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Abstract
A recent study examined the stability of rankings from random forests using two variable importance measures
(mean decrease accuracy (MDA) and mean decrease Gini (MDG)) and concluded that rankings based on the MDG
were more robust than MDA. However, studies examining data-specific characteristics on ranking stability have
been few. Rankings based on the MDG measure showed sensitivity to within-predictor correlation and differences
in category frequencies, even when the number of categories was held constant, and thus may produce spurious
results. The MDA measure was robust to these data characteristics. Further, under strong within-predictor correl-
ation, MDG rankings were less stable than those using MDA.
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Stability is a key factor in the interpretation of ranked

lists of predictors using variable importance measures

(VIMs) from random forests (RF) [1]. To be inter-

pretable, rankings should be robust to changes due to

small perturbations of data [2–3]. RF provides two

VIMs: mean decrease Gini (MDG), which is the

average across the forest of the decrease in Gini im-

purity for a predictor, and mean decrease accuracy

(MDA), which is the average across the forest of the

accuracy for the predictor minus the decrease in ac-

curacy after permutation of the predictor. The MDA

measure may be scaled by division by its empirical

standard error (MDAscaled). This letter is in response

to a recent Letter to the Editor published in Briefings
in Bioinformatics that investigated the stability of RF

VIM rankings using a bladder cancer recurrence data

set containing 723 single nucleotide polymorphisms

(SNPs) [3]. The authors performed a ‘jackknife’ pro-

cedure where, over 100 subsamples, 10% of the ob-

servations were deleted and MDG- and MDA-based

ranks were compared with a single run of RF on the

entire data set. The MDG rankings on the 100 sub-

samples were correlated with the original rankings

using the full data set, with particularly strong cor-

relation at the top and bottom of the rankings; cor-

relation between rankings for MDA was observed for

only the top-ranked predictors. The authors con-

cluded that the ranking stability of MDG was super-

ior to MDA [3].

MDG has been shown to be sensitive to predictors

with different scales of measurement (e.g. binary

versus continuous) and shows artificial inflation for

predictors with larger numbers of categories [4], al-

though the previous study [3] suggested that when all

predictors have similar numbers of categories (e.g.

SNP data) MDG may be preferred because of

increased stability. However, SNPs vary in their cat-

egory (minor allele and genotype) frequencies. It is

currently unknown whether category frequencies in-

fluence rankings using RF. Further, MDG has been

shown to be biased in the presence of within-

predictor correlation [5–8], which is a common
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feature of SNP data due to linkage disequilibrium

(LD). I show the rankings based on MDG, although

generally stable, are sensitive to differences in cat-

egory frequencies and within-predictor correlation,

and thus may lead to spurious results.

To determine whether the stability and rankings

of VIMs were sensitive to differences in category

frequencies, I performed a simulation study of

1,000 cases and controls, where 45 uncorrelated

binary predictors were simulated using the R pack-

age bindata version 0.9-17 [9]. The first five predict-

ors were simulated to have empirical odds ratios

(ORs) of 3.0, 2.5, 2.0, 1.5 and 1.25 and had minor

category frequency of 0.5; the additional 40 predict-

ors were simulated under H0 in two ways: (i) all

predictors with minor category frequency of 0.5

and (ii) sets of five predictors each having minor cat-

egory frequencies of 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01

and 0.001. As in the original study [3], one data set

was generated and the analysis compared the ranking

of each predictor with the rankings from 100 90%

subsamples. In the data set with frequencies of 0.5 for

all predictors under H0, MDG, MDA and MDAscaled

all showed strong correlation between the rankings

of the first five truly associated predictors (Figure 1,

first column). They varied in the ranking stability of

predictors ranked 6–45 (those under H0), where

MDG showed moderate correlation between the

rankings from the original analysis and those ob-

tained with the subsamples (Figure 1, top left),

whereas both MDA measures showed random scatter

of rankings (Figure 1, middle and bottom left). The

picture was different when predictors simulated

under H0 had differing category frequencies

(Figure 1, right column); although all measures pro-

duced strong correlation between the rankings for

the truly associated predictors (1–5) as in the previous

case, MDG (full data set) rankings were strongly

correlated with the subsample rankings (Figure 1,

top right) for the predictors under H0 (predictors

ranked 6–45), with stronger correlation in the tails

of the rankings versus the centre, as found in the

SNP data set studied by Calle and Urrea [3]. The

lowest ranked always contained predictors with low

frequencies (0.001–0.1). In fact, predictors with

minor category frequencies of 0.01 were always

ranked 30–35 of 45, those with frequency of 0.05

were always ranked 36–40 of 45 and those with fre-

quency of 0.001 were always ranked 41–45, which

produces the block-like pattern seen in the MDG

plot (Figure 1, right column, top panel).

This strong dependency of rank on category fre-

quency for the lowest ranked predictors was not

observed for either MDAs (Figure 1, middle and

bottom right).

A further investigation into the dependency of

MDG and MDA rankings on minor category fre-

quency considered simulations as above under HA

with the same generating model and ORs, but

varied the minor category frequencies of the truly

associated predictors (Table 1). MDA results were

superior to MDAscaled in all conditions (data not

shown). When the truly associated predictors had a

minor category frequency of 0.5, the MDG was

more likely to rank the weakly associated predictor

X5 (OR¼ 1.25) in the top 5 (38%) or 10 (90%)

predictors versus MDA (top 5¼ 15%, top

10¼ 62%); otherwise, both measures were able to

rank the additional four truly associated predictors

in the top 5 in 100% replicates. However, when

the minor category frequency was 0.05, MDA was

able to rank X4 (OR¼ 1.5) in the top 5 in 100% of

replicates, whereas MDG ranked this predictor in the

top 5 in 57% of replicates and in the top 10 in 98%.

Considering the condition where the minor category

frequency was 0.01 (and with the limited sample size

of 1000 cases and 1000 controls), MDA again was

more likely to rank X3 (OR¼ 2.0) in the top 5

(16%) or 10 (59%) of replicates versus MDG (top

5¼ 1%, top 10¼ 4%).

To assess the stability of rankings under

within-predictor correlation, I simulated genetic

case (N¼ 1000) � control (N¼ 1000) data under

H0 and HA (for details of the simulation algorithm,

see [7]), which contained 199 SNPs in 5 genes that

displayed complex LD patterns. As in the binary

simulation and [3], stability was assessed by compari-

son of the ranking of a single run of RF on the full

data set versus 100 90% subsamples of the data.

Under H0, MDG ranked a single SNP as the most

strongly associated, with a median ranking of 1

(range: 1–2). Despite the stability of this ranking,

the w2 test of statistical association with case status

had a P-value of 0.98. Thus, it was puzzling why

MDG would consistently rank this SNP at the top

of the predictor list. Interestingly, this SNP was one

of few not in strong LD with other SNPs in the same

gene (r2 ranged from 0.02 to 0.21; Figure 2). As

shown previously, MDG prefers predictors that are

uncorrelated with other predictors [7–8]. Further,

this SNP also had a large minor allele frequency of

0.41. As shown in the binary simulations presented
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Figure 1: MDG, MDA and MDAscaled rankings of predictors in 100 90% subsamples versus rankings from the full
data set with equal and varying predictor category frequencies. Left column: ranks for five associated predictors
with minor category frequencies of 0.5; right column: ranks for five associated and 40 unassociated predictors
with frequencies ranging from 0.5 to 0.001. Top row: MDG; middle row: MDA; bottom row: MDAscaled.

Table 1: Frequency of associated predictors within top k list for MDG and MDA, varying minor category
frequencies

Predictor OR Minor category
frequency

MDG percentage
ranked in top 5

MDG percentage
ranked in top 10

MDA percentage
ranked in top 5

MDA percentage
ranked in top 10

X1 3 0.5 100 100 100 100
X2 2.5 0.5 100 100 100 100
X3 2 0.5 100 100 100 100
X4 1.5 0.5 100 100 100 100
X5 1.25 0.5 38 90 15 62
X1 3 0.05 100 100 100 100
X2 2.5 0.05 100 100 100 100
X3 2 0.05 100 100 100 100
X4 1.5 0.05 57 98 100 100
X5 1.25 0.05 8 73 11 77
X1 3 0.01 100 100 100 100
X2 2.5 0.01 85 96 100 100
X3 2 0.01 1 4 16 59
X4 1.5 0.01 0 0 0 0
X5 1.25 0.01 0 0 0 0
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here, MDG prefers predictors with large category

frequencies. To assure this result was not due to

the particular replicate simulated, I repeated this

100 times with 100 independent replicates. The

top-ranked SNP in the original simulation was

ranked highest in 58% of the 100 replicates by 100

90% subsamples (thus, across 10 000 subsamples in

total), even though the distribution of 100 w2

P-values testing association between this SNP and

case status was Uniform(0,1), as expected under H0

(quantiles: 0.0071, 0.28, 0.52, 0.81, 1.0). In contrast,

the most frequently top-ranked SNP using MDA

was ranked first in only 4% of the 10 000 subsamples;

the corresponding value for MDAscaled was 1%.

Therefore, both within-predictor correlation and

varying category frequencies may lead to spurious

conclusions when using MDG rankings.

Under HA, one SNP in a block of strong LD

(block r2 range: 0.88–1.0; Figure 3) with 25 other

SNPs was simulated under a recessive genetic model

to have an OR of 2.0 (Figure 3). The median rank

across the 100 90% subsamples for the truly asso-

ciated SNP using MDA was 19 and for MDAscaled

was 21; however, the median rank using MDG was

101.5. Further, the within-predictor correlation led

to unstable rankings for MDG (ranking range:

60–138); the rankings based on MDA (6–35) or

MDAscaled (8–43) were more stable. MDA ranked

the truly associated SNP in the top 10 in 18% of

the subsamples and in the top 20 in 60% of the sub-

samples. The respective numbers for MDAscaled were

10 and 48% and 0 and 0% for MDG, respectively.

Thus, MDG rankings may be less stable than MDA

under conditions frequently found in biologic appli-

cations, such as within-predictor correlation, and the

MDA-based measures were both superior to the

MDG in ranking the truly associated predictor in

the top k predictors, even though any measure not

explicitly designed for within-predictor correlation

would have difficulty in finding the true signal due

to the strong LD in this scenario.

Rankings using MDG were dependent on cat-

egory frequencies, even when the number of cate-

gories was held constant. This dependency was not

observed using MDA. I illustrate, under H0,

within-predictor correlation and large category fre-

quencies lead to spuriously high rankings using

MDG, but not MDA. Further, under HA and in

the presence of within-predictor correlation, MDG

rankings were less stable than MDA. Data character-

istics should be considered when selecting a VIM for

use, and when correlation is present, the use of

alternative measures as suggested by Strobl et al. [5]

or Meng et al. [6] may be warranted.

Figure 2: LD plot for the top-ranked SNP using MDG under H0. Black box around pairwise correlation (r2) values
for the top-ranked SNP using MDG. Shading indicates strength of r2 values, with black indicating perfect LD (r2 of
1.0) and white boxes indicating no correlation (r2¼ 0).Grey boxes indicate intermediate values.
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Key Points

� When category frequencies or scales ofmeasurement vary, and/
or within-predictor correlation exists, the MDA measure may
be preferred.

� MDA VIMs are more stable than MDG when strong
within-predictor correlation is present.

� The use of MDGmay lead to stable but spuriously high rankings
in some bioinformatics applications.
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Figure 3: LD plot for the truly associated SNP under HA.White box around pairwise correlation (r2) values for
the truly associated SNP under HA. Shading indicates strength of r2 values, with black indicating perfect LD
(r2¼1.0) and white boxes indicating no correlation (r2¼ 0).Grey boxes indicate intermediate values.
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