
Quantitative Time-Lapse Fluorescence Microscopy in Single
Cells

Dale Muzzey1,2 and Alexander van Oudenaarden1,*

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Harvard University Graduate Biophysics Program, Harvard Medical School, Boston, MA 02115,
USA

Abstract
The cloning of GFP 15 years ago revolutionized cell biology by permitting visualization of a wide
range of molecular mechanisms within living cells. Though initially used to make largely
qualitative assessments of protein levels and localizations, fluorescence microscopy has since
evolved to become highly quantitative and high-throughput. Computational image analysis has
catalyzed this evolution, enabling rapid and automated processing of large datasets. Here we
review studies that combine time-lapse fluorescence microscopy and automated image analysis to
investigate dynamic events at the single-cell level. We highlight examples where single-cell
analysis provides unique mechanistic insights into cellular processes that cannot be otherwise
resolved in bulk assays. Additionally, we discuss studies where quantitative microscopy facilitates
the assembly of detailed 4D lineages in developing organisms. Finally, we describe recent
advances in imaging technology, focusing especially on platforms that allow the simultaneous
perturbation and quantitative monitoring of biological systems.
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Introduction
In many standard biological assays there is a tradeoff among molecular specificity, spatial
resolution, and temporal sampling. For instance, electron micrographs have extremely high
spatial resolution, but they generally cannot image specific molecules, and the temporal
dimension is lost since sample preparation requires fixation. Southern, northern, and western
blots are similarly compromised: they have high molecular specificity but lack spatial
resolution since they measure molecular abundance at the population level, not the single-
cell level. Even PCR, which is highly sequence-specific and can be performed in single cells
(Bengtsson et al 2005, Peixoto et al 2004), requires that cells be lysed, preventing sequential
sampling from the same cell over time.

Genetically encoded fluorescent proteins overcome this tradeoff. They enable high
molecular specificity via direct fusion to proteins of interest using molecular cloning
techniques. They afford high spatial resolution: via techniques such as flow cytometry and
microscopy allow detection of fluorescent proteins at the single-cell level and even permit
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spatial localization at effectively arbitrary resolution when sparsely distributed throughout
the cell (Kural et al 2005). Finally, fluorescent proteins permit temporal sampling over a
wide range of timescales in live cells, since fluorescence is generally nontoxic.

Since imaging experiments can involve several distinct molecular species (e.g., using
differently colored fluorophores), thousands of individual cells, and hundreds to thousands
of time points, manual attempts at quantitative analysis of time-lapse microscopy data would
be tedious, error-prone, and frankly impossible in many cases. Fortunately, automated image
analysis can quickly and quantitatively detect dynamic features of interest in an unbiased
manner. In general, image analysis algorithms segment an image into regions based on the
intensities of adjacent groups of pixels. These regions can then be rapidly classified based on
many criteria, including their intensity, shape, size, velocity, pixel-to-pixel variability,
colocalization with regions in other color channels, and countless more. Regions of interest
can then be tracked over time, and any number of quantitative phenotypes can be extracted.

Though countless research efforts in cell and developmental biology have exploited
fluorescent proteins, we restrict our focus here to papers that specifically couple time-lapse
fluorescence microscopy with automated image analysis. We will first review papers in
which the use of quantitative, time-lapse, single-cell imaging revealed cell-to-cell variability
in the timing of cellular events. Second, we will survey papers that focus less on inter-cell
comparisons and more on intra-cell dynamics, like the coordination of multiple events that
overlap in space and time, the behavior of macromolecular structures in the cytoskeleton,
and the various regulatory roles of feedback loops. Third, we will discuss novel insights
gained from genealogical data that involves dynamically tracking single cells within a
growing population. Fourth, we will highlight research that couples microfluidic devices
with microscopy, allowing for exquisite control over extracellular conditions while
simultaneously monitoring dynamic intracellular responses. Finally, we will feature new
developments in single-cell quantitative imaging that increase resolution, throughput, and
control over extracellular and intracellular conditions.

1. Inter-cell comparisons of spatiotemporal dynamics
Intro

It is now well established that a population of genetically identical cells can exhibit
extensive cell-to-cell variability in the expression levels of many genes (Elowitz et al 2002,
Newman et al 2006, Ozbudak et al 2002). This variability, termed “noise”, is reflected in the
width of a population distribution, or histogram, representing the whole-cell fluorescence
values for all single cells; mathematically, it is often defined as the ratio between the
standard deviation and the mean expression level of the population. In principle, a histogram
can summarize how any quantitative trait is distributed across a population of cells. Thus, in
addition to noise in gene expression, noise in many other phenotypes can also be measured
and studied. Since noise in gene expression is nicely reviewed elsewhere (Kaern et al 2005,
Maheshri & O'Shea 2007, Raj & van Oudenaarden 2008), below we focus on papers that
investigate cell-to-cell variability in other quantitative metrics that rely specifically on the
spatial and/or temporal information that time-lapse microscopy provides.

1A. Temporal noise
To quantify noise in the timing of a series sequential events, histograms reflecting the time
elapsed between pairwise events in a population of single cells must be compiled. The
Ramanathan lab recently used quantitative microscopy to measure noise in the timing of
meiotic stages in budding yeast (Nachman et al 2007). Triggered by nutrient deprivation,
meiosis in diploid yeast cells is comprised of a series of sequential events: expression of
meiotic regulators, a round of DNA replication, and two successive nuclear division events
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(called MI and MII), ultimately yielding four haploid spores. The researchers could
temporally distinguish several of these meiotic stages by tracking the level and localization
of the early meiotic regulator Dmc1, which they fused to YFP (“Dmc1-YFP”). Since Dmc1
binds meiotic chromosomes (Bishop 1994), automated image analysis of Dmc1-YFP
clusters in single cells could determine whether a cell had undergone zero, one, or two
nuclear-division events (leading to 1, 2, or 4 clusters of Dmc1-YFP, respectively) (Figure
1a). There was considerable cell-to-cell variability in the timing between nutrient
deprivation and MII, effectively the first and last meiotic landmarks, respectively (“stress-to-
end time” in Figure 1b). But, since the researchers had time measurements of multiple
intermediate steps, they could determine to what extent variability in the entire process was
influenced by variability in the intermediate processes. They found that total meiotic timing
noise was dominated specifically by variability in the time between nutrient deprivation and
MI; furthermore, they determined that this variability was largely accounted for by
variability in the time between nutrient deprivation and the onset of expression of meiotic
regulators (Figure 1b). They also used their rich single-cell dataset to demonstrate that the
duration of successive stages was largely uncorrelated. This observation is noteworthy since
correlation (anticorrelation) among the durations of intermediate events would increase
(decrease) noise of the whole event (Figure 1c). In sum, this work by Nachman et al.
highlights and critically relies upon several key advantages of quantitative time-lapse
imaging and automated analysis: their phenotype of interest was defined by the subcellular
localization of a fluorescent marker and required that single cells be tracked over long time
periods.

The Siggia and Cross labs also elegantly investigated temporal noise in the budding yeast
cell cycle, focusing on the “Start” checkpoint, which marks the beginning of the G1/S
transition and commitment to cell division. Start involves the coordinated activation of many
events, including transcriptional activation of a battery of genes, bud emergence, and the
duplication of microtubule organizing centers (ref). To measure temporal coordination
between two of these events (gene activation and bud emergence) in single cells, the
researchers expressed GFP under the control of the promoter for the cyclin CLN2 gene,
which is one of the genes upregulated at Start. Time-lapse fluorescence microscopy coupled
with automated image analysis quantified cell-to-cell variability in Start “coherence”,
defined as the time between bud emergence and peak CLN2-GFP expression (“bud-to-peak
time” in Figure 2a). Interestingly, by comparing histograms compiled in wildtype and
mutant cells, the authors subsequently identified Swi4 as a protein required for low cell-to-
cell variability in Start coherence. This decrease in Start coherence in the absence of Swi4 is
noteworthy, as it coincided with considerably higher temporal variability in cell-division
times, which they tracked via a fluorescent fusion protein that marks the septin ring and
fades rapidly upon cytokinesis (Figure 2a). This study is significant in that it identifies a
common molecular determinant of two distinct temporal noise phenotypes (in Start
coherence and cell-cycle duration) that can only be measured with quantitative microscopy.
In a follow-up investigation (Di Talia et al 2007), this group further partitioned the G1 stage
of the cell-cycle into two phases distinguished by the determinants of their temporal noise
properties. Differences in cell volume and Cln3 levels largely accounted for variability in
the first phase, whereas temporal variability in the second phase was volume-independent
and arose mainly from differential expression of CLN2.

1B. Revealed pitfalls of bulk assays
A recent paper from the Cross and Siggia labs nicely illustrated the perils of bulk
measurements that single-cell analysis avoids (Skotheim et al 2008). Previous bulk
measurements showed that activation of CLN2 expression occurred with similar kinetics in
wildtype cells and in cln1Δ cln2Δ cells (Stuart & Wittenberg 1995), leading to the
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conclusion that Cln1 and Cln2 do not positively autoregulate their own expression.
However, single-cell analysis of CLN2-GFP with time-lapse microscopy revealed several
critical expression differences between wildtype and cln1Δ cln2Δ cells (Skotheim et al
2008). In particular, CLN2-GFP expression occurred more rapidly in wildtype cells than in
mutant cells, indicative of positive feedback by Cln1 and Cln2. At the same time, though,
CLN2-GFP expression was higher and had larger temporal variability in mutant cells than in
wildtype cells. Together, these three effects (i.e., changes in magnitude, timing, and timing
noise) mask the evidence for positive feedback when averaged over many cells (Figure 2b).
In a population average, the few early and highly expressing mutant cells compensate for the
late and lowly expressing cells to yield a measurement nearly identical to that of the
wildtype population. Thus, Skotheim et al. used quantitative single-cell microscopy to reveal
a critical positive feedback loop that they later show is required for robust bud emergence
and coherence (i.e., low temporal noise) in transcriptional activation of G1/S genes.

Single-cell measurements have also demonstrated inaccuracies in our understanding of the
behavior of the tumor suppressor p53 in response to DNA damage (Lahav et al 2004). Bulk
western blot analysis of p53 showed that its levels undergo damped oscillations in response
to DNA damage (Lev Bar-Or et al 2000). However, damped oscillations in bulk can result
from several different types of single-cell behavior (Figure 3). When Lahav and colleagues
fused CFP to p53 and assayed the level of p53-CFP in single human cells in response to
DNA damage, they found that the damping observed in bulk was not due to a uniform
decrease in the magnitude of successive pulses (Figure 3a) or decaying synchrony (Figure
3b). Instead, each cell had a discrete number of pulses of roughly equivalent magnitude
(Figure 3c), and the number of cells with n pulses deceases as n increases. Increased DNA
damage was found to increase the average number of pulses in each cell, rather than
modulating the frequency or amplitude of each pulse. The difference between damped
oscillations (Figure 3a) and a variable-length series of roughly identical pulses has major
consequences on the modeling of single-cell behavior. Thus, when possible, the basis of
models meant to describe single-cell dynamics should be the results of single-cell assays.

1C. Subcellular localization as a proxy for posttranslational modifications
Another powerful application of single-cell microscopy and analysis is the study of a
protein’s post-translational modifications. Although a fluorescent tag allows easy
assessment of total protein levels (Wu & Pollard 2005), a protein’s post-translational
modifications are much harder to detect, since total fluorescence remains unchanged upon
modification. Protein modifications that cause major conformational changes can potentially
be measured using intramolecular resonance-energy transfer (Charest et al 2005, Lohse et al
2007), but this technique requires fusion of two fluorescent molecules and serendipity in
their conformation-dependent orientations. Alternatively, modifications for which specific
antibodies have been developed can be measured via immunofluorescence, though cells
must be fixed, thereby eliminating the possibility of detecting correlated features within
individual cells across multiple time points. However, in special cases, a protein’s
subcellular localization changes upon being post-translationally modified. Fluorescent
fusions to such proteins, coupled with time-lapse microscopy and automated image analysis,
provide a powerful tool to study dynamics in protein activity in single cells.

In elegant work from the Elowitz lab, the activation status of the yeast calcium-response
regulator Crz1 was monitored in single cells via the subcellular localization of Crz1-GFP
(Cai et al 2008). Normally sequestered in the cytoplasm in a phosphorylated state, Crz1 is
dephosphorylated upon the introduction of extracellular calcium and rapidly translocates to
the nucleus, where it directly regulates the expression of more than 100 genes (Yoshimoto et
al 2002). The authors used the ratio between the cell’s brightest pixels and its mean intensity
as a proxy for the activation status of Crz1. Remarkably, they found that calcium stress
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elicited one synchronized burst of Crz1 activity followed by an asynchronous series of
bursts among individual cells (Figure 4). Averaging this response over many cells yielded an
activation profile consistent with microarray results of the Crz1-regulated genes (Yoshimoto
et al 2002). But, it is noteworthy that attempts to deduce single-cell behavior from the
microarray results would have been highly misrepresentative (Figure 4). The authors
showed that more severe calcium stress changed the frequency of bursts but not their
amplitude or duration; these data suggest that burst frequency is a particularly important
parameter in coordinating the downstream response. Indeed, using a simplified model and
subsequent experiments, the authors argue that the frequency-modulated activation of Crz1
is optimal for the coordinate regulation of genes with diverse promoter architectures over a
range of stress magnitudes. Since they also found that pulsatile activation of transcription
factors is not unique to Crz1 (e.g., the activity of general stress-response factor Msn2 also
pulses), it will be fascinating to see how this behavior affects other cellular processes.

Other key studies have exploited the subcellular localization of fusion proteins to detect
transcription-factor activation (Hersen et al 2008, Mettetal et al 2006); these works will be
reviewed in the microfluidic section below.

2. Intra-cell comparisons of spatiotemporal dynamics
Intro

Although quantitative single-cell microscopy has provided extensive evidence for the
prevalence and importance of cell-to-cell variability, the high spatiotemporal resolution of
these same assays also provides information about the dynamics of processes within a single
cell, irrespective of cell-to-cell variability. In the first section below, we review studies that
probe the dynamics of multiple and often-overlapping events within single cells. Next, we
describe quantitative fluorescent speckle microscopy, a technique that monitors the
dynamics of macromolecular structures, such as the cytoskeleton, in living cells. Finally, we
discuss recent works that have identified and/or characterized feedback loops that are
illuminated by sensitive dynamic measurements, thereby highlighting the fact that
quantitative, time-lapse single-cell analysis can reveal key insights about network structure.

2A. Timing of multiple events
The development of spectrally unique, genetically encoded GFP-variants (Ai et al 2007,
Shaner et al 2004, Shaner et al 2005) has helped to elucidate mechanisms that occur in the
same subcellular location and/or at the same time. For instance, two noteworthy independent
investigations used GFP and RFP fusion proteins to resolve the long-standing question
regarding the dynamic composition of proteins in the cisternae of the Golgi apparatus
(Losev et al 2006, Matsuura-Tokita et al 2006). Prior to this research, it was unclear whether
the cis, medial, and trans Golgi stacks maintained fixed protein composition over long time
periods, or whether a single cisterna progressively transitioned from cis to medial to trans by
dynamically adjusting its constituent proteins. In these two studies in yeast, cis- and trans-
specific proteins were labeled with differently colored fluorophores in the same cell. It was
shown that a cisterna first fluoresces due to the cis-specific protein for ~150 seconds (Figure
5). As the cis-specific signal falls, the trans-specific signal rises and persists for another
~200 seconds. Thus, rather than retain exclusively cis- or trans-specific proteins for a long
time, cisternae rapidly mature, with secretory-processing factors progressively shuttling
through them. Since these measurements were gathered in living cells over time, Losev et al.
went further to demonstrate that the timescale of protein secretion (~6 minutes) was roughly
equivalent to that of the observed Golgi maturation process (Losev et al 2006). These data
suggest that much of the trafficking among Golgi stacks consists of Golgi-specific
processing factors, and not the secreted proteins. Together, these studies elegantly
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demonstrate the power of quantitative time-lapse microscopy to distinguish among possible
mechanisms, extract important information about their kinetic properties, and generate new
hypotheses.

Deducing the order of molecular events in complicated pathways is frequently challenging.
Where distinct phenotypes exist, epistasis experiments can sometimes resolve whether one
factor acts before another. Alternatively, biochemical time-series experiments can be
performed on synchronized samples to identify which events precede others; for instance,
chromatin immunoprecipitation was used to identify the order of transcription-factor
recruitment to the yeast HO promoter (Cosma et al 1999). For events that cannot be resolved
with epistasis or that occur on timescales faster than bulk biochemistry experiments can
probe, time-lapse fluorescence microscopy can shed light on the ordering of events. For
instance, Dultz et al. monitored the dynamic assembly and disassembly of the rat nuclear
pore complex (NPC) (Dultz et al 2008), which is comprised of approximately 30
nucleoporin proteins (Nups) and is disassembled during mitosis. The authors created
multiple cell lines, each bearing a GFP-fused Nup and DiHcRed fused to a protein (here
simply called “RFP”) that leaves the nucleus upon breakdown of the nuclear envelope and
reenters via the NPC upon restoration of the nuclear envelope at the end of mitosis. The
position of chromosomes was also measured simultaneously via DNA staining. For each
GFP-Nup fusion, the time between GFP-Nup/DNA colocalization (a proxy for incorporation
into the NPC) and RFP nuclear accumulation (a proxy for NPC competence) was measured.
Since the RFP construct and its nuclear entry and exit dynamics were common to all cell
lines, the relative GFP-Nup/DNA colocalization times could be determined by reference to
the RFP signal. Thus, for 11 Nups representing eight major subcomplexes of the NPC,
nuclear incorporation could be detected with high precision at sub-minute timescales using
clever quantitative analysis of three signals in parallel cell lines (Figure 6). The study
showed that the order of disassembly is not simply the reverse of the assembly ordering;
furthermore, the nuclear pore is partially competent for protein transport even when some
Nups are not yet incorporated. These conclusions highlight the promise of time-lapse
microscopy and automated image analysis for deconstructing cellular pathways, even those
with fast dynamics.

An important feature of dynamic cellular measurements is that knowledge of an event’s
timescale can suggest which factors may regulate the event. This virtue is nicely illustrated
by another paper from the Ellenberg lab that uses multiple fluorophores to elucidate the
ordering of a pathway (Schuh & Ellenberg 2007). The authors used quantitative time-lapse
microscopy to investigate the dynamics of spindle assembly in mouse oocytes. Spindle
assembly in these cells is remarkable because it proceeds without the centrosomes that
typically coordinate spindle assembly in other cells. By tracking the subcellular localizations
of both chromosomes and microtubles, Schuh and Ellenberg find that more than 80
microtubule organizing centers (MTOCs) self-assemble to form a bipolar spindle-like
structure that subsequently aligns the chromosomes. In the process of formulating this
interesting event-ordering result, they use automated image-analysis to track the 3D
positions of individual cytoplasmic MTOCs over time. They note that the calculated MTOC
velocities, as well as their ballistic (as opposed to random) trajectory toward the nucleus, is
consistent with MTOC transport by microtubule motors. Though this hypothesis of motor-
protein-assisted transport may not be entirely surprising, it underscores how knowing the
quantitative dynamics of a particular process via single-cell microscopic measurements can
distinguish between alternate mechanisms.

2B. Quantitative fluorescence speckle microscopy
Quantitative fluorescence speckle microscopy (qFSM) combines live-cell imaging and
sophisticated analysis algorithms to probe the dynamics of macromolecular structures
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(reviewed in(Danuser & Waterman-Storer 2006)). qFSM relies on fluorescently tagging
only a small percentage (typically 0.5% to 2%) of a structure’s subunits. For instance,
microtubules contain roughly 1625 tubulin dimers per 1µm (Danuser & Waterman-Storer
2006); in a qFSM experiment, GFP-tagged tubulin would be carefully expressed at a level
such that only ~8–32 molecules are fluorescent per 1µm. This low level expression of fusion
proteins leads not to uniform fluorescence across the microtuble, but rather to the presence
of distinct and randomly distributed fluorescent foci (i.e., “speckles”). Each speckle contains
roughly three to eight fluorophores {Danuser, 2003 #15} that were incorporated in close
proximity during microtubule assembly. By monitoring the movement of speckles, as well
as their appearance and disappearance, researchers can evaluate the motion of structures in
the cytoskeleton and the kinetics of their assembly and disassembly. However, such
evaluation can require the tracking of tens of thousands of speckles over time, underscoring
the need for automated imaging to extract quantitative and mechanistic features from the
data.

Several groups have used qFSM to investigate actin dynamics in migrating cells. Cell
migration involves a series of steps: cell membrane protrusion, adhesion of the protruded
membrane to the extracellular matrix, cytoskeleton-mediated pulling of the cell body against
the adhesion molecules, and the severing of adhesion molecules from the rear of the cell.
Monitoring nearly a thousand speckles of fluorescently tagged actin monomers in membrane
protrusions (“lamellipodia”) revealed that actin polymerization is enhanced within 1µm of
the lamellipodium edge (Watanabe & Mitchison 2002). A subsequent study tracked more
than 10,000 actin speckles over time, determining their trajectories and lifetimes (Ponti et al
2004). Interestingly, this analysis identified partially overlapping regions of the
lamellipodium in which quantitatively different actin dynamics occurred. Specifically, short-
lived speckles with high velocity were enriched only near the edge; however, long-lived
speckles with low-velocity were found throughout the entire lamellipodium and adjacent
lamella. Exploiting these quantitative phenotypes and a range of small-molecule inhibitors,
the authors showed that specific actin-associated molecules regulate the different speckle
behaviors. This research is particularly noteworthy because of the temporal basis for
distinguishing phenotypes: all speckles were the same color, they occupied the same
subcellular localization, and their intensities were roughly identical. Thus, their lifetimes and
velocities—two quantitative features extracted via automated image analysis—were the
distinguishing features.

2C. Evidence for feedback loops in dynamic measurements
Analysis of large-scale gene-expression datasets and protein-protein interaction networks
indicates that positive and negative feedback loops are highly over-represented motifs
(Yeger-Lotem et al 2004). They serve a range of functions in controlling the dynamics of
cellular processes (Brandman & Meyer 2008). For instance, negative feedback can give rise
to oscillations and stability of a particular molecular state, while positive feedback
frequently leads to all-or-none, switch-like behavior. The converse is also noteworthy:
specifically, observation of oscillations often implies negative feedback, and switch-like
behavior frequently suggests the existence of positive feedback. Since bulk measurements
can disguise switch-like responses (Ferrell & Machleder 1998), time-lapse single-cell
measurements are uniquely poised to reveal or verify the existence of important positive-
feedback mechanisms, as a recent report from Holt and colleagues beautifully illustrates
(Holt et al 2008). In light of the fact that segregation among many discrete chromosomes
during anaphase is both rapid and nearly simultaneous (i.e., switch-like), the authors
hypothesized that the anaphase regulatory mechanism may contain a critical positive-
feedback loop. They performed biochemical analysis of the yeast protein securin, which
inhibits anaphase by repressing separase, itself the factor responsible for cleaving the
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cohesin molecules holding sister chromatids together before separation at anaphase. They
found that the phosphatase Cdc14 promotes degradation of securin. Since separase was
earlier shown to activate Cdc14, the positive feedback loop consisting of one positive and
two negative connections became clear: securin inhibits separase, which activates Cdc14,
which effectively inhibits securin. To explore the role of this putative feedback loop in
living cells, the authors labeled two individual chromosomes using GFP-fused Tet and Lac
repressors, which bound to arrays of genomically incorporated operator sites on
chromosomes IV and V. Chromosomes were visualized as spots in the cell, and spot
tracking via automated image analysis software could identify the time at which sister
chromatids segregated (i.e., one spot became two distinct spots). In wildtype cells, 90
seconds on average elapsed between the chromatid segregation of the respective
chromosomes. In a cell line where positive feedback was impaired, however, the difference
in segregation times nearly doubled to 170 seconds on average. In sum, the single-cell
analysis performed by Holt et al. demonstrates the existence of a positive feedback loop that
has a dramatic effect on the synchrony of events in anaphase.

Similar analysis of spatiotemporal data performed by Ozbudak et al. supports the existence
of a negative feedback loop that regulates bud formation in yeast (Ozbudak et al 2005). The
authors tracked the membrane-specific localization of a fusion protein that binds activated
Cdc42, which in yeast marks the site of bud formation by becoming localized at a particular
patch of the cell periphery. This aggregation of the Cdc42 signal (the “Cdc24 polar cap”)
had been previously shown to result from a positive feedback loop (Irazoqui et al 2003,
Wedlich-Soldner et al 2003). A positive feedback loop alone, however, would predict that as
soon as a Cdc42 polar cap nucleates, its intensity could increase as a function of time but its
location should not change. Remarkably, in cells where the mechanisms that typically
program the yeast budding pattern were disabled, the researchers found that the Cdc42 polar
cap freely traveled around the periphery of the cell (Figure 7), and these spatial deviations
continued up to ~15 minutes before bud emergence. A concise quantitative model was
developed to analyze the cap dynamics, and it was shown that positive feedback alone was
insufficient to explain the system behavior, but the addition of a negative feedback loop
could capture the observed cap migration. Thus, a phenomenon only detectable via time-
lapse imaging at the single-cell level revealed the likely existence of a novel network
feature, whose molecular basis can be subsequently investigated.

3. Construction of 4D developmental lineages using quantitative
microscopy

The decade-long and Nobel-Prize-winning effort of John Sulston and his colleagues
determined the entire embryonic lineage of Caenorhabditis elegans (Sulston et al 1983).
Since this tremendous achievement, C. elegans has become a key model organism for the
study of development. In recent years, it has become possible to determine the lineage of a
range of organisms with considerably less effort by exploiting the power of fluorescence
time-lapse microscopy coupled with automated image-analysis techniques. Below we
discuss studies that span a wide range of organismal complexity, each of which offers
exciting insights into developmental processes.

3A. Yeast
Though yeast are unicellular organisms and thus not generally considered a model organism
for development, Kaufmann, Yang and colleagues show that tracing the pedigree of a
growing colony can reveal important insight into the molecular “memory” passed down
through generations (Kaufmann et al 2007). Budding yeast cells expressing a fluorescent
reporter of Gal-network activation were tracked via microscopy for upwards of 12 hours,
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leading to expansion of a colony from one cell to ~20 cells. The authors used a strain in
which the switch-like activity of the Gal network was mutated such that activation
(“switching on”) occurred stochastically with a probability of ~10% per generation; this
allowed for switching events to occur within the 12-hour observation period (Figure 8a). By
simultaneously tracking reporter gene expression and a cell’s ancestry, it was shown that
mothers and daughters maintain a level of synchrony in their switching times over multiple
generations (Figure 8b). As expected, this memory was shown to decay as a function of
time, but, remarkably, the correlation persisted for four doublings. This long-term memory
was consistent with a model in which Gal-regulatory factors are expressed in large but
infrequent bursts. The frequency and amplitude of gene-expression bursts are well-
characterized parameters of gene expression noise (Maheshri & O'Shea 2007, Raj & van
Oudenaarden 2008). It will be interesting to see the extent to which noise regulation in the
development of multicellular organisms affects synchronized gene expression programs
across the cells in a pedigree.

3B. Worms
In their automated-lineage analyses of developing C. elegans embryos (Bao et al 2006, Zhao
et al 2008), the Waterston lab provides an illustrative example of the comparisons that can
be made using rich phenotypes. Their general approach was to label histone proteins with
fluorescent proteins (Murray et al 2006). Since histones are ubiquitously associated with
DNA, the nucleus of every cell in the organism up to the ~350-cell stage is resolvable via
microscopy. Furthermore, since nuclei are approximately spherical, and the fluorescent-
histone signal fills the nucleus, resolving individual cells via image-analysis software is
relatively straightforward, as compared to the difficulty involved in segmentation using cell
boundaries rather than nuclei for cells with a range of shapes. Due to the relatively large size
of the embryo, a z-stack of 2D images must be captured in rapid succession in order for
sophisticated image-analysis routines (Murray et al 2006) to assemble a 3D depiction of
nuclei positions. The results of this method are quite striking: an entire lineage can be
constructed in just six hours of image acquisition and two-to-four hours of image analysis.
Of course, the lineage has amazingly high temporal precision, with full-embryo sampling
every minute. But, it also contains tremendous spatial information—the dynamic position of
every cell is known throughout development. Like the work in yeast performed by
Kauffman et al., Waterston and his colleagues mapped gene expression data onto the lineage
by driving histone-RFP expression with developmentally relevant promoters (a histone-GFP
fusion under control of the endogenous histone promoter was still present to trace the entire
lineage) (Murray et al 2008). Among other findings, they showed that neural-development
regulator cnd-1 was expressed earlier and in a much broader range of cells than previously
characterized. A separate study from the Waterston group highlighted the possibility of
quantitatively comparing lineage characteristics across species (Zhao et al 2008). The
authors constructed lineages for embryos of C. elegans and the related worm Caenorhabditis
briggsae. Remarkably, despite extensive genomic differences between the species, their
development appeared to be quite similar (Figure 9). There was a one-to-one
correspondence in the lineages between the species up to at least the 350-cell stage. The
timing of divisions was also highly conserved among most branches of the lineage, but the
assay was precise enough to identify a particular subset of cells with a different cell-division
rate. Just as inter-species comparisons of genome sequence have enabled extensive
evolutionary analyses, large-scale comparative lineage analyses have the potential to broadly
impact the study of development and evolution.

3C. Plants
Automated lineage analysis has also been performed in developing Arabidopsis thaliana
meristems (Reddy et al 2007, Reddy et al 2004). In a recent study, a technique similar to the
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one used for lineage analysis was applied to explore the relationship between microtubule
alignment and morphological stress across cell walls in developing plant meristems (Hamant
et al 2008). In A. thaliana, cortical microtubules form a striated bundle in each single cell
with a clear orientation (Figure 10a). Others had proposed that anisotropic stress across the
cell wall exerted by neighboring cells played a role in microtubule orientation, so the authors
investigated this possible mechanism via time-lapse microscopy in a developing shoot apical
meristem. They fused GFP to a microtubule-associated protein and tracked the microtubule
orientation over time in the developing plant via analysis software. They found that
microtubule-orientation fluctuations changed over time. Specifically, at the tip of the
meristem, microtubule orientations shifted frequently in the first ~12 hours of a cell-cycle,
but stabilized (i.e., stopped rotating) in the ~4 hours preceding cell division. The stabilized
orientation was consistent with the predictions of a model the authors proposed to deduce
cell-wall stress from the 3D shape of the developing meristem. Importantly, to confirm this
suggested link between orientation and stress, the authors performed two key experiments,
one using laser ablation and the other involving application of direct compression force. In
the laser-ablation experiment, an individual cell was rapidly killed such that cell-wall stress
on the adjacent cells was diminished; within six hours, the authors observed reorientation of
microtubules in nearby cells, indicative of adjustment to a new cell-wall stress landscape. In
the direct-compression experiment, the plant was pinched between two teflon blades,
dramatically altering the direction of stress across cell walls. Shortly after the stress began,
microtubule orientation destabilized, and within six hours, most cells in proximity to the
blades had reoriented their microtubules such that they were in alignment with the imposed
cell-wall stress. Together, these experiments demonstrate how quantitative lineage analysis,
coupled with the ability to make perturbations and sensitively measure their effects, can
significantly advance our understanding of development.

3D. Flies
Tracking the dynamics of development in living organisms via fluorescently labeled histone
proteins was recently performed in Drosophila embryos. Stathopoulos and colleagues
focused on the creation of the mesoderm during gastrulation (McMahon et al 2008). The
mesoderm is formed from a tube-shaped invagination of the ectoderm that subsequently
flattens and spreads along the ectoderm to form two distinct but adjacent cell layers. Though
this sequence of events is evident from antibody staining of fixed embryos, dynamic data in
a living embryo provided much higher temporal and spatial resolution, thereby elucidating
novel features of the development pathway. Individual nuclei were tracked for more than
two hours and sampled every ~50 seconds; approximately 100 mesoderm and 1500
ectoderm nuclei were followed in each embryo. Interestingly, since all cells bore the same
fluorescent histone marker, mesoderm and ectoderm cells could only be distinguished at
later time points by tracing their trajectories back to their initial positions in the embryo (i.e.,
before the flattening of the mesoderm); this underscores the need for sophisticated image
analysis and a long sampling duration. The authors quantitatively verified a previous
qualitative observation suggesting that movement of ectoderm and mesoderm cells was
coupled. To reach this conclusion, they examined the correlation between the velocity of a
mesoderm cell and its six nearest ectoderm neighbors. Remarkably, of the three velocity
components (i.e., anterior-to-posterior, left-to-right, and center-to-ectoderm), only the
anterior-to-posterior velocity displayed a coupling between mesoderm and ectoderm
movement. This highly specific finding suggests a common mechanism for this directed
motion but also the existence of independent mechanisms regulating the other motion
components. The single-cell traces along the left-to-right axis suggest that some controlling
mechanism is at work—as opposed to simple diffusion—since the relative left-to-right
positions of cells were largely maintained through two cell divisions and the formation of a
flattened mesoderm. Finally, in another beautiful quantitative analysis, the authors showed
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via lineage tracing that anomalous mesoderm development in flies with defective FGF
signaling is due to a very specific cell-migration problem. Cells initially in the lower furrow
(i.e., the ectoderm-proximal lower half of the tube-shaped, pre-flattened mesoderm
structure), and thus close to the ectoderm, underwent normal migration; however, those in
the upper furrow far from the ectoderm had trajectories dissimilar to wildtype cells, leading
to a very different flattened mesoderm pattern. In all, the work of McMahon et al. very
nicely illustrates how the rich phenotypes measured via quantitative lineage analysis can
refine our understanding of developmental mechanisms and also suggest the presence of
novel forms of regulation.

3E. Fish
An exciting recent paper about zebrafish development (Keller et al 2008) sheds light on how
far lineage analysis can take us in unraveling developmental mechanisms of higher
organisms. Keller et al. developed a novel optical technique that permitted high-resolution
3D scanning of the entire zebrafish embryo every 90 seconds. Again exploiting the
fluorescent labeling of histones to find nuclei, the authors tracked every nucleus position
from shortly after fertilization until the embryo contained ~16,000 cells (Figure 11)! The
enormity of data generated and analyzed cannot be understated, as four high-resolution
images were captured every second for 24 hours. After image analysis and computational
3D reconstruction of the embryo, a breathtaking movie of the developing embryo was
constructed (Online movie M1). Aesthetics aside, it also contains an inordinate amount of
information that can be analyzed for years to come. The authors perform a few analyses in
their initial report, such as identifying the time of symmetry breaking and exploring the
specific events in a mutant zebrafish that lead to defective mesendoderm formation. In the
future, it will be fascinating to use these data and techniques to assess the robustness of
development, discover the effects of a range of mutations, and perform inter-species
comparisons among higher vertebrates.

4. Microfluidic devices
The ability to perturb cell’s surroundings dynamically can be critical for unraveling
regulatory mechanisms. Additionally, while monitoring cells on short timescales is vitally
important, so too is the capability to measure cellular properties over very long timescales,
potentially days or weeks using microscopy. Described below are advances in both
extracellular manipulation and long-term microscopy made possible by utilizing
microfluidic devices.

4A. Specialized stimuli
Several recent studies have powerfully exploited microfluidic devices to measure living
cells’ dynamic responses to an exquisitely controlled extracellular environment. Though two
works we will mention utilize the device to alter the surroundings temporally, we will also
review a study that uses a device to control the spatial distribution of a signaling input.

Using microfluidics for temporal control of a stimulatory signal, Mettetal et al. and Hersen
et al. both investigated dynamics of the Hog1 MAP kinase cascade that controls the
hyperosmotic shock response in budding yeast (Hersen et al 2008, Mettetal et al 2006). In its
inactive state, Hog1 is primarily cytoplasmic, but it translocates to the nucleus rapidly upon
hyperosmotic shock. In both studies, the authors fused a fluorescent protein to Hog1 and
used custom image-analysis software to measure the nuclear accumulation of Hog1 as a
proxy for its activation state in living cells. Additionally, in both studies yeast cells were
affixed to a coverslip and placed in a microfluidic device that could rapidly switch between
media of different salt concentrations. Hersen et al. focused their analysis on the system’s
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bandwidth, which corresponds to the upper limit of input frequencies (i.e., oscillating pulses
of salt) below which the cells can accurately track the input. For example, for low frequency
signals below the bandwidth, Hog1 activity oscillates with a similar frequency as the input
(Figure 12a). However, for high frequency signals above the bandwidth, the Hog1 osmotic-
stress response is not fast enough to reflect the input fluctuations and instead responds to the
average of the quickly fluctuating signal (Figure 12b). Such analysis is important because it
reflects the responsiveness constraints of the system and contains important mechanistic
information as well. For instance, all steps in the response must be faster than the
bandwidth. To identify the rate-limiting step, the authors adjusted the duration of high-salt
and low-salt periods. They found that the system’s slowest reaction, which is primarily
responsible for setting the bandwidth frequency, regulates deactivation of the Hog1
response. Importantly, the approach of Hersen et al. is very general: it can be applied to any
system where the input is well known and the output can be measured at a rate faster than
the frequency of fluctuations in the input signal.

Recent work by Mettetal et al. used engineering principles to gain insight into the network
topology of the Hog1 system (Mettetal et al 2006). They exposed cells to a range of different
frequencies of salt stress and measured the amplitude and phase shift of the corresponding
oscillations in Hog1 activity. Similar to the bandwidth analysis of Hersen et al, the
frequencies at which dramatic changes in the output response occur correspond to important
reaction rates that dominate the entire system’s dynamics. The authors found two such
dramatic changes, implying that the network dynamics could be modeled with only two
differential equations (as opposed to tens of differential equations, one for every reaction in
the network). The equations deduced from their frequency analysis suggested a network
structure highly similar to the known architecture of this well-characterized system; thus,
frequency analysis could prove very enlightening for systems with unknown architecture but
that otherwise have well known and measurable inputs and outputs. Together, the
experiments of Hersen et al. and Mettetal et al. demonstrate that microfluidic devices
coupled with quantitative time-lapse microscopy can yield important insights into the
dynamics and topology of cellular networks.

Aside from temporal-signal manipulation, microfluidic devices can also create a very
precise spatial gradient. Hao et al. used a microfluidic device to create a linear concentration
gradient of yeast mating pheromone (Hao et al 2008). Yeast growing in the device exhibited
three distinct states of growth: vegetative growth occurred in the region with low
pheromone, chemotropic growth at intermediate pheromone, and shmoo formation at high
pheromone. In wildtype cells undergoing chemotropic growth, cell division occurs in the
direction of higher pheromone. The authors measured the angle of budding relative to the
gradient, which was made possible because the gradient orientation was very precisely
controlled and cells could be imaged as they grow over time. Using this quantitative
phenotype, they found that only one of the two pheromone-responsive MAP kinases could
yield directed growth toward high pheromone. The work of Hao et al. is particularly
interesting because they observe several distinct cellular phenotypes (e.g., vegetative
growth, chemotropic growth, and shmoo formation) as a function of concentration in just
one experiment. This approach could be extended to perform a range of titration
experiments using a microscope: researchers could scan the device for the phenotype of
interest and then determine the precise extracellular conditions causing the phenotype based
on the position within the device.

4B. Highly parallel, long-term imaging
Microfluidics are also powerful because they prevent stress and permit long-term imaging
(Melin & Quake 2007). Quake and colleagues demonstrated that Escherichia coli could be
cultured for up to 200 hours in a device that permitted simultaneous imaging by microscopy
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(Balagaddé et al 2005). Their device is particularly noteworthy since E. coli typically form
biofilms when cultured to high density, thereby complicating more traditional long-term
microscopy methods. The authors engineered a microfluidic device where cells grow in a
looped chamber with 16 segments. At specified times, one segment can be cordoned off,
washed with lysis buffer to remove biofilm-nucleating cells, rinsed of lysis buffer, and then
reincorporated into the loop of flowing media. In a subsequent study the authors showed that
96 independently controllable chambers on one microscope slide could be used to culture
mammalian cells for more than a week while imaging simultaneously (Gómez-Sjöberg et al
2007). We expect the use of microfluidics to grow rapidly as an experimental platform that
allows highly parallel, long-term imaging of cells in an environment that can be very tightly
controlled.

5. The Road Ahead
In this review, we have discussed pioneering studies that specifically couple quantitative,
time-lapse fluorescence microscopy in living single cells with automated image-analysis
techniques to explore the temporal and spatial properties of biological systems. In the near
future, we anticipate tremendous progress in this field on multiple fronts: enhanced ability to
perturb the cells’ interior and exterior, a wider range of fluorophores and imaging
technologies, higher spatial resolution, greater parallelization, and more refined image-
analysis software. Below we highlight examples of such progress.

The ability to perturb a system is critical for distinguishing correlation from causation. As
described earlier, microfluidic devices and flow chambers permit precise control of the
extracellular environment, but other new technologies are needed to affect intracellular
processes on short timescales. One such example is chromophore-assisted laser inactivation
(CALI) (Bulina et al 2006a, Bulina et al 2006b, Liao et al 1994, Tanabe et al 2005, Wang et
al 2008). The basic principle of CALI is that excitation of specific fluorophores (e.g.,
KillerRed, a variant RFP molecule) fused to a protein of interest creates free radicals that
inactivate the protein of interest within minutes (refs). Though CALI can obviously be used
to assess the rapid knockdown of a protein, it could also inactivate a repressor, thereby
leading to sharp accumulation of a protein of interest. Since the microscope itself perturbs
the system, data can be gathered at all time points before and after the stress; thus, even the
short-timescale function of a protein can be detected.

The refinement and development of new fluorophore technologies has been rampant in
recent years (Wang et al 2008), and we expect progress to persist. Quantum dots (Dahan et
al 2003, Giepmans et al 2006) and the resonance-energy transfer technologies (e.g., FRET,
BRET, BiFC)—largely excluded from this review because they have been nicely reviewed
elsewhere (Joo et al 2008)—are increasingly being used in live-cell assays, especially those
classifying protein-protein interactions in vivo (Kerppola 2008). Development of spectrally
distinct, genetically encoded fluorophores (Shaner et al 2005) has also significantly
advanced the field, since more factors can be monitored in the same cell concurrently.
Particularly interesting from the standpoint of tracking dynamic events in live cells are
photoswitchable fluorophores (Patterson 2008) and so-called fluorescence timers (FTs)
(Subach et al 2009). The former can be converted among two colors (or light and dark
states) via UV light exposure either reversibly (Ando et al 2004) or irreversibly (Chudakov
et al 2004, Patterson & Lippincott-Schwartz 2002); the latter convert from one color to
another color, without intervention, over a range of timescales. These technologies will
allow researchers to effectively timestamp particular molecules in either a switch-like or
graded manner.
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Though imaging with light microscopy reveals a wealth of dynamic information within
single cells, its spatial resolution has traditionally been capped by the diffraction limit,
which is roughly half the fluorophores’s excitation wavelength (typically 200nm at best).
Several revolutionary technologies have shattered the diffraction limit, yet they impressively
still use far-field light microscopy (Hell 2007, Hell 2009). Stimulated emission depletion
(STED) (Hein et al 2008, Klar et al 2000, Nägerl et al 2008), stochastic optical
reconstruction microscopy (STORM) (Bates et al 2007, Huang et al 2008, Rust et al 2006)
and the related photoactivated localization microscopy (PALM) (Betzig et al 2006, Shroff et
al 2008) effectively allow imaging at an arbitrary resolution, and already-published reports
have resolved features separated by <20nm (Betzig et al 2006, Eggeling et al 2008, Rust et
al 2006). The comparison between STED- and STORM-acquired images and those from
confocal microscopy are striking (Figure 13). In addition to high resolution in the x,y-plane,
sub-diffraction-limit imaging in the z-direction permits 3D imaging using both STED
(Nägerl et al 2008) and STORM (Huang et al 2008). Multiple colors can be detected with
both techniques, but thus far only STED can use genetically encoded fluorophores (Willig et
al 2006); STORM and PALM both require special fluorophores that can be cycled between
light and dark states repeatedly. Also, though STORM and PALM can capture only a few
high-resolution images per minute at best, the temporal sampling of STED is remarkable
(e.g., 28 frames per second in (Westphal et al 2008)). The major drawback of all of these
technologies is that they require very high-power illumination sources that are potentially
damaging to the cells over long imaging periods. Critically, however, they can all image
events in live cells, setting them apart from other impressive sub-diffraction-limit
approaches, such as structured-illumination microscopy (Schermelleh et al 2008), that
currently require cell fixation.

We expect the high temporal and spatial resolution of these techniques to lead to significant
advances in quantitative systems modeling. For instance, even with standard far-field
imaging, parameters measured from live-cell, microscopy-based assays have been
instrumental in quantitative modeling (Marco et al 2007). Higher temporal and spatial
resolution will only enable better parameter estimation, thereby facilitating dynamic
modeling efforts. STED, STORM, PALM, and their variants should allow very sensitive
measurement of a range of reaction rates in vivo, effectively permitting in vivo biochemistry.

Inter-cell differences are easily detected with current microscopic methods, but high-
throughput comparison of multiple samples (e.g., different mutants, species, drug
treatments) is less straightforward. As discussed earlier, microfluidic devices are one tool
that can make automated microscopy more parallel, and their use will inevitably become
more common in the future. Tissue arrays are another platform that shows promise (Sauter
et al 2003). Imaging adherent cells within 384-well plates has been used to measure
phenotypic profiles of a range of drugs (Perlman et al 2004), and microarrays with
thousands of tissue samples spotted on a microscope slide allow for massively parallel
microscopy-based phenotyping (Sauter et al 2003). Improvements will be needed, however,
before tissue microarrays can be used for live-cell imaging.

Finally, we expect the maturation of image-analysis software to continue. Many software
packages are already available that range in both price and complexity. Matlab and the
freeware ImageJ are two particularly popular software suites for image analysis, but there
are many other commercial packages available as well. Since no program could possibly
perform every quantitative analysis one would want, it is important for image-analysis
software to have scripting capabilities so that the user can define custom metrics. We are
eager for speed increases in automated image processing as well as better integration
between analysis and acquisition software. Progress on these two fronts could potentially
allow on-the-fly analysis of images that then informs the acquisition process. For instance,
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since fluorophore bleaching after many exposures is a common problem with time-lapse
microscopy, image-processing software could partially alleviate this problem by
dynamically adjusting the image-acquisition rate based on how quickly the parameter of
interest is changing. A similar process is used to minimize processing time when
numerically integrating differential equations. Image-processing software could similarly be
programmed to intervene (e.g., switching the extracellular media, deactivating proteins via
CALI, switching the color of photoswitchable dyes, etc.) only when a particular event is
detected. Thus, in silico feedback on the in vivo system will allow the profiling of a large
variety of phenotypes in response to complex system inputs.

Summary Points

1. Automated image-processing software is an invaluable and flexible tool for
extracting quantitative phenotypes from microscopy datasets.

2. Gene expression noise is just one example of widespread variability among
genetically identical cells in a population. Any quantitative trait—such as event
timing or transcription-factor enrichment in the nucleus—can have noise
properties that reflect underlying regulatory mechanisms and potentially refute
the results of bulk assays.

3. Measuring dynamic processes at high temporal and spatial resolution in a single
living cell can resolve the ordering of events in complicated pathways and
identify important network properties, such as feedback loops.

4. Quantitative microscopy can track spatiotemporal and ancestral trajectories at
the single-cell level in a broad range of developing organisms.

5. Microfluidic devices allow concurrent imaging of cells and manipulation of the
extracellular environment. Microscopy experiments using microfluidics can be
highly parallel an long-lasting (e.g., more than one week).

Future Issues

1. Fluorophore development will continue its rapid growth, providing molecules
that range in color, brightness, maturation time, photostability, switching ability,
and other qualities we cannot even anticipate.

2. Sub-diffracion-limit imaging techniques will become more accessible.

3. Repositories for raw microscopy data will be established, providing a resource
for cell biologists similar to the protein data bank for structural biologists.

4. Cell and developmental biologists, physicists, engineers, chemists, computer
scientists, statisticians, and applied mathematicians will increasingly work
together to extend the frontiers of quantitative imaging in biology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cell-to-cell variability in the timing of meiotic events. (a) Meiotic regulator Dmc1 was
fused to YFP and visualized in live budding yeast cells. Since Dmc1 associates with
chromosomes, the stage of meiotic progression (e.g., entry, MI, MII, end) could be tracked
using image-analysis software that effectively detects the number of Dmc1-YFP foci (e.g.,
entry has one focus, MI has two, and MII has four). (b) Top: Hypothetical data for seven
single cells based on the results in Nachman et al., where the length of the shaded bars
corresponds to the amount of time spent in each stage. Nutritional stress was applied to all
cells at the same time, hence their alignment at the “stress” marker on the left. Bottom:
Hypothetical histograms reflecting the time spent in each stage across many cells. Note that
variability in the total time (i.e., “stress-to-end time”) is dominated by the stress-to-entry
time and not by variability in the duration of other stages, as observed by Nachman et al. (c)
Left: Hypothetical single-cell profiles (top) and histograms (bottom) illustrating how
anticorrelation between the stress-to-entry time and the MII-to-end time lead to a reduction

Muzzey and van Oudenaarden Page 20

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2011 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in stress-to-end variability as compared to (b). Right: Correlation between stress-to-entry
and MII-to-end times leads to more variability in the stress-to-end time than in (b). Panel (a)
reproduced from Reference (Nachman et al 2007) with permission of Cell.
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Figure 2.
Variability in the timing of mitotic cell-cycle events and positive feedback revealed by
single-cell traces. (a) Top: Schematic of single-cell events tracked via image analysis
software in investigation of budding-yeast Start checkpoint. The timing of cytokinesis was
determined by the rapid disappearance of the Cdc10-GFP fusion protein (here shown in red)
from the bud neck. The green signal corresponds to expression of GFP under the control of
the CLN2 promoter (“CLN2-GFP”). Bottom: Hypothetical histograms based on findings of
Bean et al. in which swi4Δ cells exhibit considerably higher variability in the timing both
between bud emergence and peak CLN2-GFP signal, and between successive cytokinesis
events. (b) Hypothetical single-cell data (faded lines) illustrating how bulk measurements
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(dotted opaque line) mask the observation that CLN2-GFP is expressed earlier in wildtype
cells than in cln1Δcln2Δ cells, as shown in Skotheim et al. The average traces overlap for
much of the trajectory and give no indication that wildtype cells express CLN2-GFP earlier
than mutant cells. However, the average time at which single-cell CLN2-GFP levels cross an
arbitrary threshold (dashed line) is notably different between the cell lines (see dots and
error boundaries above the plot).
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Figure 3.
Damped oscillations observed in bulk measurements can result from fundamentally different
behaviors at the single-cell level. In (a), (b), and (c), all data is hypothetical; the mean is
shown in purple, and single-cell traces are light green. (a) Single cells behave like the mean
and undergo synchronized, damped oscillations. (b) Single cells are initially synchronized,
but their synchrony decays with time. (c) Cells exhibit a discrete number of undamped and
synchronized signal pulses, but the number of cells pulsing diminishes with time, consistent
with the observations in Lahav et al. of p35 expression. A baseline increase to the mock
signal is added in (c) such that the mean trace resembles those in (a) and (b).
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Figure 4.
One synchronized pulse followed by a series of unsynchronized pulses yields an average
trajectory (dotted-blue line) that fails to represent single-cell activity (faded colored lines).
Mock data is shown only for four hypothetical single cells, but the average trace was
calculated from a simulation of 100 single cells. This schematic resembles the data of Cai et
al., who quantified activity of Crz1-GFP by using image-analysis software to measure its
nuclear enrichment in single cells.
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Figure 5.
The composition of processing factors in single cisternae of the Golgi apparatus changes
rapidly. (a) The early processing factor Vrg4 was tagged with GFP, and the late processing
factor Sec7 was tagged with DsRed; the localization of each signal was measured
dynamically (Losev et al). Image-analysis software was used to track individual cisternae.
Top: One cisterna, marked by the white arrow, is followed over time as it transitions from
green to red. Times shown at bottom-left of each image are in mm:ss. Bottom: Same as top,
except fluorescence channels are only shown for the cisterna marked with an arrow in top.
(b) Quantification of the signal in (a), indicating that the early processing factor vacates the
cisterna around the time the late processing factor enters. Note that the time between entry
of early factors and exit of late factors is ~7 minutes, close to the time needed for secreted
proteins to undergo processing in the Golgi. Figure reproduced from Reference (Losev et al
2006) with permission of Nature.
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Figure 6.
Sequential assembly of components into the nuclear-pore complex (NPC) tracked with high-
temporal resolution. The thin black curve represents the nuclear localization of IBB-
DiHcRed, a fusion protein imported following cell division via the NPC, and the time 0 min
(i.e., “t1/2(import)”) is set when the black curve reaches half its maximal level. The relative
rates of nuclear localization of GFP-tagged nucleoporins (“Nups”) and IBB-DiHcRed in
strains bearing only one GFP-tagged Nup were used to determine the relative incorporation
times of 11 different Nups. Figure reproduced from Reference (Dultz et al 2008) with
permission of Journal of Cell Biology.
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Figure 7.
In the absence of bud-site landmarks, the polar cap of active Cdc42 wanders around the cell
periphery. The CRIB domain of Gic2, which binds specifically to active Cdc42, was tagged
with GFP and monitored in wildtype cells and in mutant cells lacking Rsr1 (a.k.a. “Bud1”).
Rsr1 marks the site of budding, and active Cdc42 recruits factors that mediate the budding
process. In rsr1Δ cells, bud formation still occurs but at a random location. These time-lapse
images (where the number at upper-left is the number of minutes) indicate that the polar cap
of active Cdc42 rapidly traverses the cell periphery instead of randomly picking one location
and remaining fixed there. Figure reproduced from Reference (Ozbudak et al 2005) with
permission of Developmental Cell.
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Figure 8.
Correlated switching times among closely related single cells revealed via simultaneous
monitoring of lineage and gene expression. (a) YFP expressed under control of the GAL1
promoter (GAL1-YFP) is shown in purple. Genealogy is indicated by the numbering scheme
in which hyphens separate generations (e.g., 1-1-1 is the daughter of 1-1 and the
granddaughter of 1), and the number indicates siblings (e.g., 1–2 is the sister of 1-1 and the
second daughter of 1). Although all cells in the rightmost panel are close relatives of cell 1,
only a subset expresses GAL1-YFP. (b) Quantification of GAL1-YFP expression in a mother
and daughter shows that both switch to an expressing state nearly simultaneously. It was
shown that related cells separated by up to four generations tended to activate GAL1-YFP
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expression at a similar time. Figure reproduced from Reference (Kaufmann et al 2007) with
permission of PLoS Biology.
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Figure 9.
Lineage comparison reveals developmental similarities between C. elegans (a) and C.
briggsae (b) embryos. Spots represent nuclei, which were visualized via GFP-labeled
histones and tracked computationally in 3D over time. Color-coding indicates descendants
of a common precursor cell. Figure reproduced from Reference (Zhao et al 2008) with
permission of Developmental Biology.
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Figure 10.
Orientation of microtubule bundles in A. thaliana corresponds highly with predictions from
model of cell-wall stress. (a) The microtubule-binding domain of a microtuble-associated
protein was tagged with GFP. GFP signal above a high threshold signified cell boundaries
(pseudocolored red), and signal below the threshold indicated cell-traversing microtubules
(pseudocolored green). The letter P indicates the position of a developing primordium, a
position characterized by rapid cell growth and a lack of alignment in microtubule
orientation. To the upper-left of the primordium is a region where microtubules are tightly
aligned in the southwest-to-northeast direction. Scale bar = 20 µm. (b) A model that predicts
stress across the cell wall can also accurately predict microtubule orientations (red). Inputs
to the model include the 3D tissue shape and cell boundaries from (a). Note the consistency
between the model’s predictions and actual microtubule orientations from (a) in the region
to the upper-left of P. Figure reproduced from Reference (Hamant et al 2008) with
permission of Science.
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Figure 11.
Development of the zebrafish embryo imaged using GFP-labeled histones. (a) Positions and
velocities of nuclei represented at three time points. At each time point, a 3D image is
generated by acquiring a stack of 2D images (x and y dimensions) across a range of z
positions. In the black-and-white images at left, the maximum intensity across the whole z-
stack for every pixel in x,y space is plotted. Shading in the colored images at right indicates
the velocities (cyan = slow; orange = fast) of single nuclei as determined by their relative
position in adjacent frames. Scale bar = 100µm. (b) Individual nuclei from 280-minute
sample in (a) can be imaged at very high resolution. Scale bar = 10µm. Figure reproduced
from Reference (Keller et al 2008) with permission from Science.
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Figure 12.
Illustration of bandwidth as a measure of pathway responsiveness. (a) In both Hersen et al.
and Mettetal et al., a microfluidic device delivered pulses of media with differing osmolyte
concentrations (“Input” panel) to yeast cells, causing the activation and nuclear enrichment
of the fluorescently tagged MAP kinase Hog1 (“Output” panel). Below the bandwidth
frequency, the output tracks the input signal. (b) For input frequencies above the bandwidth,
however, the cells cannot reliably process the input, leading to an “Effective Input” shown
schematically in blue, which is approximately the integral of the input. The output very
poorly represents the fluctuations in the input signal.
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Figure 13.
Fluorescence imaging below the diffraction limit highlights features occluded even using
confocal microscopy. (a) A yellow fluorescent protein fused to a sequence that targeted it to
the endoplasmic reticulum was imaged using confocal microscopy (left) and stimulated
emission depletion (STED, right). Arrows indicate positions where STED detects a ring in
the ER structure not visible by confocal imaging. Scale bar = 1µm. (b) Comparison of
immunofluorescence staining of microtubules using confocal microscopy (top) and
stochastic optical reconstruction microscopy (STORM, bottom). The middle and rightmost
panels are zoomed portrayals of the dotted boxes in the upper-left panel. The pixelation of
these zoomed panels is apparent in the confocal images but not STORM, since STORM
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imaging can identify fluorophore positioning with considerably higher spatial resolution as
compared to confocal imaging. Part (a) of figure reproduced from Reference (Hein et al
2008) with permission of PNAS, and part (b) reproduced from Reference (Bates et al 2007)
with permission of Science.
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