As such, it is the
extreme anti-phenotype of common myopia
(nearsightedness). It thus offers tantalizing insights into
emmetropization, the exacting process by which the eye’s
postnatal growth is regulated in such a way to deliver a
focused image to the retina. The homeostatic mechanisms
governing such tightly regulated growth remain mysterious,
although they appear to involve feedback guided by visual
stimuli [1,2].
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There are several genetic disorders and identified genes
in which the eyes are small and disorganized to varying
extents, a condition defined generically as microphthalmia
and in the extreme anophthalmia if the eyes are almost
completely absent. These are thought to result generally from
defects in genes encoding transcription factors critical to the
eye’s early formation. Nanophthalmic patients are in principle
distinct as the eye is otherwise well-formed and fully
functional. Although they may suffer problems associated
with the extreme small size (such as increased risk of
glaucoma, uveal effusion and the potential for amblyopic
vision loss), these seem secondary to the actual disease state,
which may be viewed as one extreme on the spectrum of
refractive errors [3].

To date one gene has been identified for isolated
nanophthalmos, the membrane-type frizzled-related protein
(MFRP) [OMIM 606227] associated with genetic locus
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NNO2 [OMIM 609549] on chromosome 11q23.3 [4,5]. Other
mutations in MFRP have however been found in patients with
additional retinal defects [6-9], as well as in a mouse model
with retinal degeneration [10], thus the involvement of this
gene in the regulation of eye size per se remains to be clarified.
A dominant form of nanophthalmos, NNO1 [OMIM
600165] has been linked to chromosome 11 in a large region
including the centromere, but no causal gene has been
reported [11]. Another form of the disease has been linked to
a 16 Mb region on chromosome 2q11-14 in a large Chinese
family as locus NNO3 [OMIM 611897], although the
phenotype is described as simple microphthalmia rather than
nanophthalmos, and no gene has been reported [12]. One
allele of the gene bestrophin 1 (BEST1), [OMIM 607854], is
reported to cause dominant vitreoretinochoroidopathy
together with nanophthalmos, although the relationship of this
phenotype to pure nanophthalmos seems uncertain [13]. There
is some disagreement in the field as to the precise differential
definitions of the various forms of microphthalmia and
nanophthalmos [14].

We ascertained several families with a pure, non-
syndromic form of nanophthalmos segregating as an apparent
autosomal recessive genetic disorder. Through marker-
assisted linkage mapping, we mapped a novel chromosomal
locus. By direct DNA sequencing, we identified a gene in the
region segregating multiple different potentially pathogenic
variants in the affected individuals. The gene, PRSS56,
previously annotated only as an anonymous transcript
LOC646960, is a strong candidate for the causal gene in our
families.

METHODS
Approval for this study was obtained from the Research Ethics
Board of the Queen Elizabeth II Health Sciences Centre,
Halifax, Nova Scotia, Canada.

Clinical ascertainment and consent: Patients were
identified in the course of clinical practice of two of us
(A.C.O., J.C.Z.). All sampled family members provided
informed consent to participate in the study. DNA was
obtained from blood samples using routine extraction
methods. All procedures were in accordance with ethical and
methodological standards for human experimentation.

Genotyping and analysis: Whole genome high density
single nucleotide polymorphism (SNP) genotyping scanning
was performed at the McGill University and Genome Quebec
Centre for Innovation, using the Illumina HumanHap300
(Illumina, Inc., San Diego, CA) panel (some individuals were
genotyped with the 300K v1 [317,503 SNPs] and others with
the 300K v2 [318,237 SNPs]). There are 311 398 SNPs in
common between the two assays. Analyses were done on
those SNPs shared in common between the two versions. Data
were scanned using the Bead Array Reader (Illumina, Inc.),
plate Crane Ex, and Illumina BeadLab software (Illumina,

Inc.). Preliminary SNP scans were performed using the
Affymetrix Xba240 and Hind240 (Affymetrix, Inc. Santa
Clara, CA) panels including approximately 50,000 markers
each. Microsatellite genotyping was performed genome-wide
by deCODE Genetics, Inc. (Reykjavik, Iceland), or locally.

Linkage analysis: Genotyped data were imported into a
Microsoft Access Database (Microsoft Corporation,
Redmond, WA) used in previous analysis. Queries were used
to produce the genotype and pedfile.pro files in a format
compatible with ALOHOMORA [15].

Data were imported into ALOHOMORA_M (Mega-
Chips) v0.33.0 a software tool designed to convert SNP data
into appropriate format for MERLIN linkage analysis
software [16]. Genders were checked with data quality tools
from ALOHOMORA_M. GRR was used to evaluate familial
relationship. Mendelian inconsistencies were detected with
the ALOHOMORA interface using Pedcheck v1.1 [17]. All
genotypes with Mendelian errors were deleted with the option
delete ME. The –error option from MERLIN was also used
to detect unlikely genotypes. These genotypes were zeroed
out before analysis. Genotype data from 60 unrelated
individuals (CEU) were downloaded from the Illumina ftp site
in order to calculate allele frequencies with the SAS genetic
v9.1.3 proc allele procedure.

The genetic map provided by Illumina contained some
discrepancies between the genetic and the physical position.
A distance of 0.001 cM was added when two or more markers
have exactly the same genetic position. Order was based on
the physical position. Physical positions were taken from
HumanHap300_v2.0_Annotation.zip downloaded from the
Illumina ftp site.

The analyses were conducted with parameters previously
used: a penetrance set to 0.95, a phenocopy rate of 0.001 for
a recessive disease with an allele frequency of 0.01.

The protocol “How to prepare files for Alohomora with
a selection of tagSNPs” was used to select tag SNPs for
multipoint and haplotyping analysis as follows:

The SNPs were first selected with Haploview version 4.1
with an r2 of 0.18 then SNPs with an A allele frequency <0.2
were removed and a selection based on genetic position was
applied, SNPs spaced by 0.1 cM were kept. Selection by
frequency and genetic position was done with
tagSNP_selector.py created by Louis-Philippe Lemieux
Perreault, Statistical Genetics, Montreal Heart Institute,
University of Montreal, Montreal, Quebec, Canada. A total of
17 355 SNPs were selected for the analysis.

Protocol “MERLIN from Alohomora (v0.33.0) for a
genome wide analysis” was used for multipoint linkage
analysis. Multipoint linkage study was carried out using
MERLIN version 1.1.2 on Linux. Script
merlin_start_multi_pl.pl created by Geraldine Asselin was
used to launch the analysis. The LOD scores were compiled
by extracting results from the Merlin output files with
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compile-merlin.pl by Geraldine Asselin. Graphical
representation was done on Linux with the
create_linkage_graph.py application (version 7).

Option --best of Merlin version 1.1.2 was used for
haplotype reconstruction. Haplotypes were compiled with
compile-haplo-merlin.pl script created by Geraldine Asselin.
An Excel (Microsoft Corporate Headquarters) macro was
used to color the different haplotype in Excel workbooks.

Mutation detection and analysis: Annotated coding
exons were amplified by PCR using standard methods, and
sequenced at the McGill University and Genome Quebec
Centre for Innovation, and Dalhousie University, using
Sanger fluorescent sequencing and capillary electrophoresis.
Sequence traces were analyzed using MutationSurveyor (Soft
Genetics LLC. State College, PA) Specific primers for
amplification of PRSS56 exons and PCR conditions are
provided in Table 1.

Array capture and next-generation sequencing: For
array-capture next-generation sequencing, a custom tiling
array was designed in collaboration with Roche Nimblegen,
Inc. (Madison, WI), to cover a region slightly larger than the
entire linked interval on chromosome 2 (4 million base pairs
[Mb], from 229,900,000 bp to 233,900,000 bp in genome
assembly hg18). Probes were constrained to unique sequence
within the segment, thus there were internal gaps
corresponding to the positions of repetitive elements. Samples
from affected patients 172 (family 1) and 1376 (family 2) were
captured at Roche Nimblegen, Inc., and submitted for Roche/

454 Titanium sequencing at the McGill University and
Genome Quebec Centre for Innovation. Mean read depth for
on-target bases was 2×, and the mode of read length was 500
nt (with the mean length slightly shorter). Data were analyzed
using NextGene from SoftGenetics, Inc., and separately using
software developed at the Broad Institute.

Bioinformatic analysis: The functional significance of
putative pathogenic missense variants in PRSS56 was
analyzed using PolyPhen2 [18], which generates its own set
of homologous sequences from database searches. In this case
we noted that the PolyPhen2 dataset included genes unlikely
to be true orthologs. Therefore, we also used the human
PRSS56 reference sequence (NP_001182058) in a BLAST
search to identify potential orthologs in other species. High-
scoring BLASTP hits were individually reviewed for
chromosomal synteny based on neighboring genes in the
human reference assembly (ECEL1 [endothelin-converting
enzyme-like 1] and CHRND [cholinergic receptor, nicotinic,
delta] to left and right respectively); likely orthologs were
identified in dog (C. familiaris,XP_852751.1), chicken (G.
Gallus,      XP_422746.2),       zebra       finch       (T. guttata
XP_002191450.1),            macaque            (M.          mulatta,
XP_001109183.2), orangutan (P.  abelii, XP_002813037.1),
marmoset (C. jacchus, XP_002749985.1),  European  rabbit
(O.  cuniculus,  XP_002721490.1),   mouse   (M.  musculus,
XP_911207.4),    rat    (R.    norvegicus,    D3ZQJ8),   green
spotted pufferfish (T. nigroviridis,Q4RV82), lancelet (B.

TABLE 1. PCR PRIMERS FOR SEQUENCING LOC646960.

Sequence 5'→3' Primer name
attcccctgtgggctccta LOC646960_E01_F
gtccttatgagtgggggtga LOC646960_E01_R
gctcacttgcctcctcattc LOC646960_E02_F
tccactcggagagacagacc LOC646960_E02_R
gaaaggagagatggggagaga LOC646960_E03E04_F
ggcagcagagaccaccttt LOC646960_E03E04_R
gcccccaggtggagaaag LOC646960_E05E06_F
aagagcaggcagcatttttc LOC646960_E05E06_R
tctttcaaagggggaggaat LOC646960_E07E08_F
ggtcagctcaccctctgttt LOC646960_E07E08_R
cgggaaagcctgtctcct LOC646960_E09E10_F
tcattaccgttggcttctcc LOC646960_E09E10_R
ctgcggcttcactcaggta LOC646960_E11_F
ccatggggtaagcccttt LOC646960_E11_R
gcctcagtttccccacctat LOC646960_E12_F
ctcggaccctctacctaccc LOC646960_E12_R
gaaatgagcagggtttccag LOC646960_E13_F
ttgtaaacctgggaagacacg LOC646960_E13_R
gaatgcagcgtcctctctct LOC646960_V302F_F
agccagtccttgaacactgc LOC646960_V302F_R
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floridae,C3Y046). The chimpanzee (P. paniscus) ortholog
was excluded as its identity to the human is too high to be
useful in variant functional predictions. All sequences were
aligned using MUSCLE [19] or MAFFT [20] with similar
results, and displayed with BOXSHADE. An independent set
of approximately 90 functionally annotated proteins
containing Tryp-SPc protease domains was also obtained for
CONSURF analysis. Analyses of putative causal mutations
was performed using Phyre [21], SIFT [22], and CONSURF
[23]. For identification of predicted functional activities, the
PRSS56 human sequence (NP_001182058) was used to query
the NCBI CD-Search database.

Molecular cloning: For cloning a cDNA for PRSS56, we
used oligo-dT primed first strand cDNA of mouse embryonic
brain stage E12.5 with Superscript II (Life Technologies
Invitrogen, Carlsbad, CA). The predicted full length open
reading frame was amplified using forward primer 5'-GCA
AGC TTA CCA TGC CGC TGG CTA TGT T-3' (including
a HindIII restriction site for shuttling) and reverse primer 5'-
GCG AAT TCT CAC AGG GTT GCC TGG TTC A-3'
(including an EcoRI site for shuttling). PCR was done with
KOD Hot Start polymerase (EMD Chemicals USA,
Gibbstown NJ), with the following conditions: 2 min at 95 °C,
30× (20 s at 95 °C, 10 s at 56 °C, 30 s at 68 °C). Sequence of
the cDNA clone was verified using primers in vector sequence
plus gene-specific primers based on the predicted exon
structure.

RESULTS
Clinical assessment and phenotyping: In the course of routine
clinical practice one of us (A.C.O.) ascertained two families
from an eastern Canadian Maritime province with multiple
affected individuals suffering from nanophthalmos (Figure
1A,B). In both families, only children were affected,
consistent with a recessive genetic mode of inheritance. Both
families are of anglophonic ethnicity, not otherwise specified,
from a region known to descend from early settlement by
English, Scottish, and Irish founders.

The first family (F1) consists of an unaffected mother and
four affected adult offspring (three females and one male), all
of whom have a pure, severe nanophthalmic phenotype. The
father, who is dead, did not wear glasses until his presbyopic
years and is therefore very unlikely to have been affected. The
index case presented with a spontaneous hyphema of
unknown etiology, which resolved uneventfully. The
outstanding clinical feature of the eyes of the four affected
individuals was their remarkably small size, and
correspondingly severe hyperopia. Axial lengths ranged from
15.32 to 16.12 mm with a mean of 15.71 mm. (adult normal
mean 23.6 mm, standard deviation 0.7 mm) [24] (Alcon
Biophysic OcuScan, Clermont, France), and the mean
spherical equivalent of refractive errors between +13.25 and
+17.00 diopters (D; mean, 15.00 D). Two of the four siblings

had amblyopic loss of vision in one eye, with best corrected
acuities in the poorer eye ranging between 20/80 and 20/160;
the remaining two siblings had mild bilateral depression of
visual acuity to between 20/25 and 20/40. Color vision by AO-
HRR testing was measured in one sibling (172) and found to
be normal. The central corneal thickness (CCT) in the same
individual was rather low, measuring 481 and 496 microns in
the right and left eyes, respectively (IOPac Standard, Reichart
GmbH, Seefeld, Germany). Anterior chambers appeared
shallow in all siblings and angles were rated as narrow, but
not occludable. The crystalline lenses were large, displacing
the iris anteriorly. Thus far there have been no instances of
angle-closure glaucoma, and the intraocular pressures have
remained within the normal range without treatment. Three of
the four siblings underwent dilated examinations under
pharmaceutical mydriasis, carried out uneventfully without
evidence of angle narrowing or elevation of intraocular
pressure (IOP). In all cases the optic nerves were small and
rather congested and lacked a discernable cup.
Morphologically, the maculae appeared to be grossly normal
although no foveal reflex was seen. The peripheral retina was
flat to the ora serrata. All of the siblings were systemically
well.

Electrodiagnostic testing and detailed imaging was
carried out in one member (patient 172) of this pedigree. This
revealed normal visual evoked potentials (VEPs), and
nonspecific reduction in the amplitude of electroretinography
(ERG) potentials, possibly related to their being carried out in
an undilated state. Contact and immersion B-scan
ultrasonography revealed a small eye with a crystalline lens
appeared normally positioned, but large in size relative to that
of the globe. The choroid was diffusely thickened in all four
quadrants, measuring 2.3 mm at the posterior pole. Ultrasound
biomicroscopy (UBM) confirmed these observations,
documenting an average anterior chamber depth of 1.62 mm
and an average anteroposterior (AP) lens thickness of 4.91
mm (representing approximately one third of the total AP
extent of the eye). Optical coherence tomography (Spectralis
OCT; Heidelberg Engineering, Heidelberg, Germany) of the
macula revealed a grossly normal structure.lacking a foveal
depression, consistent with previous reports of macular
hypoplasia (Figure 1 D-I) [25].

The second family (F2) consists of two affected and eight
unaffected offspring of two unaffected parents. The clinical
features of this family were similar to that of the first, except
that the axial length was somewhat greater (mean, 17.59 mm),
hyperopia somewhat less (mean spherical equivalent, 12.48
D) and glaucoma was present in both affected individuals.
According to the medical records, one affected subject (1381)
presented in angle closure glaucoma with visual acuities of no
light perception and hand motions, and treated IOPs of 36 and
50 mm of mercury in the right and left eyes, respectively.
Ultimately she went on to surgical peripheral iridectomy in
the left eye, which was complicated by a severe uveal effusion.
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Figure 1. Nanophthalmos families. In each panel, affected individuals are shown with filled black symbols. Sampled individuals have additional
identification number in addition to generation numbers. For sampled individuals, genotypes are shown for relevant putative coding mutations
in PRSS56. A: Family 1, (Maritime, mutation p.G320R). Consanguinity results from a closed inheritance loop higher in the pedigree, not
shown. B: Family 2 (Maritime, mutations p V302F, c.828_833 het_ insG). C: Family 3 (Mexico, mutations p.G237R, p.C395P). D-I: Clinical
imaging of the right eye of patient 172: D: external photo, with rigid contact lens in situ; E: color disc image; F: optical coherence tomography
of the macula; G: contact B-scan ultrasound; H: ultrasound biomicroscopy, with anterior chamber and lens thickness dimensions; I: choroidal
thickening on Immersion B-scan ultrasound.
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The other affected sibling (1376) maintained relatively good
vision (20/70 and 20/60, respectively) and medically
controlled intraocular pressures without any episodes of angle
closure. Like subject 172 from the first family, his central
corneas were rather thin (measuring 457 and 459 microns,
respectively) His optic nerves appeared small and congested;
the posterior pole was morphologically within normal limits.
He eventually underwent uncomplicated phacoemulsification
surgery in the right eye with placement of a 40 diopter
SA60AT intraocular lens (Alcon Labs, Ft. Worth, TX).

A third family (F3), ascertained in Guerrero State,
Mexico by one of us (J.C.Z.), consists of three affected and
five unaffected siblings (Figure 1C). The mean axial length of
the two examined affected members was 16.43 microns and
mean spherical equivalent refractive error was 19.5. Visual
acuities ranged from 20/200 to 1/200 The index patient
presented with features of chronic angle closure, retinal
vascular tortuosity, asteroid hayalosis, a small optic nerve and
absence of a macular light reflex and choroidal thickening
noted on A-scan ultrasound; the other sibling was found to
have a shallow anterior chamber but declined further
examination.

The mother and father in family 1 are second cousins.
Seven relatives were available for examination and were also
determined to be unaffected, although a male first cousin was
reported to have a cone-rod dystrophy. Overt consanguinity
was not detected in family 2, although the same surname was
shared by four of eight great-grandparents. Notwithstanding
the similarity of the phenotype and the relative (80 km)
proximity of families 1 and 2, we were unable to find any
evidence of a genealogical connection between them.
Consanguinity was also absent from the third family. No
obvious phenotypic carrier state has been discovered in any
of the relatives of affected patients in the three families.
Molecular genetic analysis: The absence of phenotype in the
parents of all affecteds, and the pattern of affection, were
consistent with an autosomal recessive disorder.
Consanguinity in family 1 further suggested the likelihood of
homozygosity at least in that family. In preliminary work we
performed a whole genome scan on family 1 using a set of
microsatellite markers. Homozygosity mapping was
suggestive of linkage to a region on chromosome 2q (data not
shown) Subsequently we subjected all sampled individuals
from families 1 and 2 to whole genome genotyping with single
nucleotide polymorphisms (SNPs), initially with 100,000 and
ultimately with a high density panel of 311,400 SNP markers.
Formal linkage analysis identified the same region on
chromosome 2q37 as originally detected with the
microsatellite genome scan but with significantly greater
resolution (Figure 2A). The two families together generated a
combined hetLOD score of 4.7, achieving genome-wide
statistical significance. By phased haplotype analysis, all four
affected children in family 1 were homozygous for a shared

haplotype in the linked region. The two affected children in
family 2 were compound heterozygous for two parental
haplotypes, both different than the homozygous linked
haplotype in family 1, and all 8 unaffected siblings carried
other haplotype combinations (data not shown). Although
linkage in both families formally excluded the known
nanophthalmos causal gene MFRP, we sequenced the protein-
coding regions of that gene as well as BEST1 in one patient
from each family, but detected no interesting variants in either
gene (data not shown). No pathogenic variants were found in
the third family by sequencing MFRP in one affected patient.

The linked region, from marker rs1477111 to
rs7563345, covers 3,681,314 bp in the current human genome
assembly hg19, and includes 46 annotated protein-coding
genes, 1 miRNA and 3 small nuclear RNAs. We sequenced
all annotated coding exons for these genes and RNAs by PCR-
based Sanger capillary sequencing (a total of 463 exons). At
first no variants were identified which could explain the
disorder in the two genotyped families. However, following
ongoing revisions to the gene annotation in this region with
continued mutation detection, potentially pathogenic variants
were eventually identified in a newly annotated gene,
PRSS56, previously identified as anonymous transcript
LOC646960 in the RefSeq NCBI database. In family 1, a
missense variant, p.G320R was observed (Figure 2B). The
variant was homozygous in all four affected children, and
heterozygous or wild-type in the 6 other sampled unaffected
family members (heterozygous in the one sampled parent;
Figure 1A). The variant is not present in dbSNP v.131, nor
was it observed in 246 sequenced controls including 96 CEPH
samples plus 150 local controls of anglophonic or
francophonic ethnicity. In family 2, two variants were
detected by exon sequencing: missense p.V302F, and c.
828_833 het_ insG which creates a framshift and subsequent
premature termination codon yielding a 279 amino acid
protein compared to the wild-type 603 amino acid full-length
predicted protein. The two affected children were both
compound heterozygous for the two variants, and all
unaffected siblings were singly heterozygous for one or the
other variant consistent with the phased haplotype analysis
(parental samples were not available; Figure 1B and Figure
2C,D). The frameshift is not present in dbSNP v.131 nor in
the 300 local control chromosomes. The missense variant
p.V302F is present in dbSNP v.131 as rs74703359, reported
as heterozygous in one CEU sample from the 1000 Genomes
pilot project. However it was not observed in our 96 CEPH
plus 150 local control samples and could potentially represent
a CEU sample cell line artifact. The human wild type
consensus sequence allele (G) is the ancestral allele in other
primate genomes (chimpanzee, orangutan, macaque) at the
orthologous position.

In a separate experiment, we subjected the entire linked
chromosomal region to hybrid capture and genome
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Figure 2. Linkage and mutation analysis. A: Multipoint heterogeneity LOD score for families. B-F: Sequence chromatograms for putative
causal mutations in PRSS56 in families 1, 2 and 3. In each panel, upper to lower tracks contain translation of coding exon in consensus and
mutated sequences; virtual chromatogram of consensus genomic sequence forward direction (generated by software from text sequence);
sequence chromatogram of affected patient reverse direction; virtual chromatogram of consensus genomic sequence reverse direction. Red
arrows point to mutations in patient samples. B: p.G320R homozygous in affected patient from family 1. C: p V302F heterozygous in affected
patient from family 2. D: c.828_833 het_ insG heterozygous in affected patient from family 2. E: p.G237R heterozygous in affected patient
from family 3. F: p.C395P heterozygous in affected patient from family 3.
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resequencing. We designed a tiled array of oligonucleotide
probes covering the entire non-repetitive content of the linked
region. DNA from two affected patients, one from each family
1 and 2, was separately hybridized to the array and the
captured material was sequenced using Roche/454 Titanium
chemistry. Analysis of these results was consistent with the
results of PCR-based exon resequencing; no additional coding
region variants were detected, and the three variants in
PRSS56 from the two families were confirmed.

In family 3, ascertained after linkage had already been
obtained, we sequenced the entire coding region of PRSS56.
The affected individuals carried two novel missense
heterozygous variants, p.G237R and p.C395R (Figure 1C and
Figure 2E,F). We were unable to sample other family
members to verify that the two variants are in trans in the
patients.

A second Mexican family with nanophthalmos had a
homozygous c.30A>T of unlikely genetic significance in
PRSS56. No other novel coding variants were found in the
gene in this family, or in the coding region of MFRP,
suggesting the possibility of additional genetic heterogeneity
for this disorder.
Structure of PRSS56: PRSS56 is incompletely annotated in
the NCBI database. Its structure was initially defined by
several overlapping incomplete cDNA clones, from human
and mouse and/or pig. To verify the transcript structure, we
amplified the predicted full-length open reading frame using

primers from the predicted first and last coding exons, using
first strand cDNA generated from mouse embryonic brain
RNA. A product of the correct length was obtained based on
the predicted exon structure (data not shown). Sequencing of
a clone from this product was fully consistent with the
predicted exon structure in both mouse and human, and was
100% identical across the mouse consensus genome sequence
(Figure 3), and is also consistent with a recently published
cDNA clone sequence.

Bioinformatic analysis of PRSS56: Although there are very
few cDNA clones from other species, PRSS56 has potential
putative orthologs in other sequenced vertebrate genomes. At
the positions of the four missense mutations found in our
nanophthalmos patients, the human residue is typically highly
conserved (Figure 4A). From the primary amino acid
sequence, PRSS56 is predicted to contain a well-documented
serine protease enzymatic domain, with several familial
mutations lying in the conserved region (Figure 4B).

PolyPhen2 and SIFT predicted that most of the familial
missense variants observed in our study, as well as the two
other studies of PRSS56, may be pathogenic (Table 2, Table
3, and Table 4). We employed CONSURF to predict
pathogenicity based on either of two basis sets, either a set of
likely true orthologs (Figure 5A), or a set of 90 related protease
domain-containing proteins (Figure 5B, not all mutations
analyzed due to lack of representation in gene set). Several of

Figure 3. Mouse cDNA for PRSS56. A: Sequence of cloned mouse cDNA, ortholog of PRSS56, from embryonic brain RNA library. Start and
stop codons are in red. B: Predicted sequence of mouse protein ortholog of PRSS56. C: Percent identity of mouse exons from cDNA clone
and predicted human exons from annotated database.
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Figure 4. Multiple sequence alignments of PRSS56. A: Alignment of putative orthologs from multiple species, around locations of four familial
missense variants believed to be pathogenic. Human sequence is top row of each subpanel, with mutated residue in larger font, with mutation
in bold above human sequence. B: Predicted trypsin-like serine protease activity by NCBI Conserved Domains database with positions of
mutations observed in our NNO families.

Molecular Vision 2011; 17:1850-1861 <http://www.molvis.org/molvis/v17/a202> © 2011 Molecular Vision

1858

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.molvis.org/molvis/v17/a202
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml


the putative mutations were less likely to be pathogenic by
CONSURF analysis, although among our four missense
variants p.G320R and p.C395 were still so predicted. Phyre
also predicted that p.G320R is pathogenic.

DISCUSSION
In two of our families (one Canadian, one Mexican), we
identified two novel likely pathogenic mutations in the gene
consistent with a recessive genetic mode of inheritance. In the
other Canadian family, we identified one novel likely
pathogenic truncating mutation, as well as a second missense
SNP found in one heterozygote in dbSNP and also potentially
pathogenic. Conceivably this family has an additional allelic
mutation in a non-coding region (such as in a cryptic intronic

splice site or promoter element) in trans to the truncating
variant. Alternatively, the missense variant in dbSNP may be
pathogenic, and rare enough so that homozygotes are not
observed in the general population. dbSNP reports an allele
frequence of 1.4% for this variant, but in fact it was only
observed once as a heterozygote in the CEU HapMap samples
and not at all among the 1000Genomes samples (sequenced
to variable coverage), so the true frequency in populations is
unknown; we did not observe it in our own control samples.
Based on our genetic results, PRSS56 is a good candidate to
be the causal gene for nanophthalmos in three of our four
families. During the preparation of this manuscript, mutations
in the predicted gene PRSS56 were reported in patients with

TABLE 2. POLYPHEN2 HUMDIV RESULTS OF FAMILIAL MISSENSE VARIANTS IN PRSS56.

Mutation Result Score Sensitivity Specificity
R176G Probably Damaging 0.981 0.74 0.96

G237R* Probably Damaging 0.998 0.27 0.99
V302F* Possibly Damaging 0.917 0.81 0.94
W309S Probably Damaging 1.000 0.00 1.00
G320R* Probably Damaging 1.000 0.00 1.00
C395R* Probably Damaging 0.998 0.27 0.99
P599A Benign 0.000 1.00 0.00

              *Denotes variants observed in the present study.

TABLE 3. POLYPHEN2 HUMVAR RESULTS OF FAMILIAL MISSENSE VARIANTS IN PRSS56.

Mutation Result Score Sensitivity Specificity
R176G Possibly Damaging 0.522 0.82 0.81
G237R* Probably Damaging 0.940 0.64 0.92
V302F* Benign 0.480 0.83 0.80
W309S Probably Damaging 0.989 0.48 0.96
G320R* Probably Damaging 0.991 0.45 0.97
C395R* Probably Damaging 0.923 0.66 0.91
P599A Benign 0.001 0.99 0.08

               *Denotes variants observed in the present study.

TABLE 4. SIFT RESULTS OF FAMILIAL MISSENSE VARIANTS IN PRSS56, WITH BASIS SET OF PUTATIVE TRUE ORTHOLOGS.

Mutation Result Score Representants
R176G Affect protein function 0.00 11

G237R* Affect protein function 0.01 12
V302F* Affect protein function 0.01 12
W309S Affect protein function 0.00 12
G320R* Affect protein function 0.00 12
C395R* Affect protein function 0.00 10
P599A Affect protein function 0.00 4

               *Denotes variants observed in the present study.
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the related condition posterior microphthalmos [26,27], and
in a related mouse ocular disorder [27].

As a relatively new gene, little is known about PRSS56.
Its exonic structure as defined by RefSeq is provisional. The
human exonic structure is based on a virtual assembly of
multiple incompletely spliced cDNA clones, plus newly
generated mouse full length cDNA clones. The gene is not yet
annotated in the mammalian gene collection (MGC),
ORFeome, or Vega (Vega genome blast) catalogs (except as
a Vega possible pseudogene), and the Ensembl (Ensemble
gene browser) structure prediction is incomplete compared to
that in RefSeq. We have independently validated the predicted
exon structure in mouse with a new cDNA clone obtained
from embryonic mouse RNA. Because we used gene-specific
primers to amplify first-strand total cDNA, the complete
mRNA structure cannot be inferred from our sequence, only
the likely open reading frame. We were unable to amplify or
clone a full length cDNA from commercial human fetal brain
RNA; either due to degradation of the sample or low
expression level. PRSS56 is expressed broadly at low levels,
slightly higher in a variety of tissues according to the
GeneCards database of GNF data, including testis, lymph
node, brain, retina, and smooth muscle, though only possibly
in pineal gland in the more current BioGPS. Its appearance in
brain and retina seems most relevant to its proposed role in
regulation of eye development. Bioinformatic analysis

predicts a serine protease functional activity for PRSS56,
however this remains to be demonstrated biochemically.
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