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Abstract

S-nitrosylation, the covalent attachment of a nitric oxide to (NO) the sulfur atom of cysteine, is a selective and reversible
protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication
in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-nitrosylation remains
unknown. Based on a total of 586 experimentally identified S-nitrosylation sites from SNAP/L-cysteine-stimulated mouse
endothelial cells, this work presents an informatics investigation on S-nitrosylation sites including structural factors such as
the flanking amino acids composition, the accessible surface area (ASA) and physicochemical properties, i.e. positive charge
and side chain interaction parameter. Due to the difficulty to obtain the conserved motifs by conventional motif analysis,
maximal dependence decomposition (MDD) has been applied to obtain statistically significant conserved motifs. Support
vector machine (SVM) is applied to generate predictive model for each MDD-clustered motif. According to five-fold cross-
validation, the MDD-clustered SVMs could achieve an accuracy of 0.902, and provides a promising performance in an
independent test set. The effectiveness of the model was demonstrated on the correct identification of previously reported
S-nitrosylation sites of Bos taurus dimethylarginine dimethylaminohydrolase 1 (DDAH1) and human hemoglobin subunit
beta (HBB). Finally, the MDD-clustered model was adopted to construct an effective web-based tool, named SNOSite (http://
csb.cse.yzu.edu.tw/SNOSite/), for identifying S-nitrosylation sites on the uncharacterized protein sequences.

Citation: Lee T-Y, Chen Y-J, Lu T-C, Huang H-D, Chen Y-J (2011) SNOSite: Exploiting Maximal Dependence Decomposition to Identify Cysteine S-Nitrosylation with
Substrate Site Specificity. PLoS ONE 6(7): e21849. doi:10.1371/journal.pone.0021849

Editor: Vladimir N. Uversky, University of South Florida, United States of America

Received February 11, 2011; Accepted June 7, 2011; Published July 15, 2011

Copyright: � 2011 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by the UST-UCSD International Center of Excellence in Advanced Bio-engineering sponsored by the Taiwan National
Science Council I-RiCE Program under grant number: NSC-99-2911-I-009-101. The authors would like to thank the National Science Council of the Republic of
China for financially supporting this research under Contract No. NSC 99-2320-B-155-001 to TYL, NSC-100-2922-I-016-002 YJC, NSC 98-2311-B-009-004-MY3 and
NSC 99-2627-B-009-003 to HDH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: francis@saturn.yzu.edu.tw (TYL); yjchen@chem.sinica.edu.tw (YJC)

Introduction

S-nitrosylation is a reversible post-translational modification

(PTM) by covalent modification on the thiol group of cysteine

(Cys) residues by nitric oxide (NO). Emerging evidences suggest

that S-nitrosylation plays an important role in NO-related and

redox pathway, especially in immune, cardiovascular, neuronal,

and plant systems [1,2,3,4,5,6]. Moreover, different S-nitrosylation

level and targets modulate the protein activity, localization, and

stability [7,8,9] and further regulate the pathophysiological events,

such neurodegenerative diseases and cancers [10,11,12]. Due to

the labile nature and low abundance of S-nitrosylation in vivo, the

detail characteristics and mechanisms of S-nitrosylation still

remain to be clarified. To our knowledge, the protein database

of human, mouse, or rat possess only approximate 2% cysteine

residues, however, not all cysteine residues on proteins can be S-

nitrosylated by NO. Accumulating studies reveal that the cysteine

residue, having low pKa or exposed thiol group on protein surface,

is more accessible by NO modification [8,13].

With the increasing number of experimentally verified S-

nitrosylation sites by proteomics advancement, several studies have

revealed the S-nitrosylated cysteine residues may locate on acid-

base motif, flanking with acidic (Aspartate or Glutamate) and basic

(Arginine, Lysine, or Histidine) amino acids, or embed into the

hydrophobic area [14,15,16,17,18,19]. Based on the structural

analysis of S-nitrosylation on proteins, Marino et al. have revealed

a modified acid-base motif, which is located more distantly to the

cysteine and has its charged groups exposed [20]. However,

whether other potential novel consensus S-nitrosylation motifs are

present on proteins is not clear. The critical determinant of other

structural component needs to be analyzed. Due to the labile

nature of the S-NO bond and the low abundance of endogenously

S-nitrosylated proteins in vivo, however, the unambiguous iden-

tification of S-nitrosylated proteins and S-nitrosylation sites

remains challenging by commonly used proteomic technology

[6,14,15,21,22,23,24]. From the structural point of view, thus, it is

important to develop a method for the efficient and site-specific

detection of protein S-nitrosylation, experimentally or computa-

tionally.

To date, approximately one thousand of proteins have been

identified to related to S-nitrosylation in different biological

systems [25], yet the specificity of S-nitrosylation sites are not

completely understood. Using in silico prediction, GPS-SNO, has

been proposed to computationally identify S-nitrosylation sites,
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with a sensitivity of 53.57% and a specificity of 80.14% [26].

Recently, we have developed an S-alkylating biotin switch method

and identified 586 S-nitrosylation sites corresponding to 384 S-

nitrosylated proteins in SNAP/L-cysteine-stimulated mouse endo-

thelial cells [19]. Using motif-X algorithm, 7 of 10 potential

consensus motifs having local hydrophobicity at +2 position,

containing acid-basic amino acids flanking with the central S-

nitrosylating cysteine residues, were artificially extracted from

,30% S-nitrosylated peptides [19,27]. Considering that the

majority of the S-notrisylaiton sites did not match to the motif,

other unknown structural factors must be taken into consideration.

To further investigate potential S-nitrosylation motifs in primary

amino acid sequence, the in silico characterization, i.e. amino acid

composition, accessible surface area (ASA), and physicochemical

properties, of protein S-nitrosylation sites is needed for distin-

guishing the S-nitrosylation sites from non-S-nitrosylation sites.

This work investigates site-specific characteristics for 586

experimentally verified S-nitrosylation sites [19] and applies

maximal dependence decomposition (MDD) [28] to identify the

potential substrate motifs of S-nitrosylation. With the application

of MDD, a large group of aligned sequences can be moderated

into subgroups that capture the most significant dependencies

between positions. Support vector machine (SVM) is applied to

generate the predictive model for each MDD-clustered subgroup.

By further evaluation using five-fold cross-validation, the SVM

models trained with MDD-clustered subgroups could improve

predictive accuracy when compare to the model without the

application of MDD clustering. Moreover, the experimental S-

nitrosylation data from GPS-SNO (independent set) are used to

test the effectiveness of the models that achieve the best accuracy

in cross-validation. Finally, the models with MDD clustering

method are adopted to implement an effective web-based tool,

named SNOSite, for identifying cysteine S-nitrosylation sites. Two

experimentally verified S-nitrosylated proteins, which were not

included in training set, demonstrate the effectiveness of SNOSite.

The in silico identification has potential for characterizing S-

nitrosylation sites before experiments are performed.

Materials and Methods

Data preprocessing of training set and independent test
set

With the high-throughput S-alkylating biotin switch method, a

total of 586 S-nitrosylation sites corresponding to 384 S-

nitrosylated proteins were experimentally identified in SNAP/L-

cysteine-stimulated mouse endothelial cells for 30 minutes [19].

The experimental data on S-nitrosylated cysteines constituted the

positive data of training set, and non-S-nitrosylated cysteines in the

experimentally validated S-nitrosylated proteins constitute the

negative data of training set, respectively. As shown in Table 1,

586 positive data and 2728 negative data in 384 S-nitrosylated

proteins were obtained. This study focused on the sequence-based

analysis of substrate specificity of cysteine S-nitrosylation.

Subsequently, the identified motifs would be evaluated the ability

to distinguish the S-nitrosylated cysteine from the non-S-

nitrosylated cysteine, based on cross-validation.

As for classification, the prediction performance of the trained

models may be overestimated owing to the over-fitting of a

training set. The experimental S-nitrosylation sites that collected

from GPS-SNO were regarded as the independent test set, which

consist of 504 S-nitrosylated cysteines (positive data) in 327

experimental S-nitrosylated proteins. Similar to the extraction of a

negative data of training set, a total of 2581 non-S-nitrosylated

cysteines were regarded as a negative data of independent test set.

After the cross-validation of training set, the independent test set

was evaluated by using the trained model with the highest

accuracy. However, the positive data of independent test set may

include the sequences that are homologous to training data. To

prevent any overestimation of predictive performance, the

homologous sequences between training set and independent test

set were removed. With reference to the reduction of the

homology of the training set in MASA [29], two S-nitrosylated

protein sequences with more than 30% identity were defined as

homologous sequences. Then, two homologous sequences were

specified to re-align the fragment sequences using a window length

of 2n+1, centered on the S-nitrosylation sites using BL2SEQ [30].

For two fragment sequences with 100% identity, only one S-

nitrosylation site on homologue fragment sequence in training set

was kept while the other in test set was discarded. The non-

homologous negative data were generated using the same

approach as positive one. After the homology reduction, the

non-homologous independent test set contained 479 positive sites

and 2501 negative sites.

Features investigation
Besides the composition of flanking amino acids (AA), the

accessible surface area (ASA) and physicochemical properties

around the S-nitrosylation sites were also investigated. Amino

acids sequences with a S-nitrosylation site or cysteine in the center

were extracted from positive and negative training sets, respec-

tively, using a window of length 2n+1 varying from four to ten.

Different values of n were used to determine the optimal window

length. With reference the method of SulfoSite [31], the positional

weighted matrix (PWM) of amino acids around the S-nitrosylated

cysteines was determined using non-homologous training data.

The positional weighted matrix (PWM) specified the relative

frequency of amino acids that surround the S-nitrosylation sites,

and was utilized in encoding the fragment sequences. A matrix of

m6w elements was used to represent each residue of a training

dataset, where w stands for the window size and m consists of 21

elements including 20 types of amino acids and one for terminal

signal. In addition, WebLogo [32,33] is adopted to generate the

graphical sequence logo for the relative frequency of the

Table 1. The statistics of experimentally verified S-nitrosylation sites in training set and independent test set.

Data set Species
Number of S-nitrosylated
proteins

Number of S-nitrosylated
cysteine

Number of non-S-nitrosylated
cysteine

Training set
(Chen et al.)

Mouse 384 586 2,728

Independent test set
(GPS-SNO)

Multiple 327 479 2,501

doi:10.1371/journal.pone.0021849.t001

Substrate Motifs of S-Nitrosylation Sites
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corresponding amino acid at each position around the S-

nitrosylation sites.

A side-chain of amino acid that undergoes post-translational

modification prefers to be accessible on the surface of a protein

[34]. Thus, the solvent-accessible surface area (ASA) was

considered to evaluate the characteristics of S-nitrosylation sites.

Since most of the experimental S-nitrosylated proteins do not have

corresponding protein tertiary structures in PDB [35], an effective

tool, RVP-Net [36,37], is applied to compute the ASA value from

the protein sequence. RVP-net applied a neural network to predict

the real ASA of residues based on information about their

neighborhood, with a mean absolute error of 18.0–19.5%, defined

as the absolute difference between the predicted and experimental

values of relative ASA per residue [37]. The computed ASA is the

percentage of the solvent-accessible area of each amino acid on the

protein. The full-length protein sequences with experimentally

identified S-nitrosylation sites are inputted to RVP-Net to compute

the ASA value of all of the residues. The ASA values of amino

acids around the S-nitrosylation sites are extracted and normalized

to be between zero and one.

A previous work has utilized 31 informative physicochemical

properties to identify protein ubiquitylation sites [38]. To

investigate the characteristics of S-nitrosylation sites in compre-

hensive deal, 531 physicochemical properties, that were extracted

from version 9.1 of AAindex [39], are evaluated the ability to

distinguish the S-nitrosylation sites from the non-S-nitrosylation

sites. AAindex [39] includes many published indices that specify

the physicochemical properties of amino acids. Since each

physicochemical property of the amino acids is specified by a set

of 20 numerical values, the amino acids around the S-nitrosylation

sites can be encoded according to the values associated with each

physicochemical property. In order to identify the significant

physicochemical properties, a measurement of F-score [40] has

been applied to calculate a statistical value for each position

surrounding S-nitrosylation sites. The F-score of the ith physico-

chemical feature is defined as:

F-score (i)~

(xi
(z){xi)

2z(xi
({){xi)

2

1

nz{1

Xnz

k~1

(x
(z)
k,i {xi

(z))2z
1

n{{1

Xn{

k~1

(x
({)
k,i {xi

({))2
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where xi , xi
(z) and xi

({) denote the average value of the ith

feature in whole, positive, and negative data sets, respectively; nz

denotes the number of positive data set and n{ denotes the

number of negative data set; x
(z)
k,i denotes the ith feature of the kth

positive instance, and x
({)
k,i denotes the ith feature of the kth

negative instance [40].

Data clustering by maximal dependence decomposition
The aim of this study is to investigate the motifs of S-

nitrosylation sites based on the amino acid sequences. Due to the

difficulty of detecting the conserved motifs for the sequence data

with a larger size, this work applies maximal dependence

decomposition (MDD) [28] to cluster all sequences of S-

nitrosylation site into subgroups, which have obvious motifs.

MDD is a methodology to group a set of aligned signal sequences

to moderate a large group into subgroups that capture the most

significant dependencies between positions [41]. In previous study

[28], MDD is firstly proposed to group the splice sites during the

identification process of splice site prediction. However, in this

work, we group protein sequences instead of nucleotides. MDD

adopts chi-square test x2(Ai,Aj) to evaluate the dependence of

amino acid occurrence between two positions Ai and Aj that

surround the S-nitrosylated cysteines. In order to extract the motifs

that have conserved biochemical property of amino acids when

doing MDD, we categorize the twenty types of amino acids into

five groups such as aliphatic, polar and uncharged, acid, basic, and

aromatic groups, as the grouping given in Table S1 (Supplemen-

tary Materials). Then, a contingency table of the amino acids

occurrence between two positions is constructed, as presented in

Fig. 1. The chi-square test is defined as:

x2(Ai,Aj)~
X5

m~1

X5

n~1

(Xmn{Emn)2

Emn

ð2Þ

where Xmn represents the number of sequences that have the

amino acids of group m in position Ai and have the amino acids of

group n in position Aj, for each pair (Ai, Aj) with i?j. Emn is

calculated as
XmR

:XCn

X
, where XmR = Xm1+…+Xm5, XCn = X1n+

…+X5n, and X denotes the total number of sequences. If a strong

dependence are detected (defined as a X2 value is larger than 34.3,

corresponding to a cutoff level of P = 0.005 with 16 degrees of

freedom) between two positions, then proceed as described by

Burge and Karlin [28]. After the detection of maximal

dependence of flanking positions, as the example illustrated in

Fig. 1, position 22 has the maximal dependence with the

occurrence of basic amino acids. Subsequently, all data can be

divided into two subgroups: one has the occurrence of basic amino

acids in position 22 and the other does not have the occurrence of

basic amino acids in position 22. The MDD clustering is a

recursively process to divide the positive sets into tree-like

subgroups. When applying MDD to cluster the sequences of a

positive set, a parameter, i.e., the maximum-cluster-size, should be

set. If the size of a subgroup is less the maximum-cluster-size, the

subgroup will not be divided any more. The MDD process

terminates until all the subgroup sizes are less than the value of

maximum-cluster-size.

Model learning and evaluation
The support vector machine (SVM) is applied to generate

computational models that incorporate the encoded amino acids,

accessible surface area and physicochemical properties. Based on

binary classification, the concept of SVM is to map the input

samples into a higher dimensional space using a kernel function, and

then to find a hyper-plane that discriminates between the two classes

with maximal margin and minimal error. A public SVM library,

LibSVM [42], is used to train the predictive model with positive and

negative training sets, which are encoded with reference to various

training features. The radial basis function (RBF) K(Si,Sj)~
exp({c Si{Sj

�� ��2
) is selected as the kernel function of SVM.

Cross-validation is important to the application of the predictor

[43]. Predictive performance of the constructed models is evaluated

by performing k-fold cross validation. The training data is divided

into k groups by splitting each dataset into k approximately equal

sized subgroups. During cross-validation, each subgroup is regarded

as the validation set in turn, and the remainder is regarded as the

training set. Next, the following measures of predictive performance

of the trained models are defined. Precision (Pr) = TP/(TP+FP),

Sensitivity (Sn) = TP/(TP+FN), Specificity (Sp) = TN/(TN+FP),

Accuracy (Acc) = (TP+TN)/(TP+FP+TN+FN), Balanced Accuracy

(BAcc) = (Sn+Sp)/2, and Matthews Correlation Coefficient

Substrate Motifs of S-Nitrosylation Sites
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(MCC) =
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)| (TNzFP)| (TPzFP)|(TNzFN)
p ,

where TP, TN, FP and FN represent the numbers of true positives,

true negatives, false positives and false negatives, respectively.

Additionally, the parameters of the predictive models, window

length, cost, and gamma value of the SVM models are optimized to

maximize predictive accuracy. Finally, the window size and features

that yield the highest accuracy are employed to construct predictive

models for independent test.

Results

Positively charged and higher solvent accessible amino
acids neighboring with the S-nitrosylated cysteines

This study focuses on the sequence-based analysis of substrate

specificity for S-nitrosylation. To preliminarily evaluate the amino

acid frequency neighboring the S-nitrosylated cysteine, the non-

homologous S-nitrosylated cysteine is centered on position 0, and

the flanking amino acids (210,+10) are graphically visualized as

sequence logos. With the frequency plot of sequence logo

representation given in Figure 2, no significant amino acids

having high frequency is surrounding to the S-nitrosylation sites.

In order to further explore the difference of amino acid

composition between positive data and negative data, we applied

a web-based tool TwoSampleLogo [44], that detects and displays

statistically significant differences in position-specific symbol

compositions between two sets of multiple sequence alignments.

Figure 3 presents the position-specific difference of amino acid

compositions between S-nitrosylation sites (586 sequences) and

non-S-nitrosylation sites (2728 sequences). It reveals that the most

pronounced feature of S-nitrosylation sites is the abundance of

charged amino acids, especially the positively charged Lysine (K),

Arginine (R), and Histidine (H), at positions 29, 27, 26, 22, 21,

+2, +3, and +9. Another featured characteristic is the depletion of

neural amino acids, such as L, V, P, M, C, and S, locating

centrally around position 27. The results revealed that the distant

amino acids in sequence, which may be close to S-nitrosylation

cysteines in three-dimensional structure, have notable difference

between S-nitrosylation sites and non-S-nitrosylation sites. Anoth-

er interesting feature is the absence of positively charged residues

at position +1 that is immediately adjacent to the S-nitrosylation

sites. For instance, as shown in the lower pane of Figure 3, the K

and R are depleted at position +1. In comparison with the 21

motifs (Table S2 in Supplementary Materials) detected by motif-X

[27], the positively charged amino acids were also absent at

position +1 in previous study. Moreover, the positively charged K

at position 29, 26, 25, +9 and R and H at position 27, 26, and

+2 were also present (Table S2). The result not only consisted with

the sequence analysis by motif-X but also indicated that the

positive charged amino acids surrounding the S-nitrosylated

cysteines may play an important role for S-nitrosylation.

Besides composition of amino acids, we further analyze the

correlation of solvent accessible surface area (ASA) and S-

Figure 1. The flowchart of MDD clustering.
doi:10.1371/journal.pone.0021849.g001

Substrate Motifs of S-Nitrosylation Sites
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nitrosylation sites. Because most of the experimentally verified S-

nitrosylated proteins do not have corresponding protein tertiary

structures in Protein Data Bank (PDB) [35], RVP-Net [36,37], an

ASA prediction tool that has been demonstrated to provide

accurate ASA values similar to those observed in the protein

tertiary structure [29], was applied to compute the ASA value of

each residue in the protein sequence. Figure 4 presented the

comparison of average percentage of ASA in the 21-mer window

(210,+10) between S-nitrosylation and non-S-nitrosylation sites.

This analysis showed that the cysteine residues have the lowest

ASA on both S-nitrosylated or non-S-nitrosylated cysteines,

suggesting low preference of solvent accessibility in S-nitrosylation

sites. Moreover, the adjacent amino acids neighboring the

centered S-nitrosylation sites have relatively higher preference of

solvent-accessible surface area than that of non-S-nitrosylation

sites, especially in the region of upstream sequences (210,22). In

particular, the positions 25, 26 and 27 have more obvious

difference, which are also the locations for positive amino acids

shown in Figure 3. Interestingly, the average percentage of ASA is

particularly low at positions (21 and +3) that are adjacent to the S-

nitrosylation sites, suggesting, again, that the adjacent amino acids

may regulate the S-nitrosylation on cysteine residues due to

relative surface solvent accessibility.

Cross-validation of characteristics for flanking amino
acids and S-nitrosylation sites

To determine what window lengths and features can perform

best to identify the S-nitrosylation sites, the predictive models are

trained with various window lengths and various features and are

evaluated using cross-validation. Based on the position-specific

difference of amino acid compositions between S-nitrosylation sites

and non-S-nitrosylation sites (Fig. 3), 21-mer (210,+10) is

selected as the window length in the following evaluation and

implementation. Herein, four types of feature including amino

acid (AA), amino acid composition (AAC), accessible surface area

(ASA), and 21 motifs – are evaluated. The feature of amino acids is

encoded using a 20-dimensional vector and a positional weighted

matrix, named ‘‘AA_20D’’ and ‘‘AA_PWM’’, respectively. The

features of accessible surface area (ASA) and motifs are encoded

using the ASA values and 21-dimensional binary vector (Figure S1

in Supplementary Materials), respectively. According to the

predictive accuracy given in Table 2, of the models trained with

individual features, that trained with amino acid composition

(AAC) slightly outperforms that trained with amino acid (AA_20D

or AA_PWM), accessible surface area (ASA), or 21 motifs.

However, the model trained with only ASA has the lowest

predictive accuracy, which is probably caused by the low ASA

value of cysteines.

Additionally, the predictive power of the model trained with the

hybrid combination of AA, AAC, ASA, and 21 motifs is also

evaluated. Amino acid (AA_PWM) is regarded as the basic feature

for training a model with other features. As described previously,

the feature of AAC yields the best accuracy of over 0.60.

Therefore, as shown in Table 2, the model trained with a

combination of AA_PWM and AAC perform best. The predictive

sensitivity, specificity, accuracy, and Matthews Correlation

Coefficient (MCC) of the best model are 0.640, 0.681, 0.675,

and 0.245, respectively. However, the predictive power of the

model trained with the combination of all features (AA_PWM,

AAC, ASA and 21 motifs) is not better than that trained with AAC

alone, presumably due to the features of ASA or 21 motifs

performing not well for identifying S-nitrosylation sites.

To further analyze the physicochemical property of S-

nitrosylation sites and adjacent amino acids, a total of 531

physicochemical properties, extracted from version 9.1 of AAindex

[39], were individually explored [38]. Figure 5 shows the top

Figure 2. Frequency plot of sequence logo of S-nitrosylation sites with 21-mer window length.
doi:10.1371/journal.pone.0021849.g002

Figure 3. The compositional biases of amino acids around S-nitrosylation sites compared to the non-S-nitrosylation sites. The amino
acids that are significantly enriched or depleted (P-value,0.05) around S-nitrosylation sites are presented.
doi:10.1371/journal.pone.0021849.g003

Substrate Motifs of S-Nitrosylation Sites
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twenty physicochemical properties ranked by the average value of

F-score measurement in 21-mer window (210,+10). This

investigation reveals that the twenty physicochemical properties

contain high F-score values at positions 27, 24, +1, +2, +5, and

+9, which have statistically significant difference between S-

nitrosylation sites and non-S-nitrosylation sites. The predictive

power of the twenty physicochemical properties was evaluated.

According to the cross-validation performance of the models

individually trained with each of the twenty physicochemical

properties, the feature of positive charge perform better sensitivity,

specificity, accuracy, balanced accuracy, and MCC than other

physicochemical properties, which achieves an accuracy of about

0.60 (Table 3). The result was consisted with the position-specific

difference of amino acid composition (Fig. 2), which contains

positively charged amino acids neighboring to the S-nitrosylation

sites. However, the model trained with the top ranking

physicochemical property (side chain interaction parameter) is

not performing as accurately as that trained with positive charge.

Most of the twenty physicochemical properties reach an accuracy

of about 0.55 (Table 3). Based on a concept of the forward feature

selection, the ranked physicochemical properties can be sequen-

tially added into the best model (AA_PWM+AAC) to evaluate

whether the integration of physicochemical properties could

improve the predictive performance. After evaluating the forward

selection of top twenty physicochemical properties, the predictive

power is not improved, when comparing to the model trained with

AA_PWM and AAC (Figure S2 in Supplementary Materials).

Exploring the potential S-nitrosylation motifs by MDD
clustering

To improve the detection of the conserved motifs from large-

scale S-nitrosylation data set,, we further apply the maximal

dependence decomposition (MDD) to cluster all 586 identified S-

nitrosylated peptide sequences into 11 subgroups, capturing the

most significant dependencies of amino acid composition between

positions. Table S3 (Supplementary Materials) shows the number

of positive data in each subgroup and their average performances

of five-fold cross-validations. According to the chi-square test of

the dependence of five amino acid groups in flanking positions

(Table S1), 10 out of all MDD-clustered subgroups have the

conserved motifs of positively charged amino acids (K, R and H) at

a specific position. In particular, the first and fourth subgroups

have the negatively charged amino acids (D and E) accompanied

by positively charged amino acids on conserved motifs at two

Figure 4. Comparison of average percentage of ASA in the 21-mer window (210,+10) between S-nitrosylation and non-S-
nitrosylation sites.
doi:10.1371/journal.pone.0021849.g004

Table 2. The cross-validation performance of the models
trained with various features.

Training features Sn Sp Pre Acc BAcc MCC

Amino Acid (AA_20D) 0.556 0.574 0.199 0.572 0.566 0.097

Amino Acid (AA_PWM) 0.585 0.586 0.212 0.587 0.586 0.127

Amino Acid Composition (AAC) 0.579 0.605 0.218 0.602 0.593 0.137

Accessible Surface Area (ASA) 0.540 0.553 0.187 0.552 0.547 0.069

21 Motifs 0.556 0.563 0.195 0.562 0.560 0.088

AA_PWM+AAC 0.640 0.681 0.277 0.675 0.661 0.245

AA_PWM+ASA 0.561 0.583 0.204 0.580 0.573 0.108

AA_PWM+21 Motifs 0.561 0.572 0.199 0.570 0.567 0.098

AA_PWM+AAC+ASA 0.578 0.603 0.217 0.599 0.591 0.134

AA_PWM+AAC+21 Motifs 0.572 0.601 0.204 0.593 0.587 0.130

AA_PWM+AAC+ASA+21 Motifs 0.588 0.589 0.214 0.589 0.589 0.131

Abbreviation: AA_20D, amino acids coding with 20-dimensional vector;
AA_PWM, positional weighted matrix of flanking amino acids; ASA, accessible
surface area; Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; BAcc,
balanced accuracy; MCC, Matthews Correlation Coefficient.
doi:10.1371/journal.pone.0021849.t002
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specific positions, Consistent with the previous study [16], trans-

nitrosylation by an intermediary nitrosothiol (RSNO) is catalyti-

cally assisted by neighboring H and D that act as base and acid,

respectively. However, the eleventh subgroup, that contains 68 S-

nitrosylation sites, does not have a conserved motif.

Furthermore, all of 11 MDD-clustered subgroups are evaluated

for their predictive power for identifying S-nitrosylation sites,

based on five-fold cross-validation. The number of negative data in

each subgroup is determined according to the ratio of non-S-

nitrosylation sites (2728 sequences) to S-nitrosylation sites (586

sequences) in training data. To avoid the skew sampling of

negative data, ten sets of negative data, which are randomly

selected from all non-S-nitrosylation sites, are constructed for each

subgroup. Thus, in each subgroup, the predictive model is trained

with the combined features of positional weighted matrix

(AA_PWM) and amino acid composition (AAC), and the five-

fold cross-validation is implemented ten rounds. The average

value of cross-validation performance in each subgroup is

displayed in Table S3 (Supplementary Materials). It indicates that

most of the 11 subgroups could achieve an average accuracy of

about 0.900. Especially, the first, second, fourth and tenth

subgroups perform with an average accuracy of about 0.950, but

the eleventh subgroup has the worst performance with an

accuracy of 0.845. In conclusion, the average accuracy of all 11

subgroups is 0.902 which increases 0.227 predictive accuracy

comparing to the model trained without MDD clustering. This

analysis indicates that the S-nitrosylated sequences in a large-scale

data set can be alternatively clustered by MDD method, which

significantly enhanced the signal of amino acids motif and

improved the performance of the predictive model.

Evaluation of S-nitrosylation predictive models using
independent test set

To evaluate effectiveness of the investigated features that

achieves the best accuracy in cross-validation, an independent

set is used to test the MDD-clustered models trained with

positional weight matrix and amino acid compositions. The

independent test set is composed of the experimentally verified S-

nitrosylation data of GPS-SNO [26] from multiple species, which

contains a total of 479 positive data and 2501 negative data in 327

S-nitrosylated proteins. As shown in Table 4, the MDD-clustered

models could perform with an accuracy of 0.627 in all

independent test set. Due to the various motifs in multiple

predictive models, for all data of independent testing, the

estimated sensitivity (0.805) is higher than specificity (0.593).

Furthermore, the predictive performance is estimated for various

types of species. For E. coli, the MDD-clustered models have the

highest accuracy (0.730) with the balanced sensitivity (0.702) and

specificity (0.736). Reasonably, the MDD-clustered models that

were trained with S-nitrosoproteome data set from SNAP/L-

cysteine-stimulated mouse endothelial cells have a high sensitivity

(0.830) for 106 mouse S-nitrosylation sites. The proposed method

also has high sensitivity (0.819) for 105 rat S-nitrosylation sites.

Overall, the independent testing demonstrates that the MDD-

clustered models have higher estimated sensitivity comparing to

specificity.

Figure 5. The top twenty physicochemical properties of S-nitrosylation sites ranked by the average value of F-score measurement
in 21-mer window. KRIW710101, side chain interaction parameter [48]; OOBM850105, optimized side chain interaction parameter [49]; FINA910104,
helix termination parameter at position j+1 [50]; FAUJ880111, positive charge [51]; GUYH850104, apparent partition energies calculated from Janin
index [52]; KIDA850101, hydrophobicity-related index [53]; GUYH850101, partition energy [52]; JANJ780101, average accessible surface area [54];
ROSM880102, side chain hydropathy [55]; CHOC760102, residue accessible surface area in folded protein [56]; FASG890101, hydrophobicity index
[57]; RACS820103, average relative fractional occurrence in AL(i) [58]; KARP850103, flexibility parameter for two rigid neighbors [59]; OOBM770101,
average non-bonded energy per atom [60]; LEVM760101, hydrophobic parameter [61]; MEIH800102, average reduced distance for side chain [62];
GUYH850105, apparent partition energies calculated from Chothia index [52]; KRIW790102, fraction of site occupied by water [63]; PUNT030101,
knowledge-based membrane-propensity scale from 1D_Helix in MPtopo databases [64]; WEBA780101, RF value in high salt chromatography [65].
doi:10.1371/journal.pone.0021849.g005
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Implementation of web-based tool for identifying
S-nitrosylation sites

With the time-consuming and laboratory-intensive experimen-

tal workflow, even though a protein can be S-nitrosylated, precise

identification of the S-nitrosylation sites on the substrate is

experimentally difficult. Therefore, an effective prediction tool

should be developed to efficiently identify potential S-nitrosylation

sites. Following evaluation by cross-validation and an independent

test, the MDD-clustered models trained with positional weighted

matrix of amino acids (AA_PWM) and amino acids composition

(AAC) are utilized in the construction of web-based prediction

system, SNOSite. After the users submit their uncharacterized

protein sequences, SNOSite efficiently returns the predictions

including S-nitrosylated position, the flanking amino acids, and the

matched MDD-clustered motif. To demonstrate the performance

of the tool, two experimentally-verified S-nitrosylated proteins

which is not included in the training data set was studied. The first

case study is performed on Bos taurus dimethylarginine dimethy-

laminohydrolase 1 (DDAH1) which contains two S-nitrosylation

sites at positions 222 and 274 [45]. As presented in Fig. 6,

SNOSite is able to correctly predict the experimentally verified S-

nitrosylation site at positions 222 and 274. Additionally, two more

cysteine residues are reported by SNOSite as novel S-nitrosylation

sites. The matched MDD-clustered motifs are also provided for

Table 3. The cross-validation performance of the models trained individually with twenty physicochemical properties.

AAindex ID Description Sn Sp Pre Acc BAcc MCC

KRIW710101 Side chain interaction parameter (Krigbaum-Rubin, 1971) 0.554 0.572 0.197 0.569 0.563 0.093

OOBM850105 Optimized side chain interaction parameter (Oobatake et al., 1985) 0.547 0.560 0.191 0.558 0.554 0.079

FINA910104 Helix termination parameter at posision j+1 (Finkelstein et al., 1991) 0.558 0.566 0.196 0.565 0.562 0.092

FAUJ880111 Positive charge (Fauchere et al., 1988) 0.583 0.594 0.214 0.592 0.588 0.131

GUYH850104 Apparent partition energies calculated from Janin index (Guy, 1985) 0.551 0.574 0.197 0.570 0.562 0.092

KIDA850101 Hydrophobicity-related index (Kidera et al., 1985) 0.549 0.555 0.189 0.554 0.552 0.076

GUYH850101 Partition energy (Guy, 1985) 0.545 0.570 0.194 0.566 0.558 0.085

JANJ780101 Average accessible surface area (Janin et al., 1978) 0.563 0.575 0.201 0.573 0.569 0.102

ROSM880102 Side chain hydropathy, corrected for solvation (Roseman, 1988) 0.540 0.545 0.183 0.544 0.542 0.062

CHOC760102 Residue accessible surface area in folded protein (Chothia, 1976) 0.565 0.582 0.204 0.579 0.574 0.109

FASG890101 Hydrophobicity index (Fasman, 1989) 0.535 0.560 0.187 0.556 0.547 0.069

RACS820103 Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982) 0.511 0.533 0.172 0.530 0.522 0.033

KARP850103 Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985) 0.542 0.565 0.191 0.561 0.553 0.079

OOBM770101 Average non-bonded energy per atom (Oobatake-Ooi, 1977) 0.545 0.563 0.191 0.560 0.554 0.080

LEVM760101 Hydrophobic parameter (Levitt, 1976) 0.545 0.556 0.189 0.554 0.551 0.075

MEIH800102 Average reduced distance for side chain (Meirovitch et al., 1980) 0.542 0.559 0.189 0.556 0.550 0.074

GUYH850105 Apparent partition energies calculated from Chothia index (Guy, 1985) 0.556 0.563 0.194 0.562 0.560 0.088

KRIW790102 Fraction of site occupied by water (Krigbaum-Komoriya, 1979) 0.531 0.554 0.184 0.550 0.542 0.062

PUNT030101 Knowledge-based membrane-propensity scale from 1D_Helix in MPtopo
databases (Punta-Maritan, 2003)

0.543 0.566 0.192 0.562 0.555 0.081

WEBA780101 RF value in high salt chromatography (Weber-Lacey, 1978) 0.538 0.553 0.186 0.550 0.545 0.067

The physicochemical property that contains the highest accuracy is highlighted in bold. Abbreviation: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; BAcc,
balanced accuracy; MCC, Matthews Correlation Coefficient.
doi:10.1371/journal.pone.0021849.t003

Table 4. The predictive performance of MDD-clustered models using an independent test set (GPS-SNO).

Species
Number of
proteins

Number of
positive data

Number of
negative data TP TN FP FN Sn Sp Pre Acc BAcc MCC

All data 327 479 2501 386 1485 1016 93 0.805 0.593 0.275 0.627 0.699 0.294

Human 117 211 1055 159 655 400 52 0.753 0.620 0.284 0.642 0.687 0.280

Mouse 84 106 568 88 378 190 18 0.830 0.665 0.316 0.691 0.747 0.366

Rat 70 105 597 86 385 212 19 0.819 0.644 0.288 0.670 0.731 0.334

E. coli 39 37 152 26 112 40 11 0.702 0.736 0.393 0.730 0.719 0.365

ARATH 5 5 36 5 5 31 0 1 0.138 0.138 0.243 0.569 0.138

BOVIN 2 5 34 5 4 30 0 1 0.117 0.142 0.230 0.558 0.129

Abbreviation: TP, true positive; TN, true negative; FP, false positive; FN, false negative; Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; BAcc, balanced
accuracy; MCC, Matthews Correlation Coefficient; ARATH, Arabidopsis thaliana; BOVIN, Bos taurus.
doi:10.1371/journal.pone.0021849.t004
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the future investigation of substrate site specificity. Next, the

second case study was performed on human hemoglobin subunit

beta (HBB) which contains one S-nitrosylation site at position 94

[46]. The experimentally verified S-nitrosylation site at position 94

was correctly predicted by SNOSite (Figure S3 is Supplementary

Materials). In addition, one more cysteine residue is predicted as a

novel S-nitrosylation site. SNOSite can be accessed via a web

interface, and is freely available to all interested users at http://

csb.cse.yzu.edu.tw/SNOSite/.

Discussion

In this study, we reported a systematic informatics investigation

on the S-nitrosylation substrate specificity from experimentally

verified S-nitrosoproteome data [19]. The analysis of position-

specific amino acids composition reveals that the most pronounced

feature of S-nitrosylation sites is the abundance of positively charged

amino acids at surrounding positions. This investigation also

implicates that the distant amino acids in sequence (around position

27), which may be close to S-nitrosylation cysteines in three-

dimensional structure, have notable difference between S-nitrosyla-

tion sites and non-S-nitrosylation sites. Additionally, the accessible

surface area (ASA) and physicochemical properties are considered.

Moreover, the S-nitrosylation sites have higher preference of

solvent-accessible surface area, especially in the region of upstream

sequences (210,22). Based on the F-score measurement of 531

physicochemical properties in 21-mer window (210,+10), twenty

physicochemical properties are revealed that contain statistically

significant difference at positions 27, 24, +1, +2, +5, and +9 of S-

nitrosylation sites. According to the five-fold cross-validation, the

model trained with the combined features of positional weighted

matrix and amino acids composition gets the highest accuracy.

Due to the abundance of experimental data, this study focuses on

investigating the motifs of S-nitrosylation sites based on the amino

acid sequences. However, it is difficult to explore the conserved

motifs from large-scale S-nitrosoproteome data set. Thus, this work

applies maximal dependence decomposition (MDD) to cluster all

sequences of S-nitrosylation site into 11 subgroups, which have

obvious motifs. According to the chi-square test of the dependence

in flanking positions, most of the MDD-clustered subgroups have

the conserved motifs of positively charged amino acids (K, R and H)

at a specific position. Particularly, two subgroups have the

conserved motifs of positively charged and negatively charged

amino acids at two specific positions. Although the newly identified

motifs could not be experimentally verified, what has to be noticed is

MDD clustering can help the biologist investigating the potential

substrate motifs of S-nitrosylation sites. More noteworthy is the

MDD-clustered motifs can be applied to improve the predictive

power of computationally identifying S-nitrosylation sites with

various substrate specificities. According to the evaluation of five-

fold cross-validation, the models trained with 11 MDD-clustered

motifs increases predictive accuracy of 0.227 comparing to the

model trained without MDD clustering. This analysis indicates that

the S-nitrosylated sequences with a larger size can be alternatively

clustered by MDD method in order to enhance the signal of amino

acids motif and improve the performance of the predictive model.

The models trained with MDD-clustered subgroups in overall

perform better than that without MDD clustering. Consequently,

the models with MDD clustering method are applied to implement

a novel web-based tool, named SNOSite, for identifying cysteine S-

nitrosylation. Correct prediction on two experimentally verified S-

nitrosylated proteins demonstrated the effectiveness of SNOSite.

Furthermore, the experimental S-nitrosylation data of GPS-

SNO [26] from multiple species is regarded as independent sets

and is used to test the effectiveness of the models that achieve the

best accuracy in cross-validation. Independent testing indicates

that the model trained with MDD-clustered motifs could perform

robustly for the test data from human, mouse, rat, and E. coli

species. Although the proposed method can perform accurately

and robustly according to independent tests, some issues should

still be addressed in future work. Firstly, the structural preferences

of S-nitrosylation sites should be investigated in greater detail -

especially for the data whose flanking amino acids are not

conserved. In addition to the solvent accessible surface area,

secondary structure, the B-factor, intrinsic disordered region,

protein linker region, and other factors should be examined at

experimental S-nitrosylation sites which are located in the protein

regions with PDB entries. Secondly, the biological function of S-

nitrosylated proteins needs to be studied. The analysis of Gene

Ontology [47] or the network of protein-protein interaction may

provide a clue for inferring the function of S-nitrosylated proteins.

Finally, the independent testing indicates that the predictive model

could not perform well in part of test data that is not homologous

to the training data. The acquisition of additional experimentally

verified S-nitrosylation data is needed to re-calibrate more

accurate MDD-clustered motifs. The proposed method can be

improved by considering the motifs that are intrinsically included

in the test data.
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