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Abstract
Purpose—Epidermal keratinocytes, which can be severely damaged after ionizing radiation (IR),
are rapid turnover cells that function as a barrier protecting the host from pathogenic invasion and
fluid loss. We tested fibroblast growth factor-peptide (FGF-P), a small peptide derived from the
receptor-binding domain of FGF-2, as a potential mitigator of radiation effects via proliferation
and the barrier function of keratinocytes.

Methods and Materials—Keratinocytes isolated from neonatal foreskin were grown on
transwells. After 0, 5, or 10-Gy, the cells were treated with a vehicle or FGF-P. The permeability
of IR cells was assessed through transepithelial electrical resistance (TEER) and a paracellular
tracer flux of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) with
Ussing chambers. The cell proliferation was measured with yellow tetrazolium salt (MTT) and
tritiated thymidine (3H-TdR) assays. The phosphorylation of extracellular signal-regulated kinases
(ERK) was measured in an enzyme-linked immunosorbent (ELISA)-like assay, and the proteins
related to tight junctions (TJ) and adherens junctions (AJ) were examined with Western blotting.
We used a mouse model to assess the ability of FGF-P to promote the healing of skin β-burns
created with a strontium applicator.

Results—1) FGF-P reduced the permeability of irradiated keratinocytes, as evidenced by
increased TEER and decreased diffusion of FITC-BSA both associated with the regulation of
different proteins and levels of TJ and AJ; 2) FGF-P enhanced the proliferation of irradiated
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keratinocytes, as evidenced by increased MTT activity and 3H-TdR incorporation, which was
associated with activation of the ERK pathway; and 3) FGF-P promoted the healing of skin β-
burns.

Conclusions—FGF-P enhances the barrier function, including up-regulation of TJ proteins,
increases proliferation of human keratinocytes, and accelerates the healing of skin β-burns. FGF-P
is a promising mitigator that improves the proliferation and barrier function of keratinocytes after
IR.
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INTRODUCTION
Human skin, the largest organ in the body, functions as a barrier between the external and
internal environments. It prevents body fluid loss and the invasion of pathogens and reduces
the impact of trauma (e.g., mechanical trauma and UV radiation) (1–3). To fulfill these
functions, the epidermal keratinocytes are constantly replaced by cells originating from
proliferating keratinocyte stem cells (KSC) in the stratum basale (4,5). Turnover of skin can
occur in 4–5 days. In addition, the conjunction between keratinocytes must be very tight in
order to form a strong barrier (2,3).

Exposure to ionizing radiation (IR), from radiotherapy, space exploration, or nuclear events,
can result in dermatitis, erythema, disruption of epidermal barrier function and other
radiation-induced complications (3,6–8). A method to protect keratinocyte function and
cutaneous health would be valuable in case of incidental or malevolent IR exposure.

Normally, growth factors are critical for the proliferation of keratinocytes. For example, the
various members of the fibroblast growth factor (FGF) family have been shown to protect
against normal tissue damage, including radiation (9–13). Lin et al (14) show that the small
peptide generated from the binding domain of FGF-2 possesses the biological function of an
intact protein (14) and has the following advantages over the full-length peptide: 1) it is
stable under severe conditions (e.g.,boiling); 2) it is enzyme-resistant as a dry powder and
has a long shelf-life compared to most protein drugs; 3) it can be self-administered via
intramuscular (IM) or subcutaneous (SC) injection by a victim who has been exposed to
radiation; and 4) it can be synthesized in large quantities with high purity at a lower cost
than the production of an intact protein.

To explore the utility of FGF-P, a dimer form of FGF-2’s binding domain, in promoting the
barrier function of irradiated skin, we studied permeability and proliferation in irradiated
normal human epidermal keratinocytes (NHEK) in vitro and a β-burn skin model in vivo.

METHODS AND MATERIALS
Cell culture

Following standard protocol (15), NHEK were isolated from discarded neonatal foreskin.
Briefly, the epidermis was separated from the dermis by incubation in dispase/Hank’s
buffered salt solution (HBSS) (Invitrogen by Life Technologies, Carlsbad, CA) overnight at
4°C, followed by incubation in 0.05% trypsin-ethylenediaminetetraacetic acid (EDTA) for 5
minutes at 37°C and blocking with Dulbecco’s modified Eagle's medium (DMEM). The
material was then passed through a 40 mm cell strainer (BD Falcon, Franklin Lakes, NJ) and
centrifuged at 1,500 RPM for 5 minutes at room temperature. NHEK were cultured in
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keratinocyte serum-free medium (SFM), and cells were grown at 37°C in a humidified 5%
CO2 incubator.

Measurements of transepithelial electrical resistance
The 2nd passage of NHEK was seeded (105/well) on top of 12 transwell-permeable supports
(0.4 zm-pore size, polyester membrane, surface area = 1.13 cm2, Costar #3401) in
keratinocyte growth-medium. After 3 days of culture, the cells were irradiated with a 137Cs γ
- ray source at 1.84 Gy/minute dose rate. Some wells were treated with FGF-P (200 ng/ml)
24 hours after IR. We performed experiments after continuing to culture the cells for 10–14
days until they were confluent. Transepithelial electrical resistance (TEER) was measured
with modified Ussing chambers (VCC MC8, Physiologic Instruments, San Diego, CA)
(16,17).

Measurements of paracellular tracer flux
We then measured the paracellular tracer flux through the keratinocyte sheet by adding
fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA). FITC-BSA was
added to the apical side of the transwell and then collected at 30-minute intervals from both
the apical and basal compartments of the keratinocyte sheet grown on the transwell filters
(18). A SpectraMax M2 reader (Molecular Devices, Inc., Silicon Valley, CA) was used to
measure the amount of FITC-BSA that diffused from the apical to the basal side of the
cellular sheet. The FITC permeability was expressed as the ratio based on the percentage of
basal and apical FITC-BSA density.

MTT assay for cell proliferation
Keratinocytes were seeded into 96-well tissue-culture plates and irradiated, and a yellow
tetrazolium salt (MTT) assay was performed (19). Briefly, the cells were incubated until
ready for experimental use. After addition of the MTT solution, the cultures were incubated
at 37°C for 4 hours. Then after centrifuging, the supernatant was discarded and dimethyl
sulfoxide (DMSO) was added to each well. The absorbance was measured using a
SpectraMax M2 reader with a test wavelength of 560 nm.

Metabolic incorporation 3H-TdR proliferation assay
Keratinocytes were seeded into 96-well tissue-culture plates and grown to confluence. After
the cells were irradiated and incubated for 3 days, followed by the addition of tritiated
thymidine (3H-TdR), we used standard protocols (20,21) to measure 3H-TdR uptake by
keratinocytes.

Cell-based ELISA for Phospho-ERK1/2
Phospho–extracellular signal-regulated kinases (ERK) 1/2 (p-ERK) is involved in the
regulation of proliferation. To further study the proliferative effects of FGF-P on
keratinocytes, an enzyme-linked immunosorbent assay (ELISA) was performed to observe
the level of p-ERK. Keratinocytes were seeded onto a 96-well tissue-culture plate, which
was then irradiated. p-ERK was examined by a cell-based ELISA 24 hours after IR, and the
absorbance was measured on a SpectraMax M2 reader (22).

Protein extraction and immunoblot analysis
Protein samples were prepared from cultured keratinocytes and analyzed for claudin-1, -7,
JAM-A, occludin, E-cadherin, and β-catenin (Invitrogen by Life Technologies, Carlsbad,
CA) by Western blotting (23). The protein concentration was determined in samples using
the bicinchoninic acid (BCA) assay. Equivalent loads of protein from irradiated and non-
irradiated samples were analyzed by sodium dodecyl sulfate polyacrylamide gel
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electrophoresis (SDS-PAGE). Proteins were transferred onto polyvinylidene fluoride
(PVDF) membranes, and the primary antibodies were detected using affinity-purified
polyclonal antibodies.

Effect of FGF-P on healing of irradiated mouse skin
Eight-week-old male BALB/C mice from the National Cancer Institute (NCI) were used in
the experiment. The right hind-legs of BALB/C mice were irradiated (50 Gy) with a
strontium applicator (25.21 Gy/min) to create an IR β-burn on a 7 mm in diameter section of
skin. Then, mice were randomly divided into 2 groups (4 mice/group) and treated topically
with a vehicle control or FGF-P (200 ng/ml in cream form) and either with a vehicle control
(0.2 ml saline/mouse) or FGF-P (0.4 mg/0.2 ml/day) through IM injection. After 16 days,
pictures were taken to document the extent of healing in the IR skin area. All experiments
were performed with the approval of the Institutional Animal Care and Use Committee of
the University of Rochester (Rochester, NY).

Statistical analysis
Data are expressed as mean ± standard deviation. The difference between treatment and
control was evaluated with a student’s t-test; p<0.05 was considered to be significant.

RESULTS
FGF-P increases TEER after radiation

The permeability barrier function of NHEK cells was examined with the TEER assay, which
is a reliable gauge of the permeability of water-soluble ions. The values were obtained by
multiplying the recorded electrical resistance by the area of effective membrane on the filter
inserts at the condition of voltage clamp. Results were expressed in standard units—Ohms/
cm2 (Ω/cm2). As shown in Figure 1A, there was a significant decrease of TEER in 5 and 10
Gy compared to 0 Gy (45.30 and 37.27 Ω/cm2 vs61.21 Ω/cm2, p<0.05). After the addition
of FGF-P, TEER was restored to a baseline level, which suggests an improved permeability
barrier function.

FGF-P decreases paracellular tracer flux after radiation
As shown in Figure 1B, the FITC-BSA permeability of NHEK increased significantly in
both the 5 and 10-Gy groups compared to the 0Gy group (66.91% and 81.53% vs 21.61%,
p<0.05). The addition of FGF-P significantly decreased permeability of irradiated NHEK at
5 Gy and 10 Gy (41.4 % and 50.52%, p<0.05).

FGF-P improves some of the cell tight junction proteins after radiation
We investigated whether the permeability increased by FGF-P is related to the regulation of
TJ proteins, such as claudin-1, -7, JAM-A, occludin, and the AJ members E-cadherin and β-
catenin. The result of Western blotting and the Quantity 1 software analysis showed a small
but significant increase in claudin-1 and occludin (except at 5 Gy) expression (p<0.05) and a
larger increase in claudin-7, JAM-A, and β-catenin after FGF-P treatment (p<0.05) (Fig. 2).
There was no change in E-cadherin expression when the vehicle alone or FGF-P was tested
on the irradiated keratinocytes.

FGF-P improves cell proliferation after radiation
Proliferation is critical in maintaining the healthy barrier layer of keratinocytes. To study the
maintenance of proliferation, we performed MTT and 3H-TdR assays. As shown in Figure
3A, radiation reduced the MTT activity of keratinocytes in a dose-dependent manner, which
was reversed by treatment with FGF-P (p<0.05). Similarly, the results from 3H-TdR
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incorporation were consistent with the MTT assay, suggesting that FGF-P indeed promotes
the proliferation of irradiated keratinocytes (Fig. 3B).

FGF-P increases phospho-ERK levels after radiation
Since the phosphorylation of ERK is a pathway for FGF-2 to trigger cell proliferation, we
performed an in-plate ELISA-like assay for FGF-P treated keratinocytes. As shown in
Figure 4, the p-ERK level was significantly decreased following IR (p<0.05); however, after
FGF-P treatment, the phosphorylation of ERK markedly increased (p<0.05).

FGF-P improves healing of irradiated mouse skin
To further elucidate whether FGF-P is a potent healing mitigator after radiation in vivo, we
studied IR-induced skin injury in a mouse β-burn model. In contrast to the vehicle-treated
mice, scabs and red inflammation in the irradiated spot were much less pervasive in the
FGF-P treated mice (Fig. 5A–H).

DISCUSSION
Since FGF-2, a potent mitogen that is crucial for stem cell renewal, is involved in multiple
functions, including cell proliferation, differentiation, motility, wound healing and survival
following multiple traumas (24–26), we designed FGF-P, a structure-modified analog of
FGF-2, and found that it increases survival of mice that have been exposed to lethal doses of
total body IR (data not shown). In the present study, FGF-P demonstrates its ability to
improve barrier function and cell proliferation of irradiated human keratinocytes as
evidenced by: 1) increased TEER; 2) decreased paracellular permeability; 3) up-regulation
of some TJ and AJ proteins; 4) increased proliferation of keratinocytes; 5) increased
phosphorylation of ERK; and 6) accelerated IR-induced wound healing. Indeed, these
effects are connected; accordingly, the mitogenic effect of FGF-P is beneficial to irradiated
cells at different levels: the cellular level (Fig. 2, 3A and 3B, and 4), the cell-layer level (Fig.
1A and B), and the skin tissue/organ level (Fig. 5A–H).

The permeability (one of the barrier functions) of the cell layer growing on the transwells is
related to 2 factors: 1) the number of cells; and 2) the tightness of cell-cell conjunction.
After radiation, the number of cells and their capacity to produce tight junction proteins are
reduced. Both the radiation-induced reduction of cell numbers and the radiation-altered tight
junction proteins affect the permeability of the cell layer, as evidenced by the low TEER
(Fig. 1A) and high flux of FITC-BSA (Fig. 1B). To further dissect these 2 contributing
factors, we performed several assays. When the amount of cell lysate protein loaded was
equal, the cell proliferation assay (Fig. 3A and B) and Western blotting for tight junction
proteins indicated that the increased permeability in FGF-P-treated cells was related to
enhanced cell proliferation and increased levels of claudin-1, -7, JAM-A, occludin, and β-
catenin (Fig 2).

TEER, an electrophysiological method to study permeability, reflects the transepithelial and
paracellular permeability of the keratinocyte layer on transwells with polycarbonate filters
(27). A high TEER resistance indicates a low water or ionic loss and the barrier function of
tight junctions (26,27). In our study, after irradiation, both contact among the keratinocytes
and their ability to express proteins related to TJ and AJ were reduced or altered (Fig. 2);
therefore, they lost their normally high resistance tested by the TEER assay in an IR dose-
dependent manner. FGF-P reversed this loss (Fig. 1A). A FITC-BSA assay was another
means through which we measured the permeability of cell layers (28). Consistent with the
TEER results, IR caused an increased leakage of the monolayer of keratinocytes, leading to
a 3–4-fold increase in the amount of FITC-BSA crossing from the top well to the bottom
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well as compared with un-irradiated cells (Fig. 1B). This phenomenon was also normalized
by FGF-P. Thus, 2 sets of assays suggest that FGF-P promotes the repair of IR-induced cell
damage by stimulating the recovery of cells and their ability to produce proteins related to
TJ and AJ.

To confirm the ability of FGF-P to regulate the production of proteins related to TJ and AJ,
we used Western blotting and Quantity 1 software analysis. As shown by Martin-Padura et
al, TJ plays an important role in the maintenance and regulation of barrier functions (29).
Thus, we studied various TJ and AJ that were selected based on their importance in
maintaining the barrier function of keratinocytes. Knowing that radiation could reduce cell
numbers, we normalized the alteration of TJ/AJ proteins by loading the same amount of
protein into each lane of Western blotting. The decrease in TJ/AJ may be a direct effect of
FGF-P or an indirect effect due to reduced cell contact. The results (Fig. 2) revealed that IR
decreased some of the TJ proteins, such as JAM-A. FGF-P slightly increased expression of
claudin-1 and occludin (except after 5 Gy + FGF-P) and greatly increased claudin-7, JAM-
A, and β-cateni. There was no effect on E-cadherins. Claudins constitute the major diffusion
barrier of TJ and, together with occludin, zonula occludens (ZO) family members, and other
cytoplasmic proteins, generate apical and basolateral domains in the plasma membrane to
maintain cell polarity (30–33). Cadherins constitute the major adhesive component of AJ
and recruit p210ctn, β-catenin, and the cytoskeleton to the plasma membrane while forming
homophilic and heterophilic interactions between adjacent cells to generate a structural
framework for the entire cell sheet (33–35). However, AJ is porous in mammals and plays
no role as a diffusion barrier. Claudins are directly involved not only in the formation of TJ
strands but also in their barrier function in simple epithelia. Continuous claudin-based TJ
occur in the epidermis, and these are crucial for the barrier function of mammalian skin
(36,37). Therefore, claudins express and play an important role in skin barrier function.
Furuse et al have found in functional analyses that claudin-1 is essential for TJ function
(30); similarly, Alexandre et al show that claudin-7 is involved in modulating paracellular
Cl− permeability (38). JAM-A is a tight junction-associated adhesion protein implicated in
TJ assembly, the regulation of barrier function, and paracellular permeability and has been
reported to influence several cellular processes (39,40). The decrease of JAM-A expression
after IR increased the permeability; meanwhile, increased JAM-A was detected after
addition of FGF-P, which corresponds to a decrease in the permeability of keratinocytes. On
the other hand, both E-cadherin and β-catenin are components of AJ; our data show that
FGF-P increases β-catenin but not E-cadherin thus improving the adhesive function in
keratinocytes. Altogether, FGF-P increases selected TJ and AJ proteins expressed in
keratinocytes after IR.

The healthy skin function also relies on continuous renewal of keratinocytes; therefore, we
studied the effect of FGF-P on the proliferation of keratinocytes. IR damages the DNA,
inhibits proliferation, and mediates apoptosis in the epidermis (41). Both the MTT and 3H-
TdR assays showed that IR reduced DNA synthesis and cell proliferation; however,
proliferation was salvaged by FGF-P treatment (Fig. 3A and B and 4). Since the
phosphorylation of ERK is a major pathway triggered by FGF-2 (42), we examined the
effect of FGF-P on this pathway. The results (Fig. 4) demonstrated that IR-reduced
phosphorylation of ERK could be reversed by FGF-P. Since the assay for phosphorylation
of ERK is performed in whole wells, the increase represents either increased cell numbers or
increased ERK phosphorylation in each cell. Either provides further evidence that FGF-P is
a bioactive peptide that acts against radiation-induced suppression of cell growth.

To determine if the in vitro effect of FGF-P on keratinocytes can be translated in vivo, an
IR-induced skin wound was administered in a mouse β-burn model with a strontium
applicator. On day 16 after the 50-Gy, scabs and red inflammation were observed at the IR-
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wound sites. The severity of the IR-wounds was reduced by FGF-P delivered topically and
systemically (Fig. 5), which suggests that FGF-P has the potential to be used to promote the
healing of IR-damaged skin lesions.

CONCLUSION
In conclusion, the treatment of irradiated human keratinocytes with FGF-P enhances the
barrier function and tight-junction protein production and improves cell proliferation in
vitro. It also accelerates IR-induced-wound healing in vivo. FGF-P is a promising radiation
mitigator for skin. Further experiments are necessary to explore the mechanisms of FGF-P
on keratinocyte proliferation and to optimize the treatment dose/course for other forms of IR
damage (γ- or neutron-irradiation) to the skin.
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Figure 1. Effects of FGF-P on permeability of irradiated NHEK cells
NHEK cells were cultured in triplicate on top of a transwell to 90% confluence, irradiated
with 0, 5, or 10 Gy, and treated with the vehicle alone or FGF-P (200 ng/ml). After 10–14
days, the permeability of irradiated NHEK cells was measured as described in the “Methods
and Materials” section. A) TEER was measured with an Ussing chamber under voltage-
clamp conditions; B) FITC-BSA diffusion from the top well to the bottom well was
measured every 30 minutes. The * represents that compared to the 0-Gy control group,
p<0.05. The # represents that compared to the 5-Gy control group, the FGF-P treatment
achieved p<0.05.
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Figure 2. Effect of FGF-P on proteins related to TJ and AJ
NHEK cells were cultured in triplicate on top of a transwell to 90% confluence, irradiated
with 0, 5, or 10 Gy and treated with vehicle alone or FGF-P (200 ng/ml). After 10–14 days,
the cell sheets were harvested and lysed with lysis buffer cocktail containing protenase
inhibitors. Thirty µg/lane of lysate from each treatment group was loaded on 10% SDS-
PAGE gel, electrophoresized, transferred to PVDF membrane, and the different antibodies
against the proteins related with TJ and AJ were used in the Western blot staining. The
quantization analysis was done by scanning the density of each band and relative ratio to β-
actin accessed with Quantity 1 software (Bio-Rad). The * represents p<0.05 as a comparison
of the density of the FGF-P treated group to the vehicle-alone group.
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Figure 3. Effect of FGF-P on proliferation of irradiated keratinocytes
NHEK cells were cultured in triplicate in 96 well plates to 80% confluence, irradiated with
0, 5, or 10 Gy, and treated with vehicle alone or FGF-P (200 ng/ml). Three days later, the
proliferation was determined by 2 methods: A) MTT assay; and B) 3H-TdR incorporation
assay. The * represents that compared to the 0-Gy control group, p<0.05. The # represents
that compared to the 5-Gy control group, the FGF-P treatment achieved p<0.05.
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Figure 4. Effect of FGF-P on phosphorylation of ERK
NHEK cells were cultured in triplicate in 96 well plates to 80% confluence, irradiated with
0, 5, or 10 Gy, and treated with vehicle alone or FGF-P (200 ng/ml). Three days later, the
cells were fixed with 4% formalin for 3 minutes and subjected to an in-plate ELISA-like
assay with rabbit anti-phosphorylated ERK followed by HRP-anti-rabbit and TMB
colorization. The * represents that compared to the 0-Gy control group, p<0.05. The #
represents that compared to the 5-Gy control group, the FGF-P treatment achieved p<0.05.
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Figure 5. Effect of FGF-P on healing of irradiated skin
The right hind-leg of BALB/C mice were irradiated 50 Gy with a strontium applicator
(25.21 Gy/min) to create a β-burn 7 mm in diameter on the skin. They were then treated
topically with vehicle alone or FGF-P (200 ng/ml in cream form, daily) and an IM of either
saline as vehicle control (0.2 ml/mouse) or FGF-P (0.4 mg/0.2 ml/day). After 16 days,
pictures were taken to document the extent of healing in the IR-skin area. A–D: the 4 mice
in the vehicle group; E–H: the 4 mice in the FGF-P treated group.
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