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Abstract In vitro production of human hepatocytes is of
primary importance in basic research, pharmacotoxicology and
biotherapy of liver diseases. We have developed a protocol of
differentiation of human embryonic stem cells (ES) towards
hepatocyte-like cells (ES-Hep). Using a set of human adult
markers including CAAT/enhancer binding protein (C/EBPal-
pha), hepatocyte nuclear factor 4/7 ratio (HNF4alphal/
HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4
and constitutive androstane receptor (CAR), and fetal markers
including alpha-fetoprotein, CYP3A7 and glutathione S-
transferase P1, we analyzed the expression of a panel of 41
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genes in ES-Hep comparatively with human adult primary
hepatocytes, adult and fetal liver. The data revealed that after
21 days of differentiation, ES-Hep are representative of fetal
hepatocytes at less than 20 weeks of gestation. The glucocor-
ticoid receptor pathway was functional in ES-Hep. Extending
protocols of differentiation to 4 weeks did not improve cell
maturation. When compared with hepatocyte-like cells derived
from adult liver non parenchymal epithelial (NPE) cells (NPE-
Hep), ES-Hep expressed several adult and fetal liver makers at
much greater levels (at least one order of magnitude), consistent
with greater expression of liver-enriched transcription factors
Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It
therefore seems that ES-Hep reach a better level of differenti-
ation than NPE-Hep and that these cells use different lineage
pathways towards the hepatic phenotype. Finally we showed
that lentivirus-mediated expression of xenoreceptor CAR
in ES-Hep induced the expression of several detoxification
genes including CYP2B6, CYP2C9, CYP3A4, UDP-
glycosyltransferase 1A1, solute carriers 21A6, as well as
biotransformation of midazolam, a CYP3A4-specific substrate.

Keywords Human embryonic stem cells - Adult hepatic
progenitors - Hepatic differentiation - Hepatocyte -
Maturation - Lentivirus vector - Detoxification

Abbreviations
hES Human embryonic stem cell

ES-Hep Embryonic stem cell-derived hepatocyte-like
cells

NPE-Hep non parenchymal epithelial cell-derived
hepatocyte-like cells

PCHH primary cultures of human hepatocytes

TO tryptophan 2,3-dioxygenase
TAT tyrosine aminotransferase
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GS glutamine synthetase
Go6P glucose-6-phosphatase

PEPCK phosphoenolpyruvate carboxykinase
SLC2A2  Glut2

CPS1 carbamoyl phosphate synthase
PKL pyruvate kinase of liver
CYP7A1  cholesterol 7x-hydroxylase
ALB albumin

AAT alpha-1 antitrypsin

AFP alpha fetoprotein

TTR transthyretin

FIB Fibrinogen

ApoH Apolipoprotein H

FII blood coagulation factor II
FV blood coagulation factor V
CYP Cytochrome P450

POR Cytochrome P450 reductase
UGT UDP-glycosyltransferase

GST Glutathione S-transferase
PXR, pregnane X receptor

NR112

CAR, constitutive androstane receptor
NRI1I3

AhR aryl hydrocarbon receptor
GR, glucocorticoid receptor
NR3Cl1

MRM Multiple Reaction Monitoring
Introduction

Orthotopic liver transplantation is currently the only means
to efficiently cure liver failure regardless of origin (drugs,
alcohol or viral infection). However, liver donor scarcity
strongly limits this approach. New strategies to produce
human hepatocytes are therefore needed. These are based
on the proliferative capacity of human embryonic stem
(hES) cells and adequate protocols of in vitro differentiation
towards mature hepatocytes. Moreover, due to the wide
range of functions performed by the liver, hepatocytes
derived from hES cells (ES-Hep) can be a useful tool for
basic research and pharmacotoxicology.

One of the earliest commitment steps in embryogenesis is
the formation of the primary germ layers ectoderm, mesoderm
and endoderm, the founder populations of all somatic cell types
in the body [1]. The liver develops from definitive endoderm
(DE) that is generated from the anterior primitive streak (PS).
Along the PS an inverted gradient of TGF[3/Nodal/Activin
and Wnt/Pcatenin constitutes a signaling environment that is
responsible for the induction of the hepatic lineage [2]. The
cardiac mesoderm and septum transversum mesenchyme
induce hepatic specification of the adjacent endodermal

epithelium through bone morphogenetic protein (BMP2-4)
[3] and fibroblast growth factor (FGF1-2-8) signaling [4, 5].
At this stage, endothelial cells seem to have an organogenic
role and provide a crucial growth stimulus for hepatic bud
formation [6]: the cells are thereafter referred to as hepato-
blasts. Although these cells already express some genes
specific to fully differentiated hepatocytes, such as serum
albumin, in the fetal liver hepatoblasts give rise to hepatocytes
and bile duct cells (cholangiocytes). The hepatic versus bile
duct phenotype specification process is not yet fully under-
stood; nevertheless Notch [7] and TGF-f3/activin pathways [8]
seem to play crucial roles in this cell-fate decision.

During mid and late fetal life, the liver is the major
hematopoietic organ. The secretion by hematopoietic cells of
oncostatin M (OSM) coordinates the late stages of embryonic
liver development and promotes the maturation of fetal
hepatoblasts into hepatocytes [9]. This final maturation step
also involves HGF (Hepatocyte Growth Factor), soluble
compounds (glucocorticoid, insulin...), extracellular matrix
components and cell-cell interaction and cooperation [10]. At
birth, the function of the liver shifts from hematopoiesis to
homeostasis and detoxification. Numerous adult functions
are acquired and fetal ones are lost.

If liver development is well described in rodents, informa-
tion is scarce concerning human development. Important
differences exist between these species, as documented for
many genes [11-18]. In addition, liver lobule architecture is
established at birth in rodents, whereas it appears to be
already specified at week 20-22 of gestation in humans,
which may have a strong impact on the pattern of metabolic
activities [19, 20]. It is therefore necessary to take these
differences into account when considering hES differentia-
tion towards hepatocytes. Recent studies from this [21] and
other laboratories [22] have allowed to identify genes that are
true markers of human liver maturation.

In the last five years, numerous papers have reported the
generation of hepatocytes from human embryonic stem
cells [23-29]. In most cases, these studies used HepG2 as a
reference hepatic cell, or used the time-dependent increase
of hepatic markers as a means to follow differentiation. The
aim of this work was to investigate the differentiation of
hES towards hepatocytes using several reference cell/tissue
types including fetal and adult liver tissues, adult primary
human hepatocytes and adult liver progenitors [30, 31].

Materials and Methods
Chemicals
Growth factors (Activin A, FGF, HGF, BMP, OSM) were

obtained from Peprotech (Neuilly sur Seine, France).
Mouse Wnt3a was from Chemicon (Hants, England).
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Culture medium and supplements are from Invitrogen
(Cergy Pontoise, France). Collagen I coated plates and
Matrigel are from Becton-Dickinson (Le Pont de Claix,
France). LY294002, DMSO, clotrimazole and midazolam
are from Sigma.

Cell Culture and Differentiation

Human embryonic stem cells HUES-1 (obtained from Dr
Douglas Melton, Harvard University) were cultured and
amplified onto mouse embryonic fibroblasts (MEF),
using DMEM medium supplemented with 10% KO-SR
and 10 ng/ml FGF2. For differentiation, a single cell
suspension of hES was transferred to a Matrigel™ coated
plate (40 pg/cm?) and maintained in MEF conditioned
medium (CM) for 24-48 h. When cells reached 50%
confluence, medium was replaced by an endoderm
priming medium for 5 days consisting of DMEM
5.5 mM glucose, 2 mM glutamine, 0.1 mM non essential
amino-acid, 10% KO-SR supplemented with Activin A
(100 ng/ml), FGF2 (10 ng/ml), Wnt3a (25 ng/ml) and
LY294002 (30 uM). The medium was changed daily. For
hepatic induction, KO-SR was reduced to 2% and
supplemented with BMP4 (50 ng/ml), FGF4 (25 ng/ml)
and 1% DMSO (Fig. 1a). For the differentiation process,
cells were transferred to collagen I coated dishes in a
medium consisting of 60% low glucose DMEM, 40%
MCDB-201, supplemented with insulin-transferrin-
selenium (ITS+1), 5 uM dexamethasone, 0.1 mM ascor-
bic acid 2-phosphate, 20 ng/ml HGF, 25 ng/ml FGF4,
10 ng/ml Oncostatin M (OSM). After 24 h, cold medium
supplemented with 0.3 mg/ml Matrigel ™ was added to
the cells. Medium (without Matrigel addition) was then
changed twice a week.

Other Liver Cells

HepG2-C3 hepatocellular carcinoma cell line was obtained
from ATCC and cultured as recommended. Non parenchymal
epithelial cells (NPE) were isolated, cultured and differentiat-
ed as described previously [31]. Human Fetal Liver (FL)
samples (20 and 23 weeks) were obtained from CliniScien-
ces (Montrouge, France). A mix of five human Adult Liver
(AL) mRNA samples isolated from five lobectomies, and a
mix of six mRNA samples isolated from Primary Cultures of
Human Hepatocytes (PCHH) cultured for 3—4 days in ISOM
medium [32] were used as references.

RNA Isolation and RT-PCR
After extraction with Trizol reagent (Invitrogen), 1 pg of

total RNA was reverse-transcribed using random hexap-
rimer and the MMLYV reverse transcriptase kit (Invitrogen).
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Quantitative PCR was performed using Roche SYBER
Green reagent and LightCycler 480 apparatus (Roche
Diagnostic, Meylan, France). Amplification specificity
was evaluated by determining the product melting curve.
The expression of RPLPO mRNA was used for relative
quantification. Results are expressed as relative mRNA
levels or as the percentage of mRNA expression in PCHH
as indicated in figure legends. Sequences of primers are
summarized in Table S1. The following program was used :
one step at 95°C for 10 min, 50 cycles of denaturation at
95°C for 10 s, annealing at 65°C for 15 s, elongation at 72°
C for 15. miR-122 was quantified by RT-PCR as described
[33].

Western Blotting

The secretion of proteins in 4 day-aliquots of culture media
was assayed by western blotting. Primary antibodies
directed against human albumin, alpha-1 antitrypsin
(AAT) (Dako Cytomation, Trappes, France) factor II (FII),
factor V (FV) (USBiological), alpha-fetoprotein (AFP)
(Thermo Fisher Scientific, Runcorn, UK) or fibrinogen
(Sigma) were used at 1/1000 dilution. Anti-mouse, -goat or
-rabbit horseradish peroxidase-conjugated secondary anti-
bodies were used at 1/10000, and chemiluminescent signal
detection was performed with the ECL Western Blotting
Detection kit (Amersham, England).

ELISA

Albumin and AAT proteins were quantified in 4 day-
aliquots of culture media using AssayPro ELISA Kits (St
Charles, MO) as recommended.

Urea Assay

The urea production in 4 day-aliquots of culture media was
assayed by a colorimetric assay (Gentaur, Brussel, Bel-
gium) as previously described [30].

Indirect Immunofluorescence

Fixed cells were permeabilized with 0.2% Triton X-100 in
TBS for 5 min. Mouse antibodies directed against N-CAM
(NeoMarkers) and cytokeratin 8/18 (NovoCastra), rabbit
antibodies directed against HNF4 (Santa-Cruz) and AFP
(Thermo Fisher Scientific), goat antibody directed against
FOXA2 (R&D) and goat antibody-FITC directed against
human albumin (Bethyl Laboratory) in PBS 3% FCS were
applied to the cells for 1 h at room temperature. After
washing, cells were incubated with anti-mouse Alexa-488,
anti-rabbit or anti-goat Alexa-568 secondary antibodies (1/
1000 dilution, Invitrogen) for 45 min at room temperature.
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Fig. 1 Differentiation of hES Days 0 1 10 21
cells. A) Protocol. Arrows indi- v v ¥ ¥ v ¥ vy ¥ ¥ ¥ ¥
cate medium renewal. B) Pho- A - . i
tomicrographs of morphological Step 1: Endoderm Step 2 : Hepatic Step 3 : Maturation
. . . Differentiation specification
changes during differentiation.

C) and D) immunofluorescence Matrigel Collagen |
analysis of N-CAM, FOXA2, CM DMEM 5mM glucose DMEM / MCDB 201
AFP, HNF4, CK8-18 and Albu- KO-SR 10% KO-SR 1% ITS +1, HC

min in ES-Hep and PCHH. Only AA, FGF2, LY BMP4, FGF4, DMSO HGF, OSM, FGF4
overlays (FOXA2-green/AFP- Wnt3a | Overlay with Matrigel

red; ALB-green/CK8-18 or
HNF4-red) are shown here. See
Supplementary Fig. 2 for further
detail

Foxa2/AFP = *

* CK18/ALB

Nuclei were labeled with Hoechst 33258. Immunofluores-
cent labeling was examined under a fluorescent microscope
(Leica Microsystem, Rueil-Malmaison, France) and images
were analyzed using Metamorph software (Universal
Imaging Corporation, Downington, PA).

LDL Uptake

After 21 days of differentiation Hep-ES were incubated
with 20 pg/ml of Dil-LDL (1,1’-dioctadecyl-3,3,3",3'-
tetramethyl-indocarbocyanine perchlorate, Molecular
Probes, Eugene, OR) for 4 h in culture medium. Cells
were washed with PBS and fixed in 3.2% formaldehyde.
For nucleus staining, cells were incubated for 1 h with
3 uM Hoechst 33258 without permeabilization. Cells were
examined as indicated above.

Glycogen Uptake

After 21 days of differentiation, the storage of glycogen in
Hep-ES was evaluated using the Periodic Acid Schiff
Assay staining as recommended by the manufacturer
(Sigma).

D10 D15 D21

CK18/ALB, “¥ HNF4/ALB

HNF4/ALB

Lentivirus

FG12-CMV and the FG12-hCAR were obtained after ampli-
fication of the CMV or the CMV-hCAR cassettes (pcDNA3-
CMYV Hpa-1 F: acGTTAAC CGTTGACATTGATTATTGAC;
pcDNA3-Hpa-1 Rev: acGTTAACTgatcagcgggtttaaactc) from
the pcDNA3 or the pcDNA3-hCAR (gifts from Masahiko
Negishi, NIEHS, NC USA) plasmids and insertion into Hpa-1
linearized FG12 [34]. Lentivirus production and cell trans-
duction were performed as previously described [35, 36].
HepG2-C3 and ES-Hep were transduced at D15 or D20,
respectively, with 10 and 10, 20 and 50 pl of lentivirus
solution and analyzed 3, 7 and 10 days later, after treatment
with or without clotrimazole for the last 24 h.

Metabolic Activity

After 21 days of differentiation hES-Hep cells were incubated
with 5 uM midazolam. At 24 h, 400 uL of acetonitrile/water
(30/10, v/v) were added to each well and extracellular medium
and cell homogenate were mixed and submitted to analysis for
substrate and metabolites by LC/MS-MS, using MassLynx
4.0 Software (Waters-Micromass, Milford MA).
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Results

In vitro Production of Definitive Endoderm (DE): Effect
of Glucose and Wnt3a

The differentiation protocol used for HuES-1 cells is
illustrated in Fig. la. This protocol is based on previous
papers that emphasized the role of stimulatory factors such
as Activin, LY294002, Wnt3a, DMSO, KO-SR [29, 37—
41]. mRNA expression of mesendodermal and endodermal
markers was analyzed from D1 to D5 (Fig. 2a). As
expected, Brachyury (mesendodermal marker) mRNA
reached a maximum at D2 and decreased thereafter.
Note that the maximum level was greater and the
decrease sharper in low glucose medium. No significant
effect of glucose concentration was observed in the
induction kinetics of endodermal marker transcripts
Sox17, CXCR4, FOXA2, and HEX. However, while
these transcript levels decreased between D4 and D5 in
high glucose (25 mM) medium, they were maintained at
their maximum up to D5 in low glucose (5.5 mM)
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Fig. 2 Optimization of DE specification. a Effect of high (HG) and
low (LG) glucose on mRNA expression of development markers
(reference level 100 with LG at D5). b Effect of Wnt3a on mRNA
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medium. Thus, DMEM culture medium containing
5.5 mM glucose was routinely used.

In the next series of experiments, HUES-1 cells were
cultured as described above in the absence or presence of
Wnt3a (25 ng/ml) for 48 (D1 to D3) or 96 h (DI to D5)
(Fig. 2b). The mRNA expression of mesendodermal
(Brachyury) and primitive streak (MIXL1) markers
increased with the duration of Wnt3a treatment. Howev-
er, while mRNA levels of DE markers (Sox17, CER,
GSC, HEX, FOXA2 and CXCR4) were strongly in-
creased (4.8 to 33-fold) by Wnt3a exposure between D1
and D3, prolonged Wnt3a exposure (D1 to D5) led to a
decrease in DE marker levels. In contrast, ZICI
(ectodermal marker) mRNA level was strongly reduced
by Wnt3a, while Sox7 (visceral endoderm marker)
mRNA expression was not affected. Thus, transient
exposition of cells to Wnt3a from D1 to D3 was
routinely used to induce the DE. During this step, the
cells became larger with dark cytoplasm and adopted a
more mesenchymal aspect (Fig. 1b-D5), as confirmed by
N-CAM expression (Fig. 1¢c-D5).
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Hepatic Specification

Hepatic specification was induced between D5 and D10
(Fig. 1a). In contrast to Jung et al. [42] and in agreement
with Cai et al. [25], we observed that different combina-
tions and doses (25-100 ng/ml) of BMPs and FGFs
produced similar effects on the rate of this step (Supple-
mentary Fig. 1A). Thus, for further experiments, we
associated BMP4 and FGF4 at 50 and 25 ng/ml, respec-
tively. We further observed that using 1% DMSO,
previously reported as an epigenetic modulator [43], and
decreasing KO-SR concentration to 2% increased the
expression level of albumin, AFP, AAT, HNF4x7, HNF4«x1
and FOXA2 mRNAs (Supplementary Fig. 1B-C). At D10,
most of the cells expressed FOXA2/HNF33 and AFP as
shown in Fig. 1c and supplementary Fig. 2A.

Hepatic Maturation

Cell substratum has a strong impact on stem cell differen-
tiation towards hepatocytes [44]. At D10, cells were
trypsinized and replated on type-I collagen-coated plates,
in a medium containing HGF, FGF4, insulin and gluco-
corticoids as used by others for MAPC differentiation
towards hepatocytes [45]. This medium was complemented
with OSM [46]. As first shown in mouse fetal hepatocytes
[46] and parenchymal epithelial cells (NPE) [31], matrigel
overlay had a stimulating effect on the maturation step. We
therefore routinely used this additive at 0.3 mg/ml in this
protocol at D11. Morphological changes during maturation
are shown in Fig. 1b. Between D15 and D21, clusters of
cells displayed a typical aspect of primary binucleated
hepatocytes. Immunofluorescence analysis revealed time-
dependent increased expression of ALB which colocalizes
with CK8/18 (D15) and HNF4 (D21) (Fig. 1c and
supplementary Fig. 2A). A similar pattern is observed in
PCHH as shown in Fig. 1d and supplementary Fig. 2b. At
D21, it can be seen that a significant proportion of cells do
not express ALB and/or HNF4. We therefore evaluated the
percentage of cells expressing ALB by immunofluores-
cence and FACS analysis. As shown in supplementary
Fig. 3, this cell population represents 40% of the total
number of cells in culture.

Differentiation of hES Cells to Hepatocyte-like Cells

In order to characterize the phenotype of hES-derived
hepatocyte-like cells (ES-Hep), several markers were
compared with those evaluated in NPE-derived
hepatocyte-like cells (NPE-Hep) [30, 31], primary cultures
of adult human hepatocytes (PCHH, n=6), adult liver tissue
(AL, n=5), and fetal liver tissue (FL, mix of samples at 20—
23 weeks gestational age). Hepatocellular carcinoma

HepG2-C3, considered as the most differentiated HepG2
clone was analyzed in parallel (Table 1). Note that,
expression of markers was weighted by the percentage of
cells expressing ALB at D21 (see column hES D21%*).

Expression of Liver Enriched Transcription Factors

Hepatocyte-lineage genes are primarily regulated at the
transcriptional level [47]. Analyzing transcription factor
expression levels is therefore mandatory. C/EBPx and a
HNF401/HNF4«7 ratio >1 [48] are generally considered as
adult hepatocyte markers. FOXA2, HNF4«x1, HNF4«7 and
C/EBPx mRNA levels sharply reached maximum levels at
D10 or D15 and decreased 2- to 5-fold at D21, except for
HNF4«7 (Table 1A). In contrast, HNF1, HNF6, C/EBPf3
and XBP-1 mRNA expression increased slowly, reaching
maximum levels at D21, close to levels in PCHH. At D21,
the HNF4x1/HNF4«7 ratio was clearly <1 as in fetal liver.

Secreted Plasma Proteins

ALB, AAT, TTR, ApoH, FV and FII mRNAs were expressed
at very low or non existent levels before D15 (Table 1B), and
sharply increased at D15 or D21. AFP, a well known fetal
marker, exhibited a tremendous increase between D10 and
D15 to reach a level approximately ten times greater than
that found in fetal liver. At D21, the expression of ALB,
AAT and TTR was greater than in PCHH, while expression
of ApoH, FII and FV was lower than that observed in
PCHH. The expression of all transcripts was greater than that
observed in HepG2-C3 cells, except for ApoH and FV.
While AFP protein was not expressed in PCHH (Fig. 3a),
expression levels of ALB, AAT, and FV proteins were
similar to those observed in PCHH, consistent with transcript
levels. Fibrinogen (FIB) was highly expressed in ES-Hep in
comparison to PCHH, while the opposite was observed for
FII (Fig. 3a). The findings concerning ALB and AAT were
confirmed by ELISA (Fig. 3b).

Metabolism

Hepatocytes play crucial roles in amino acid metabolism
(TO, TAT, GS), insulin-regulated glucose homoeostasis
[49] (G6P, PEPCK, SLC2A2), urea (CPS1), bile acid
synthesis (CYP7A1) [50], and lipid homeostasis [51].
Apart from GS, none of these transcripts was significantly
expressed at D1 and all exhibited a major increase between
D15 and D21 (Table 1C), consistent with transcription
factor expression before or at D15 (Table 1A). Indeed, G6P
and PEPCK are HNF4- and C/EBP«-target genes, and
Glut2 is a FOXA2- and HNF6-target gene [47]. At D21,
TO, PEPCK, Glut2, CPS1 and PKL reached levels
admittedly lower but close to those measured in PCHH.
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Table 1 Quantitative RT-PCR analysis of mRNA expression of HepG2-C3. mRNA levels quoted in this table have been normalized
hepatic markers during hES differentiation (from D1 to D21) in with respect to corresponding levels in PCHH arbitrarily taken as 100
comparison with NPE differentiation (D1 to D18), FL, AL and

hES | hES | hES | hES hES hES | NPE | NPE | NPE HepG2-
D1 D5 D10 D15 D21 D21* D1 D7 D18 FL 83 AL PCHH
A - Transcription Factors

FOXA2 | 07 [ 56 [0256] 54 56 ﬁ 15 [ 16 | 13

C/EBPo. | 003 | 008 | 02 | 135 5 125 | 0 0 [ 02

C/EBPB | 2 2 35 [ 105 | 225 [ 562 | 51 | 625 | 615
HNF401 | 0.009 | 0.01 73 62 04 | 11 21
HNF407 | 07 | 1.8 75 12 | 33 17
Ratio al/o7 | 0.01 | 0.005 1 1 0.4 04 | 03 | 03 12 | 06 | 08 |35 1 |
HNFla. 0 0 4 21 35 04 | 15 11

HNF6 | 27 | 07 | 238 0.08 | 007 | 02

XPB1 12 | 52 [ 206 | 51 24 | 50 | 69

B - Secreted plasma proteins

AAT 0 0.1 1.3 45 | 45
ALB 0 0.1 0.3 | 06 | 66
AFP 0 5 | 0 | |

TTR 0 0 35 | nd nd 1.2

ApoH 0 0 0 ) 21.2 0 0.5 26

FII 0 0 13 | 108 | 35.1 | nd nd | 03
FV 0 0 0075|144 ] 75 | 05 | 71 [ 212

C - Metabolism

TO 07 [ 001 [ 005 [102] 102 [255] 01 | 88 [ 133 [ 65 0.03
TAT 0 0 0 [005] 05 125 [ 001 | 01 | 08

G6P 0 0 0 32 | 002 | 33

PEPCK | 0.03 | 005 [ 02 | 99 | 2438 02 | 03 | 87

Glut2 0 0 0 3 63.3 | 2 5 7.9
CYP7AL | 0 0 0 14.7 0 0 0

GS 34 41 |

CPS1 04 | 0.1 0.3 55.4 | 02 | 04 | 24

PKL 04 [ 004 [ 02 [ 12 14 35 [ 003 [ 008 [ 04

D - Detoxification

CYPIAL [ 8 [ 009 [ 27 nd | nd [N 3.9 73
CYP1A2 | 0.07 0 0.02 | 008 | 02 0.5 0 0 |02 0 0.02
CYP2B6 | 27.7 | 0.79 0 [003] 04 1 0 [025] 25 [ o1 2.3
CYP3A4 | 0 0 [0.003] 06 09 [225] 02 ] 02 ] 09 ] 02
CYP3AT | 0 0 0 0 0 33

POR 7 56 | 107 38.2 12.1 | 166 | 204
SLC21A6 | 0 0 ]0.003] 02 03 075 ]005] 07 | 03
UGTIAL [ 0.03 [ 0.01 [ 0.01 [ 02 1.6 25 15 | 06 | 008 | 0.08
GSTA3 0 | | 0 0 102 | 34 2.8
GSTP1 | | | 3.1

E - Nuclear Receptors and Coactivators

AhR 3 7.5 20 25

PXR 1 0.2 05 | 12 3 75 1007 | 009 [ 04

CAR 0 0 03 | 27 95 [ 237 ] 0 0 0.5

GR 97 | 77 16 63 | |

SRCl1 26 42
PGClo 10.4 9.8

F - miRNA
0.008 | 0.08 0.2 1.4 17 42.5 nd nd nd 40 nd nd

30

25.5

miRNA-
122
nd : not determined - O : not detected

0-25% |26-50% | 51-75%
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Fig. 3 Expression of plasma proteins in 4 days-aliquots of culture
medium of ES-Hep after 15, 18 and 21 days of differentiation
measured by Western-blot (a) and ELISA (b). Production of these

TAT remained at a very low level with respect to PCHH
while G6P exhibited level 10 times greater, as in FL. At
D21, expression of CYP7A1 reached 15% of that observed
in PCHH. As this gene is not expressed in FL (at week 24)
it was considered as another marker of maturation, in
agreement with previous observations in piglets [52]. Urea
synthesis increased from D15 to D21 to reach 15% of the
activity observed in PCHH (Fig. 3c). Finally, hES-Hep cells
were able to store glycogen and uptake LDL as assessed by
fluorescence labeling (Fig. 3d and e).

Detoxification

Xenobiotic biotransformation and excretion is dependent on
the presence and distribution of phase I, phase II and
transporter genes [53]. Cytochrome P450s (CYPs) are mixed
function monooxygenases and are major phase I enzymes. In
contrast to adult liver, fetal hepatocytes exhibit a modest
detoxification function. CYP gene expression increases
during liver ontogeny and is characterized by a strong
expression of CYP3A7 in the human fetal liver [54]. In the
perinatal period, expression of CYP3A7 decreases and that
of CYP3A4 (its adult counterpart) increases [21]. As with
CYP3A4, other CYPs including CYP2B6, CYP2C8/9 and
CYP1A2 are major CYPs expressed in adult liver. In contrast
to CYP1A2, CYP1Al is also expressed in non hepatic
tissues such as trachea and lung [54].

Except for CYP2B6, none of these genes was significantly
expressed at D1, and all exhibited a major increase between
D15 and D21 (Table 1D). CYP3A4 reached 1% of the level
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detected in PCHH, while CYP3A7 expression was 100 times
higher than in PCHH and close to that observed in FL. At
D21, CYP1A1 was expressed at a high level in ES-Hep in
contrast to CYP1A2. Surprisingly, CYP2B6 was expressed
at a significant level in undifferentiated ES cells
(corresponding to 25% of CYP2B6 mRNA in PCHH) and
decreased rapidly thereafter. POR, the specific NADPH-
dependent reductase involved in CYP enzyme function, was
expressed at a significant level in undifferentiated cells (D1).
UGT1A1l is a glucuronidation enzyme exclusively
expressed in adult liver [55] (Table 1D). Its mRNA
expression increased during ES-Hep differentiation to reach
1.5% of PCHH mRNA levels. The mRNA expression of
SLC21A6, a hepatospecific bilirubin transporter, was also
induced during ES-Hep differentiation but only reached a
very low level at D21 in comparison to PCHH. In contrast,
SLC21A6 mRNA was expressed at a high level in FL as
observed by others [56]. It is remarkable that GSTA3 and P1
levels were almost 20 times greater in ES-Hep as compared
with PCHH. Moreover, GSTP1 was expressed at an even
greater level in undifferentiated DE cells, in sharp contrast
with GSTA3. Indeed, GSTP1 and GSTA3 are generally
considered as fetal and adult markers, respectively.

Expression of Nuclear Receptor Implicated
in Detoxification Function

In adult liver detoxification genes are transcriptionally

regulated in part by xenoreceptors PXR (pregnane X
receptor), CAR (constitutive androstane receptor) and
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AhR (aryl-hydrocarbon receptor) [57-59]. CAR and PXR
expression is regulated by HNF4x1 and GR [60]. PXR
mRNA was detectable in undifferentiated HuES-1 cells, and
its expression increased slightly from D10 to D21 to reach
3% of PCHH expression levels (Table 1E). CAR mRNA
expression peaked at D15 (as observed with C/EBPx and
TTR), representing 25% of PCHH expression level. This
mRNA was barely detectable in FL and was considered as
another marker of hepatocyte maturation. AhR was expressed
at a significant level during the differentiation process, in
accordance with the expression of its target gene, CYP1AL.

GR mRNA expression increased during differentiation
to reach a level close to that of PCHH (Table 1E). Since
GR is a central transcription factor for many cellular
processes, we decided to evaluate its functionality. At
D21, ES-Hep culture medium was depleted of dexameth-
asone for 16 h and then re-supplemented with 5 uM
dexamethasone for 24 h. The expression of a series of
genes (supplementary Fig. 4) was analyzed before and
after depletion, as well as 24 h after re-supplementation.
The results provide clear evidence that this receptor is
functional, as shown by the expected modulation of
several target genes, TAT, CAR, PXR, CPS1, G6P and
TTR. Interestingly, FOXA2 expression was not affected
by dexamethasone, consistent with its expression reaching
maximum levels at D10.

Expression of miRNA-122

miR-122 is liver specific and highly expressed at similar
levels in human fetal liver (aged between 9 and 27 weeks)
and adult liver [61]. In ES-Hep, its expression increased
gradually during differentiation to reach a level close to
20% of that observed in PCHH (Table 1F).

Differentiation of NPE Cells to Hepatocyte-like Cells

We comparatively analyzed the expression of the same
gene battery during adult NPE cell differentiation between
D1 and D18 (Table 1). In contrast to hESC, these cells were
not sensitive to OSM (not shown). Major differences
between the differentiation processes of these two cell
types were apparent. The transcription factors FOXA2, C/
EBPx, HNF4x and HNF6 were expressed at much lower
levels in NPE-Hep compared to ES-Hep. Similarly, AFP,
TTR (target genes of HNF6), FII, CYP7A1, CPSI1, PKL,
CYP3A7, UGT1A1, GSTA3, PXR and CAR exhibited
lower levels of expression in NPE-Hep. In contrast, other
markers such as C/EBP(3, XBP1, albumin, AAT, ApoH,
FV, TO, TAT, G6P, GS, CYP1Al, CYP1A2, CYP2B6,
CYP3A4, POR, SLC21A6, GSTP1, AhR, GR, SRC1 and
PGCl«x were expressed at similar levels in both hES and
NPE-derived hepatocyte-like cells.
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Transduction of CAR in ES Cells

Previous investigations have shown that forced expression
of transcription factor(s) can dramatically change cellular
fates, inducing pluripotency, as in iPS cells [62, 63],
promoting transdifferentiation in certain somatic cells [64,
65], or enhancing differentiation in carcinoma cells [66].
The xenosensor CAR regulates the expression of CYP2/3
and other xenobiotic conjugation and transporter genes after
activation by exogenous compounds (such as phenobarbital
or CITCO), or through its constitutive activity when
transfected [59]. Since CAR is expressed at a low level in
our ES-Hep, and as its expression is a marker of adult
phenotype, we decided to study the impact of its lentivirus-
mediated expression in ES-Hep, using HepG2-C3 cells for
comparison. Transduction experiments carried out at D15
or D20 gave similar results. The mRNA levels of phase I
(CYP2B6, CYP2C9 and CYP3A4), phase II (UGT1A1)
and phase III (SLC21A6) genes as well as biotransforma-
tion of midazolam (CYP3A4 substrate) to 1-OH-midazolam
in ES-Hep were induced in a dose-dependent manner,
reaching 2—-20% of levels observed in PCHH (Fig. 4a—b,
and supplementary Fig. 5). Clotrimazole, a potent deacti-
vator of CAR [67], significantly repressed both the
expression of these genes and midazolam activity, as
expected [68]. However, analysis of cells several days after
the induction of lentivirus-mediated expression of CAR
revealed that this xenosensor is down regulated from 100%
(level after forced expression at D20) to 20% at D27-31. As
expected, all CAR-target genes were down regulated in
parallel (Fig. 4c). These results show that forced expression
of transcription factors in ES-Hep cells may enhance, at
least transiently, the differentiation status of these cells.
Interestingly, CAR overexpression did not induce these
mRNAs in HepG2-C3 cells (except for CYP2B6).

Discussion

In this work we have: i) optimized a protocol of
differentiation of hES cells towards the hepatocyte pheno-
type, ii) characterized the differentiation level of
hepatocyte-like cells derived from hES versus those derived
from adult liver NPE by comparing them to PCHH, adult
and fetal liver, and iii) evaluated the effect of forced
expression of the xenoreceptor CAR in hES-derived
hepatocyte-like cells on the expression of several markers
of the hepatocyte detoxification function.

Numerous approaches have been developed to generate
hepatocyte-like cells from hES cells [23—-29]. Classical
protocols used culture media with high glucose concentra-
tion (25 mM), arguing that highly proliferating cells need
more energy. However, a more physiologic glucose
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Fig. 4 Effect of CAR transduction. a Detoxication gene expression in
HepG2-C3 and ES-Hep transduced with lentivirus harboring CAR
(FG12-CAR) or control (FG12) plasmid at D15 and 48 h later treated

concentration (5.5 mM) better promotes the in vitro
development of mouse and human embryos [69, 70] and
the formation of embryoid bodies [71]. Moreover, high
glucose concentration enhances PI3-kinase activation and
oxidative stress [72]. Our finding that DE markers reached
higher levels in low glucose medium than in high glucose
medium (Fig. 2) is consistent with these observations.
Wnt3a signaling plays an important role in hESC self-
renewal and differentiation [73]. Since duration of signaling
is critical (along with magnitude) [74], we explored the
possibility of adapting the duration of Wnt3a treatment. We
showed that a short exposure of cells to Wnt3a (between
D1 and D3) was optimal for DE marker expression (Fig. 2).
The differentiation protocol was further improved by
adopting conditions used to differentiate adult liver NPE
cells [31]. These included the use of 1% DMSO and 2%
KO-SR during hepatic specification (supplementary Fig. 1),
and plating of cells on type-I collagen at D10, followed by
overlay of matrigel starting at D11. This substratum is
apparently optimal for PCHH both in our hands and as
published [44]. Admittedly, ALB expression is not the ideal
hepatocyte marker as supported by our observations that
primary human hepatocytes are heterogeneous in this
respect (see Fig. 1d and supplementary Fig. 2B). However,
in the absence of an alternative consensual hepatocyte
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marker, this parameter was used to monitor cell differenti-
ation. In spite of our efforts to increase yield, ES-Hep only
represent approximately 40% of cells at the end of the
differentiation protocol and are likely to be heterogeneous
in terms of the extent of their differentiation. This may
account for the modest level of expression of hepatic
markers as compared with PCHH (Table 1). It is remarkable
that among the 41 genes tested here, 29 exhibited a more or
less sharp increase between D15 and D21 of differentiation.
Hence, it may be argued that longer period of differentia-
tion would result in better maturation. However, this was
not the case (not shown). Apparently, the cell phenotype
was not maintained in ES-Hep beyond D21, in our
conditions. Whether this is related to the finding that the
master regulators of hepatospecific genes such as FOXA2,
C/EBPx, and HFN4«xl1 (Table 1) [47] reached maximum
levels between D10 and D15 and decreased thereafter is
currently unknown and will require further investigation.
The observation that CAR expression rapidly declines after
lentivirus transduction of cells between D24 and 31
(Fig. 4c) may be a consequence of this process.

The main objective of hES cell differentiation is to
generate mature hepatocytes for biotherapy, basic research,
pharmacology and toxicology. It is therefore important to
select the most appropriate cellular controls and markers to
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evaluate the degree of differentiation of the generated cells.
Some of the previous studies used controls that are not fully
pertinent in this respect, including HepG2 cells which are
certainly not ‘“hepatocytes” [41], or undifferentiated ES
cells [29]. In these cases, the high induction ratios of gene
expression which were reported during differentiation
should not be interpreted as a high level of differentiation,
but merely reflect the low level of gene expression (if any)
in the control cells (HepG2 or undifferentiated ES, Table 1).
In addition, semi-quantitative PCR is frequently used with a
high number of cycles (>35), rendering questionable the
biological significance of detected signals [25, 75, 76].
Moreover, comparative analysis reveals important differ-
ences between rodent and human development [21, 22],
raising the question of whether studies on rodents can be
extrapolated to humans [77]. For instance, the human
embryo catabolizes amino acids for energy production
whereas the rodent embryo does not. Some authors referred
to the expression of genes that are not human adult
markers, but fetal markers instead (CYP3A7) [29]. It is
therefore important not to rely exclusively on rodent
markers, and a list of human-specific development and
adult markers should be documented. Finally, demonstrating
that some CYP substrates for instance are metabolized by ES-
Hep does not mean these cells are mature hepatocytes [75]. In
this study, we therefore made a quantitative RT-PCR analysis
of genes in ES-Hep versus fetal liver, adult liver and PCHH
to estimate the developmental “age” of hepatocyte-like cells.
Human adult hepatocyte markers used included C/EBPc«,
CYP7A1, CYP1A2, CYP2B6, CYP3A4, UGTIAl and
CAR (Table 1) for which there is a good agreement with
rodent data [50, 54-56, 78, 79]. However, other genes
appear to be adult markers in rodents but not in humans. TO
is switched on in rat liver shortly after birth [11], and is
therefore currently used as a maturation marker in mES
differentiation [25]. Micro-array data [56] (fetal liver
15—24 weeks) and our results on a FL. sample (20-23 weeks)
(Table 1) show that TO is expressed in human FL at mid-
gestation. TAT mRNA is expressed in rat liver after birth
[12], but is again detected earlier (mid-gestation) in human
liver [14] (Table 1). CPS1 activity is detected in rodents in
the perinatal period and increases over 4 weeks post-partum
to reach the level detected in adults [15], while in humans
CPS1 can be detected as early as week 5 of gestation [16],
with consistent enzymatic activity [17]. The rat ortholog
SLC21A5 has been shown to increase gradually during
postnatal development [18], while SLC21A6 mRNA is
expressed in human fetal liver, and therefore cannot be
considered as an adult marker. Human fetal hepatocyte
markers used in this work included AFP, CYP3A7 and
GSTP1. CYP3A7 is specifically expressed in the human
fetal liver and is gradually replaced by CYP3A4 in the peri-
and post-natal period. Interestingly, the couple GSTPI-
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GSTA3 behaves similarly, GSTP1 being the fetal counter-
part. According to the results presented in Table 1
concerning the relative levels of expression of these various
adult and fetal markers, we conclude that ES-Hep obtained
in this study are representative of fetal hepatocytes at less
than 20 weeks of gestation [21].

We previously reported that hepatocyte-like cells can be
derived from NPE cells which are likely to contain adult liver
progenitors [30]. It was therefore interesting to compare the
level of differentiation reached in ES-Hep versus NPE-Hep
(Table 1). In ES-Hep at D21, the levels of 14 genes were
greater by at least one order of magnitude than in NPE-Hep at
D18, including notably adult markers such as C/EBP«,
CYP7A1 and CAR. This would suggest that after a 3 week
differentiation period, ES-Hep have reached a higher level of
maturation than NPE-Hep. Indeed, when making a gene by
gene comparison (excluding AFP), it appears that NPE-Hep
at D18 exhibit a phenotype that is close to the phenotype
displayed by ES-Hep between D5 and D10. However, this
does not necessarily mean that ES- and NPE-derived
hepatocyte-like cells pass through a common step during
differentiation. On the other hand, levels of fetal markers AFP
and CYP3A7 in NPE-Hep at D18 or before were much lower
than in ES-Hep, suggesting that these cells are less “fetal”.
Recently, it has been suggested [80] that two populations of
stem cells are present in the adult liver, HpSCs
(AFP-/CYP3A7-) and hepatoblasts (AFP+/CYP3A7+) and
that hepatoblasts derive from HpSCs. It is therefore possible
that our NPE cells are more closely related to HpSCs than
hepatoblasts. However, during NPE differentiation AFP and
CYP3A7 expression both increase moderately, remaining
much lower (3—4 orders of magnitude) than levels observed
in FL and ES-Hep. This suggests that NPE-Hep have not yet
reached the hepatoblast stage, although it can be noted that
several other liver markers are expressed in these cells at a
level close to that of FL and ES-Hep. We can thus conclude
that during differentiation stem cells of different origins are
likely to follow and rely upon different pathways of gene
regulation and expression. Interestingly, it clearly appears that
despite being considered as a liver specific marker, albumin is
certainly not a hepatocyte maturation marker as it reaches in
ES-Hep, NPE-Hep and FL levels close to or greater than
those observed in PCHH.

Detoxification is one of the major functions of adult
hepatocytes. Generating hepatocyte-like cells from hES cells
or other sources of stem cells represents therefore a major
endeavor for investigating drug/xenobiotic metabolism, side
effects and toxicity. Here we tested the impact of over-
expressing the xenosensor CAR in ES-Hep. It is remarkable
that several detoxification genes including CYP2B6, CYP2C9,
CYP3A4, UGT1A1 and SLC21A6, as well as biotransforma-
tion of midazolam, a CYP3A4-specific substrate, were
strongly induced in these conditions (Fig. 4 and supplementary
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Fig. 5). Interestingly, the use of clotrimazole as a CAR
deactivator, fully confirmed the role of this xenosensor in
these observations. This approach opens the way to future
explorations using other xenosensors (PXR) or transcription
factors. However, despite greater levels of CAR in transduced
ES Hep compared to PCHH, the levels of detoxification gene
mRNAs reached only 2—-20% of their levels in PCHH. This
suggests that CAR is necessary but not sufficient in this
respect. Indeed, Jover et al. [66] reported on a cooperation
between CAR and C/EBPx on CYP gene expression.
Co-transfection of xenosensors and other liver enriched
transcription factors should be tested in future studies to
optimize xenobiotic metabolism in stem cell-derived hepato-
cytes. Interestingly, similar transduction of HepG2-C3 cells
by CAR had almost no impact on detoxification gene
expression. Indeed, except for CYP2B6, not a single gene
among CYP2C9, CYP3A4, SLC21A6 and UGT1A1l was
induced significantly in HepG2-C3 cells, underscoring the
importance of the cellular context in this respect, i.e.
transcription factor cooperativity and epigenetic events.

Conclusion

In conclusion, we have adapted a robust protocol of
differentiation of hES cells to hepatocyte-like cells. Our
analysis of the expression of a panel of 41 genes and
comparison with human fetal and adult liver, and primary
hepatocytes suggests that our ES-Hep are representative of
fetal hepatocytes of less than 20 weeks of gestation. ES-
Hep apparently reach a better level of maturation as
compared with adult NPE-Hep. Transduction of ES-Hep
with CAR produced a massive increase of expression of
genes involved in the detoxification function.
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