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Summary
We consider treatment regimes in which an agent is administered continuously at a specified
concentration until either a response is achieved or a predetermined maximum infusion time is
reached. Response is an event defined to characterize therapeutic efficacy. A portion of the
maximum planned total amount administered is given as an initial bolus. For such regimes, the
amount of the agent received by the patient depends on the time to response. An additional
complication when response is evaluated periodically rather than continuously is that the response
time is interval censored. We address the problem of designing a clinical trial in which such
response time data and a binary indicator of toxicity are used together to jointly optimize the
concentration and the size of the bolus. We propose a sequentially adaptive Bayesian design that
chooses the optimal treatment for successive patients by maximizing the posterior mean utility of
the joint efficacy-toxicity outcome. The methodology is illustrated by a trial in which tissue
plasminogen activator is infused intra-arterially as rapid treatment for acute ischemic stroke.
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1. Introduction
Many phase I/II designs that choose an optimal dose based on efficacy and toxicity have
been proposed. Most of these methods characterize clinical outcomes as discrete variables
(cf. Gooley, et al. 1994; Thall and Russell, 1998; O’Quigley, Hughes and Fenton, 2001;
Braun, 2002; Ivanova, 2003; Thall and Cook, 2004; Bekele and Shen, 2005; Zhang, Sargent,
and Mandrekar, 2006; Thall, Nguyen and Estey, 2008). Phase I/II methods also have been
proposed based on two time-to-event outcomes (Yuan and Yin, 2009) and two ordinal
outcomes (Houede, et al., 2010). While the problem that motivated the present paper is to
optimize a 2-dimensional treatment based on efficacy and toxicity, the specific structure of
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our setting does not fit any of the dose-finding paradigms noted above. To explain why this
is the case, we first give some background on the medical setting and treatment regime.

Acute ischemic ’stroke (AIS) is a major cause of mortality and disability in adults (Johnson,
Mendis and Mathers, 2009). A new therapeutic modality for AIS is intra-arterial (IA)
fibrinolytic infusion, wherein a thrombolytic agent to dissolve the clot that caused the stroke
is delivered via two telescoping catheters, one supportive in the carotid artery and a smaller
microcatheter within it positioned directly into the clot. The catheters are introduced to the
arterial system via a sheath placed into the femoral artery. Using live X-ray fluoroscopic
guidance, the catheters are moved through the carotid artery leading to the site in the brain
artery where the clot leading to AIS occurred, and the agent is infused via the microcatheter.
A thrombolytic agent approved by the U.S. Food and Drug Administration for intravenous
(IV) treatment of AIS in adults is tissue plasminogen activator (tPA). While effects of IV
tPA in adult stroke patients are well understood, optimally safe and efficacious
concentrations of IA tPA have not been established. The methodology described in this
paper was motivated by the desire to design a clinical trial to optimize administration of IA
tPA.

The treatment regime is as follows. For a given concentration c in mg/kg body weight and
fixed maximum volume V, the maximum total dose is cV. Since V is fixed, hereafter we set
V = 1 without loss of generality. A proportion q of the maximum volume is given as an
initial bolus at t = 0, followed by continuous infusion (ci) of the remaining proportion 1 – q
at a constant rate for a maximum time period t*. In the IA tPA trial, t* = 2 hours. Efficacy is
the time to dissolve the clot, YE. This includes the possibility that the clot is dissolved
immediately by the bolus (YE = 0). The ci is stopped at the time of response if it is observed
by time t*, otherwise YE is right-censored at t*. Toxicity is the binary indicator YT of
symptomatic intra-cerebral hemorrhage (SICH), characterized by neurological worsening
compared to baseline in terms of a standardized stroke severity scale, and is associated with
high rates of morbidity and mortality. SICH is evaluated by brain imaging, using head
computerized tomography (CT) scan or magnetic resonance imaging (MRI), typically at a
fixed time much later than t*, such as 24 or 48 hours. Patients for whom the infusion fails to
dissolve the clot are believed to be at higher risk of toxicity.

If response is observed continuously, then each patient’s outcome data consist of YT and
either the response time YE if the clot is dissolved before t* or the fixed right-censoring time
t*. When response is evaluated periodically, which may be the only practical possibility in
some settings, only the time interval in which YE occurred is known. In the IA tPA trial,
response is evaluated at 15 minute intervals. For example, if a patient’s clot was not
dissolved by the 30 minute evaluation but was found to have dissolved by the 45 minute
evaluation, then it is only known that the response occurred during the interval (30, 45].
Thus, YE is interval censored from 0 to t* and administratively right-censored at t*. With
either continuous or periodic observation of YE, because the ci is stopped before t* if the clot
is dissolved, the amount of the agent that a patient actually receives depends on the patient’s
response time as well as c and q. Consequently, since toxicity is scored after the ci is
completed the distribution of YT depends on YE.

The goal is to jointly optimize (c, q) over a design space consisting of a rectangular grid of
the eight pairs obtained from the bolus proportions q = 0.10 and 0.20, and the concentrations
c = 0.20, 0.30, 0.40, and 0.50 mg/kg. These (c, q) combinations were chosen by two co-
authors of this paper (CMA and OOZ), expert stroke, vascular, and interventional
neurologists. The main problems that we address here are to (1) specify tractable probability
models for YE and [YT|YE] as functions of (c, q) reflecting the modes of administration and
observation, and (2) construct an adaptive decision procedure utilizing YT and the response
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time data described above to choose (c, q) for successive patients. We model the marginal
distribution of YE as a mixture of a discrete mass at t = 0 for the bolus and a continuous
component on (0, ∞) for the ci. The conditional toxicity probability of [YT|YE] is a nonlinear
function of c, q, and YE. Elicited utilities of joint (YE, YT) outcomes are used as a basis for
adaptively assigning treatments to successive patients as they are enrolled during the trial.
Each patient is given the treatment combination (c, q) maximizing the current posterior
mean utility.

The probability model is given in Section 2, followed by descriptions of the utility function
and design in Section 3. Application to the IA tPA trial is described in Section 4, and
simulation studies are summarized in Section 5. We close with a discussion in Section 6.

2. Probability Models
2.1 Models for Response and Toxicity

While there are many parametric regression models for event time data (cf. Ibrahim, Chen
and Sinha, 2001), with this treatment regime we model efficacy as a time-to-event outcome,
as follows. Since efficacy is monitored on the interval 0 ≤ t ≤ t*, to simplify notation we
define YE in terms of standardized time, s = t/t*. Denote the parameter vector of the
marginal distribution of YE by α. We define the distribution of [YE | c, q, α] in terms of a
hazard function with two components, a discrete component p0(c, q, α), the probability that
the clot is dissolved instantaneously by the bolus at s = 0, and a continuous component, λ(s,

c, q, α), for s ≥ 0. For integrated continuous hazard , the
cumulative hazard function is −log{1 – p0(c, q, α)} + Λ(s, c, q, α) for s ≥ 0. Consequently,
denoting the indicator of an event A by 1(A), the probability distribution function (pdf) of YE
is the discrete-continuous mixture

and the cumulative distribution function (cdf) is

(1)

for y ≥ 0. In particular, FE(0, c, q, α) = p0(c, q, α) since Λ(0, c, q, α) = 0.

To apply this model, functional forms for p0 and λ must be specified. Any model used in
sequential outcome-adaptive decision making based on small to moderate sized samples
must balance flexibility to accurately reflect the observed data with tractability to facilitate
computation. To allow p0 and λ to vary nonlinearly in both c and q, we will use cα1 and qα2

rather than c and q as arguments, where α1, α2 > 0 are model parameters. The additional
flexibility provided by α1 and α2 provides a basis for distinguishing more reliably among
diffierent values of (c, q) in terms of their effects on p0 and λ when applying the adaptive
decision scheme. Based on clinical experience, we assume that

a. p0(c, q, α) increases in both c and q, and

b. the clot cannot dissolve instantaneously at s = 0 without a bolus infusion of some
tPA, hence p0(c, 0, α) = 0 for all c > 0 and p0(0, q, α) = 0 for all 0 ≤ q ≤ 1.

A simple, flexible function with properties (a) and (b) is
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(2)

We require the hazard function λ(s, c, q, α) for the clot dissolving during the ci to have the
following properties:

i. λ(s, c, q, α) must be continuous in s;

ii. λ(s, c, q, α) must be su ciently flexible so that it may be monotone increasing,
monotone decreasing, or non-monotone in s;

iii. λ(s, 0, q, α) > 0, to allow a non-zero baseline hazard if no tPA is given, c = 0;

iv. λ(s, c, 0, α) > 0 to allow the possibility that the clot is dissolved if no bolus is given;

v. the integrated continuous hazard Λ(s, c, q, α) must be numerically tractable;

vi. λ(s, c, q, α) must increase in both c and q, and may be nonlinear in either c or q.

An intuitive approach to constructing a function λ with these properties is to define it in
terms of the cumulative delivered dose by standardized time s, which is given by

This function increases linearly in s with slope c(1 − q) from minimum value d(0, c, q) = cq
at s = 0 to d(1, c, q) = c at the last possible observation time s = 1 for YE. While a hazard
function with properties (i) – (v) may be obtained by using d(s, c, q) as an argument, to also
obtain property (vi), we use the more general function

which may be considered the effective cumulative delivered dose by standardized time s. We
define the hazard function to take the form

(3)

where αj > 0 for all j = 1, …, 5. The baseline hazard of the clot dissolving if no tPA is α3.
The ratio added to α3 is a log logistic hazard function with argument d(s, cα1, qα2) and shape
parameter α5. The parameter α1 allows λ to vary nonlinearly in c while α2 determines the
relative magnitude of the contribution cα1(1 − qα2)s of the ci versus the contribution cα1qα2

of the bolus. Thus, α = (α0, …, α5) characterizes p0 and λ.

Integrating (3) gives the cumulative hazard function

(4)

We define the distribution of YT conditional on YE because toxicity is scored by imaging at
48 hours, after YE has been observed. Our model must account for the possibilities that
either larger YE, hence a larger amount of the continuously infused agent, or failure to
dissolve the clot may increase the risk of toxicity. To ensure that the probability of toxicity
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is a function of c, q, and YE with these properties, denoting the minimum of a and b by a ∧ b
and β = (β0, …, β4), we assume the model

(5)

Under this model, β2cβ1q is the effect of the bolus, β2cβ1(1 − q)(YE ∧ 1) is the effect of the
continuously infused portion, β4 is the effect of failing to dissolve the clot, and 1 − e−β0 is
the baseline probability of toxicity if no tPA is given. The bolus size q is not exponentiated
as in the definition of λ since this would result in an over-parameterized model for πT. Thus,
the model parameter vector θ = (θ, β) has dimension 11.

Although treatment begins with a bolus in the IA tPA trial, if no bolus were given then q = 0
and the effective delivered dose at standardized time s would be d(s, cα1, 0) = cα1s. In this
case, α2 would be dropped from the model, the hazard function (3) would simplify to

and the cumulative hazard function (4) would become

with dim(α) reduced from 6 to 5. The model for πT would be simplified by dropping β2 and
the linear component in (5) would be reduced to β0 + β3cβ1(YE ∧ 1) + β41(YE > 1), with
dim(β) reduced from 5 to 4, so β would have dimension 9.

2.2 Joint Distribution of Response and Toxicity
Given the conditional probability πT (yE, c, q, α) for YE = yE and the marginal distribution
fE(yE|c, q, α) of YE, the joint distribution of Y = (YE, YT) is given in general by

Since Pr(YT = 1|yE, c, q, β) = 1 − Pr(YT = 0|yE, c, q, β) = πT(yE, c, q, α), if YE is observed
continuously then each patient’s likelihood contribution takes the form

(6)

The first line of expression (6) is the probability that the clot is dissolved instantaneously by
the bolus, the second line is the probability that the clot is dissolved during the ci, and third
line is the probability that the clot is not dissolved by standardized time s = 1, each
computed either with or without toxicity, i.e. YT = 1 or 0.
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When YE is evaluated at the ends of successive intervals, as in the IA tPA trial, the

likelihood must account for interval censoring. Given interval , denote

(7)

This is the relevant probability if the specific value of YE is not observed but, instead, it is

only known that the efficacy event did not occur by time  and did occur by time . In this

case, infusion is stopped at the end of the interval, , and consequently the probability of

toxicity is . It follows that

(8)

with FE computed by applying formulas (1), (2), and (4) and πT specified by (5).

Let {IE,1, …, IE,M} be a partition of (0, 1] into all possible subintervals where YE may
beknown to fall. In this case, the second term in the product that defines the likelihood (6)
for continuous observation of YE is replaced by

3. Decision Criteria and Trial Conduct
3.1 Utilities

Given one of the above likelihood formulations, tailored to the trial at hand, the problem is
to construct an outcome-adaptive design for determining an optimal pair (c, q). To do this,
we take an approach similar to that of Houede, et al. (2010), who sequentially choose dose
pairs in a phase I/II trial with bivariate ordinal outcomes by maximizing the posterior mean
of an elicited utility. A fundamental di erence that we must address here when defining
utilities is that the bivariate outcome consists of a binary toxicity and continuous time to
response which may be interval censored. Denote the numerical utility of outcome y by
U(y). In practice, U(y) is elicited from the physicians planning the trial. We will provide
details of how this was done for the IA tPA trial below. Given θ, the mean over Y of the
utility for a patient who receives the treatment combination (c, q) is

(9)

For each new cohort of patients during the trial, we exploit the Bayesian model by
adaptively selecting the (c, q) combination that is optimal in the sense that it maximizes the
posterior mean of u(c, q, θ) based on the most recent data. Let  denote the data from the
first n patients, so that the accumulating data may be represented by the nested sequence

 as patients are treated and their outcomes are observed during
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trial conduct. The optimal (c, q) maximizing the posterior mean utility given  (Berger,
1985)is given by the equation

(10)

With interval censoring due to sequential evaluation of YE and Pr(YE = 0) > 0, given the
resulting partition {IE0, IE,1, …, IE,M} of [0, 1] with IE,0 = {0}, a practical approach is to
elicit numerical utilities for each of the 2(M + 2) sets of Y values obtained from the cross
product {IE,0, IE,1, …, IE,M, IE,M+1} × {0, 1}, where IE,M+1 = (1, ∞) is the outcome that the
clot was not dissolved by the end of the infusion at standardized time 1. Denoting the utility
of the observed outcome {YE ∈ IE,m, YT = yT } by U(IE,m, yT), given this structure, the
objective function given by (10) takes the form

A possible alternative to the utility-based approach might be to use a linear combination
such as FE(1|c, q, β) – ξπT(1|c, q, α) as an objective function, where 0 < ξ < 1 is a design
parameter quantifying the importance of achieving a response relative to su ering a toxicity.
Another alternative might be a trade-off function based on FE(1|c, q, β) and πT(1|c, q, α),
similar to that used by Thall and Cook (2004). These objective functions do not distinguish
between responses achieved quickly or later during the ci period, and they fail to account for
effects of YE < 1 on πT. In contrast, our utility function accounts for the desirability of all
observable (YE, YT) pairs. Given the data structure and goals of the IA tPA trial, choosing (c,
q) to optimize the posterior mean utility is a logical and practical approach.

3.2 Safety and Futility Constraints
It does no good to treat patients with the (c, q) that optimizes the posterior expected utility if
all pairs being considered are either excessively toxic or inefficacious. To protect patients
during the trial, we impose the following safety/futility rules. Given , a pair (c, q)
isunacceptable if either it is likely to be too toxic,

(11)

or it is likely to be inefficacious,

(12)

where  is the maximum allowed πT (1, c, q, θ) and  is the minimum allowed FE(1, c, q,

α). The fixed limits  and  are elicited from the physicians, while pT and pE are cut-offs,
usually between .80 and .99, calibrated to obtain a design with good properties. Aside from
the IA tPA trial’s data structure and the models underlying πT(1, c, q, θ) and FE(1, c, q, α),
the criteria (11) and (12) are similar to the phase I/II acceptability rules used by Thall and
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Russell (1998), Thall and Cook (2004) and Thall, Nguyen and Estey (2008). The criterion
(11) pertains to safety, and the efficacy criterion (12) is similar to Bayesian phase II futility
stopping rules (Thall, Simon and Estey, 1995). Denote the set of acceptable (c, q) pairs
determined by (11) and (12) based on the most recent data by . We impose the
additional safety constraint that no untried concentration may be skipped when escalating,
since πT(YE, c, q, βT) increases in c but may not be monotone in q. For example, if the
largest value of c in {0.20, 0.30, 0.40, 0.50} for which patients have been treated is 0.30,
then regardless of q the next cohort may be treated only at (c, q) pairs for which c ≤ 0.40.

A possible alternative to using (11) and (12) might be a single criterion based on u(c, q, θ).
One might specify a fixed lower bound U for the utility and declare a pair (c, q) to have

unacceptably low utility if  for fixed cut-o pU. If all (c, q) were
unacceptable in this sense the trial would be stopped. While choosing a value of U might not

be as intuitive as  and , since U(Y) jointly quantifies safety and efficacy the use of such
a single stopping rule would provide a somewhat more unified design.

3.3 Trial Conduct
Once the design parameters and model are established, given a set of (c, q) pairs, maximum
sample size, N, and cohort size, the trial is conducted as follows. The first cohort is treated at
a starting (c, q) combination chosen by the physicians, and the choice may be guided by the
numerical utilities and prior means. While the usual fear in phase I where only toxicity is
considered is overdosing the first few patients, in the present setting when choosing the
starting (c, q) pair this fear may be counterbalanced by the concern that patients may be
given too little tPA to dissolve their clots. A given c may be too low to dissolve the clot that
caused the stroke but high enough to cause a variety of adverse effects not associated with
observable hemmorrhage (SICH) and not easily be detected, and thus such events cannot
feasibly be included in an outcome-adaptive decision making procedure. Such adverse
effects include cytotoxicity, degradation of extracellular matrix, and increased permeability
of the neurovascular unit with the development of cerebral edema (Kaur, et al., 2004). For
each cohort after the first, if  is empty then the trial is stopped early with the
conclusion that all (c, q) pairs are unacceptable. If  is not empty then the next cohort
is treated at the best acceptable pair (c, q)opt(Dn), subject to the do-not-skip rule. At the end
of the trial, the (c, q)opt(data) pair based on the final data is selected.

4. Application to the IA tPA Trial
4.1 Utilities and Design Parameters

To evaluate YE, the clot is imaged at the start of infusion when the bolus is given, and
thereafter every 15 minutes up to the maximum infusion duration of t* = 120 minutes. The
planned observation intervals are thus [0, 15], …, (105, 120] and (120, ∞]. These are given
in Table 1 along with the corresponding intervals in standardized time. Since YE is observed
only at the end of each observation interval up the the last, as a covariate in the linear term
of πT it can take on only the values of the interval endpoints, also given in Table 1, unless it
appears in the indicator 1(YE > 1). If the evaluation times deviate from this planned schedule
for some patients, however, then the likelihood can easily be modified to accommodate this,
so that the actual interval observation data on YE will be recorded during the trial.

Up to N = 36 patients will be treated in cohorts of size 1, with the aim to choose the (c, q)
pair that maximizes the posterior mean utility among the set of eight possible pairs obtained
from q = 0.10, 0.20 and c = 0.20, 0.30, 0.40, 0.50. The maximum sample size was chosen
based on an anticipated accrual rate of 1 patient/month/site with 15 sites participating and
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5% of accrued patients both eligible and consenting. This would give .75 patients per month,
so a 36-patient trial would last 48 months. The admissibility limits were specified to be

 and , and the probability cut-offs used in (11) and (12) were pE = pT = .95.
The starting pair is (c, q) = (0.20, 0.10), and N was chosen based on anticipated accrual
limitations and the desire to complete the trial within a reasonable timeframe.

Numerical utilities, on a scale of 0 to 100, elicited for each combination of YT = 0 or 1 and
observation interval for YE, are given in Table 1. CMA and OOZ provided the numerical

utilities, acceptability limits,  and , maximum sample size, N, and means of the efficacy
and toxicity events used to establish the prior, described below in Section 4.2. The elicited
utilities are based on clinical experience and published data on IA therapy for AIS. The
elicitation was carried out in two stages, with refinement in the second stage to ensure that
the utilities decreased strictly with the time interval required to dissolve the clot. In a trial for
interventional management of AIS, Khatri, et al. (2009) showed that the chance of good
clinical outcome decreased greatly with longer time from symptom onset to initiation of
treatment. In Table 1, the large drop in utilities when SICH occurs quantifies the fact that
SICH is associated with much worse clinical outcome, as close to 50% of all SICHs are
fatal.

4.2 Establishing Priors
To establish priors, we used a three-step strategy. First, we elicited a large number of prior
means of the probabilities p0(c, q, θ), FE(s, c, q, α), and πT (yE|c, q, β). Second, based on the
elicited values we repeatedly simulated a large pseudo data set and, starting with a non-
informative pseudo prior, used the average of the means of the resulting pseudo posteriors as
the prior means. Third, we calibrated the prior variances of the entries θ of to obtain a prior
with desirable properties.

In step 1, for each of the eight (c, q) combinations, we elicited the prior means of the
probability of dissolving the clot immediately with the bolus, p0(c, q, θ), within 60 minutes,

, or within 120 minutes, FE(1 | c, q, θ). Similarly, we elicited the probability of
toxicity, πT(yE, c, q, θ), if the clot was dissolved instantaneously (yE = 0), if it was dissolved
within the 120 minute infusion (yE = 1), or if it was not dissolved during the infusion (yE >
1). The elicited values are given in Table 2a. The last line of Table 2a expresses the prior
expectation that, for c = .50 and either q = .10 or .20, the mean of πT will increase from .12
(the value for yE = 1) to .15 if the clot is not dissolved by the end of the infusion.

For the second step, the elicited values were treated like the true state of nature and used to
simulate 1000 large pseudo samples, each of size 400 with exactly 50 patients for each (c, q)
combination. Starting with a very non-informative pseudo-prior on θ in which the logarithm
of each entry followed a normal distribution with mean 0 and standard deviation 20, we used
the pseudo data set to compute a pseudo posterior. The average of the 1000 pseudo posterior
means were used as the prior means. These are given in Table 2b. The pseudo sample size of
400 was chosen to be large enough so that prior means obtained in this way would not
change substantively with a larger pseudo sample size.

For the third step, we calibrated the variances of the entries of θ to ensure a prior that was
suitably non-informative in terms of the prior effective sample sizes (ESSs) of πT(s, c, q, θ)
and FE(s, c, q, θ), and also to obtain good simulated performance of the design in the actual
trial across a diverse set of scenarios. Denoting πT (s, c, q, θ) or FE(s, c, q, θ) for s = 0 or 1
by p(θ), the ESS of the prior on p(θ) was approximated by matching its mean and variance
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with those of a beta(a, b) distribution with mean a/(a + b) and variance ab/{(a + b)2(a + b +
1)} and approximating the ESS as a + b π ≈ E{p(θ)}[1 − E{p(θ)}]/var{p(θ)} − 1. On this
basis, we set the variance σ2 of log(θj) for each element θj of θ to equal σ2 = 81, which gave
ESS values of each p(θ) ranging from 0.17 to 0.22 with mean 0.19. It is inappropriate to
specify arbitrarily large σ2, since this may produce priors on FE(y, c, q, α) and πT(yE|c, q, β)
with very large probability masses below .01 and above .99. For such a prior, the design
behaves pathologically and makes erroneous decisions for patients enrolled early in the trial.

4.3 Posterior Computation
The computations for each interim decision include obtaining the posterior probabilities in
the admissibility criteria (11) and (12) and posterior mean utility (9) for all (c, q)
combinations. We used Markov chain Monte Carlo (MCMC) with Gibbs sampling (Robert
and Cassella, 1999) to compute all posterior quantities, based on the full conditionals. Each
series of sample parameters θ(1), …, θ(N) distributed proportionally to the posterior
integrand was initialized at the mode using the two-level algorithm described in Braun et al.
(2007). Because each sample chain was initialized at the mode, which reliably identifies the
region of highest posterior probability density, we did not require any burn-in, and a single
chain was used for each posterior computation. We used MCMC sample size N = 2, 000 for
the dose assignments during the trial, and N = 16, 000 for the dose selection at the end of the
trial. For each sample θ(i) = (α(i), β(i)), we computed p0(c, q, α(i)), then Λ(YE, c, q, α(i)),
FE(YE, c, q, α(i)) and πT(YE, c, q, β(i)) at every interval endpoint YE and for every (c, q), and
computed πE,T(IE,m, yT |c, q, θ(i)) from (8) for each IE,m and yT ∈ {0, 1}. The elicited utilities
were averaged over each of these distributions to obtain a utility for every (c, q) given θ(i).
We computed the (c, q) posterior mean utilities by averaging over the samples θ(1), …, θ(N).
The Monte Carlo standard error (MCSE) was computed using the batch-means method for
FE(1, c, q), πT(1, c, q) and u(c, q) at the highest and lowest (c, q) combinations. The ratios of
the MCSE to the posterior standard deviation of these quantities were small (< 3%),
indicating MCMC convergence.

5. Simulation Studies
Each trial was simulated 10,000 times under each of a wide variety of scenarios. Since each
scenario was specified in terms of fixed values of the marginal probabilities πT(s, c, q)true

and FE(s, c, q)true for s = 0 and 1, to obtain fixed true probabilities for all s in [0, 1] we used
several interpolation methods, allowing πT(s, c, q)true and FE(s, c, q)true to take various
shapes as functions of s. In terms of πT(s, c, q)true, the intermediate probabilities were
interpolated as πT(s, c, q)true = πT(0, c, q)+{πT(1, c, q)−πT(0, c, q)}sφ for various φ, with φ =
1 giving linear interpolation, φ = 2 giving values “below linear”, and φ = 0.5 giving values
“above linear”. We also used a method that sets πT(0.5, c, q)true = 0.5{(π(0, c, q)+π(1, c, q))}
and interpolates using πT (s, c, q)true = πT(0, c, q) + {πT(0.5, c, q)true − πT (0, c, q)}(2s)2 for
0 ≤ s ≤ .5 and πT(.5, c, q) + {πT(1, c, q)true − πT(.5, c, q)}(2s − 1).5 for .5 ≤ s ≤ 1, to give an
“S-shaped” curve. Interpolated values of FE(s, c, q)true were obtained similarly. The joint
probabilities πE,T(s, c, q)true used to generate (YE, YT) given the assigned (c, q) were
computed using (7) and (8), and the resulting true utility u(c, q)true was obtained from
expression (9).

The simulation scenarios are given in Supplementary Tables 1 – 6. Scenario 1 uses the
elicited prior means, with the utilities increasing with both c and q, so that (c, q) = (0.5, 0.2)
is optimal. Scenarios 2 has a similar pattern, but with a larger increase as (c, q) goes from
(0.2, 0.1) to (0.5, 0.2). In Scenario 3, the middle values c = 0.3 and 0.4 have the highest
utilities, also with u(c, 0.1)true > u(c, 0.2)true so a smaller bolus is more desirable. In
Scenario 4, smaller values of both c and q have higher u(c, q)true. Scenario 5 is unsafe, with
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unacceptably high values of all πT(s, c, q)true compared to the upper limit . In
Scenario 6, all efficacy probabilities FE(s, c, q)true of dissolving the clot are unacceptably
small compared to the lower limit πE = 0.50 Thus, in the last two scenarios, it is most
desirable to stop the trial early and select no (c, q) pair.

To summarize the method’s overall behavior, we used the following statistic. For each
scenario, let utrue,sel denote the true utility of the final selected (c, q) and umax and umin the
largest and smallest true utilities among all (c, q) pairs. The summary statistic R = (utrue,sel −
umin)/(umax − umin) is the proportion of the di erence between the best and worst possible
choices achieved by the selected treatment. Thus, 0 ≤ R ≤ 1, with larger values
corresponding to better performance of the method. In cases such as Scenarios 5 and 6
where no treatment is acceptable, the value of R is not relevant since it is not useful to
choose a treatment maximizing the utility if all treatments are unacceptable. The simulations
are summarized in Table 3. Under Scenarios 1 – 4, searching among the eight possible (c, q)
pairs, the method does a reliable job of selecting pairs with higher utilities, and subsample
sizes are favorably balanced toward more desirable pairs. The results for Scenarios 5 and 6
show that if no pair is acceptably safe and efficacious the method is likely to stop early and
select no pair. In Scenarios 1 – 4 where an acceptable (c, q) pair exists, R increases with N.
The values of “% none” selected increase with N. These are fixed at 2% for all N studied
under Scenario 2, and reach a maximum of 100% by N = 240 in the Scenarios 5 and 6 where
no pairs are acceptable.

We assessed sensitivity to the prior, N, cohort size, and σ, summarized in Supplementary
Tables 7, 8, and 9. Supplementary Table 7 shows that, for N = 24 to 240, using a prior with
mean 0 and σ2 = 20 for all log(θj) substantially degrades R under Scenarios 1 and 2,
increases R under Scenarios 3 and 4, and increases the futility stopping probabilities under
Scenario 6. For N = 36, there is no general pattern of R or stopping probability with cohort
size 1, 2, 3, or with σ = 7 to 20. Sensitivity to the four interpolation methods for obtaining
each scenario’s probabilities between successive evaluation times s = 0, 0.125, …, 1.0 is
summarized in Supplementary Table 10. The stopping probabilities are insensitive to the
interpolation method, but R may change very little or substantively, depending on the
scenario and method. This is because each interpolation method gives diffierent shapes of
πT(s, c, q)true and FE(s, c, q)true and thus a diffierent version of each scenario, which in turn
changes u(c, q, θ)true and thus the method’s behavior and R. Supplementary Table 11
summarizes sensitivity to , the effect on πT of failure to dissolve the clot, for

, with k = 1 to 9. In all scenarios, “% none” selected increases with k, a very
desirable property. To assess the design’s performance under a more parsimonious model,
we simplified the mixture distribution given by (1) and (2) by fixing α1 = α2 ≡ β1 ≡ 1 and β0
≡ β4 = 0, so that πT(yE) = 1 − e−β2cq−β3c(1−q)(yE ; 1) and p0 = 1 − eα0cq, and assumed the
Weibull hazard λ(y, c, q, α) = {α3cq + α4c(1 − q)}ψyψ−1, in place of (5). This model has 6
parameters, (α0, α4, α3, ψ, β2, β3), compared to 11 for the original model. The simulations, in
Supplementary Table 12, show that using this simpler model greatly degrades the method’s
performance in Scenarios 3 and 4 where the highest concentration is not the best choice, and
reduces the reliability of the safety and futility rules, with early stopping probability reduced
from .91 to .69 under scenario 5 and from .83 to .70 under Scenario 6.

Table 4 gives a hypothetical case-by-case example to illustrate how a trial might play out in
practice, under a scenario with the best c in the middle. For each patient, the treatment
values and outcomes are given with the posterior mean utilities of the eight (c, q)
combinations. To conserve space, results are given for the first 12 patients and thereafter
each sixth patient. The values for all 36 patients are given in Supplementary Table 13. For
this example, posterior means and standard deviations of the elements of θ, and of FE(1, c,
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q, θ) and πT(1, c, q, θ), with prior values for comparison, are given in Supplementary Table
14.

6. Discussion
The methodology proposed here may be extended to oncology settings. For example,
suitable modifications of the methodology may be used for a chemotherapeutic anti-cancer
agent administered by ci, with a possible initial bolus, with the tumor imaged repeatedly and
therapy stopped when tumor response is achieved. In such settings, the time frame likely
would be much longer than the 120 minute schedule considered here, and the infusion
typically would include successive cycles with interim rest periods. Additionally, toxicity
might be a time-to-event variable, possibly occurring during infusion and causing treatment
to be suspended or permanently stopped. Such diffierences are non-trivial, however, and
would require substantive modifications of λ, πT, and the decision rules.

A simpler version of the method currently is being applied to plan a similar trial of IA tPA
in pediatric stroke patients. Although pediatric AIS is rare, over 75% of children with acute
AIS will die or su er long-term neurological deficits (deVeber, et al., 2000). In this trial, it
was decided to fix q ≡ 0.10 since a bolus of size q = 0.20 or larger was considered too risky
for children. For the model, the response hazard is simplified by fixing α2 ≡ 1. The design
space consists of the four concentrations {0.20, 0.30, 0.40, 0.50} and c is chosen based on

, defined as the maximum over c of .

A computer program, named “CiBolus,” to implement this methodology is available from
the website https://biostatistics.mdanderson.org/SoftwareDownload.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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