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Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult
stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has
been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells
(MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their
ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and
repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding
of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of
MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction
of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation
potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation,
with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear
reprogramming.

1. Introduction

Two characteristics distinguish stem cells from other cell
types: the ability to self-renew and to differentiate into
multiple lineages. Embryonic stem (ES) cells are pluripotent
cells derived from the inner cell mass of the blastocyst during
early embryogenesis [1, 2]. ES cells are unique in their ability
to form all cell types in the human body and self-renew
indefinitely and thus have been extensively investigated in
the arena of regenerative medicine since their isolation 30
years ago [1, 2]. However, ethical considerations, technical

challenges, and governmental regulations have hindered
their use [3]. As a result, the study of somatic or adult stem
cells, which does not generate the same ethical concerns, has
increased dramatically.

Unlike ES cells, adult stem cells are characterized by a
restricted differentiation potential and finite self-renewal.
Adult stem cells have been localized to many tissues including
mesenchymal [4], neural [5], gastrointestinal [6], hepatic
[7], gonadal [8, 9], and hematopoietic [10]. Mesenchymal
stem cells (MSCs) are multipotent adult stem cells that
differentiate into osteoblastic, chondrogenic, myogenic, and
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adipogenic lineages [11–13]. MSCs are found in large num-
bers in the adult human, primarily in bone marrow and
adipose tissue and have been widely investigated for their
potential role in treating human disease. While much
knowledge has been garnered regarding the characteristics
and clinical applications of MSCs [14], our understanding
of their behavior is still limited. Given the therapeutic
potential of MSCs for a variety of conditions including bone
and cartilage defects, ischemic heart disease, and cerebral
ischemia, it is important that we continue to elucidate the
precise mechanisms that direct MSC fate.

Though stem cell behavior is largely mediated by DNA
sequence, there are multiple levels of regulation apart from
this genetic blueprint including posttranscriptional, transla-
tional, posttranslational, and epigenetic regulatory processes.
Epigenetic regulation is based upon heritable changes in the
pattern of gene expression that occur without a change in
the primary nucleotide sequence [15]. These changes remain
as cells divide mitotically and meiotically and often last
for multiple generations. A fundamental example of epige-
netic regulation occurs as cells terminally differentiate. For
example, a terminally differentiated epithelial cell shares the
same DNA sequence as its ES cell precursor. However, these
two cell types differ significantly in behavior and function,
and some regulatory process or processes must underlie this
change in phenotype. In this case, epigenetic mechanisms are
largely responsible for the variable activation and repression
of specific genes at specific time points during the lifespan of
the cell, allowing for the terminally differentiated phenotype.
Major mammalian epigenetic mechanisms include DNA
methylation and histone modifications, both of which have
been tightly linked to gene regulation and other cellular
processes including division and survival [16, 17].

In recent years, epigenetic regulation has also emerged
as an important modulator of stem cell differentiation [18].
Moreover, the disruption of epigenetic regulation has been
associated with human disease [19]. An example of this
occurs in patients with Angelman’s syndrome or Prader-
Willi syndrome, where epigenetic deregulation of imprinted
genes at the 15q11–13 loci on the maternal or paternal
allele, respectively, produces the associated phenotype [20,
21]. Epigenetic deregulation has also been implicated in
many malignancies, including MSC-derived tumors [22–28].
Given its association with various disease states, epigenetic
regulation has become an important focus of potential
therapy. The mechanism of action of many anticancer drugs
involves the alteration of DNA methylation patterns or
the modification of histone proteins [29]. The therapeutic
potential of epigenetic manipulation is not limited to
drug therapy, however. It is also under investigation as a
therapeutic modality as it relates to the process of cellular re-
programming.

Investigation of the epigenetic regulation of cell fate
determination has largely focused on ES cells. Recent studies
have also elucidated epigenetic states responsible for lineage-
specific differentiation of adult stem cells. While DNA
methylation patterns are crucial for ES cell differentiation,
histone modifications and other chromatin-based mecha-
nisms may serve a larger role in MSC differentiation capac-

ity [30]. Interestingly, DNA methylation profiles of MSCs
suggest that, in contrast to ES cells, MSCs have a limited dif-
ferentiation potential [31]. Presently, it is uncertain whether
unraveling the epigenetic landscape of MSCs will lead to
novel strategies to enhance their differentiation capacity. It
is plausible that the heritability of gene expression in repro-
grammed cells can be enhanced by the controlled manipu-
lation of epigenetic alterations. In this paper, we summarize
our current understanding of the epigenetic profile of MSCs,
specifically highlighting signatures related to multipotency
and differentiation into osteogenic and adipogenic lineages.
We also focus on the reprogramming of MSCs and whether
alterations of the MSC epigenome can enhance their thera-
peutic potential.

2. Major Epigenetic Mechanisms

Epigenetic mechanisms play a central role in the promotion
of appropriate transcriptional pathways during both embry-
onic development and adult tissue maintenance. Regulation
of gene expression at the epigenetic level occurs via modifi-
cations of chromatin architecture that alter the accessibility
of genes to transcription factors and other modulators.
Specifically, these modifications regulate gene expression by
facilitating the opening of DNA (euchromatin) to permit
transcription or the condensing of DNA (heterochromatin)
to repress transcription. Loss of proper chromatin modi-
fications during development and differentiation has been
associated with embryonic lethality [32–34]. We will briefly
summarize the major mechanisms underlying epigenetic
regulation as they have been reviewed extensively elsewhere
[35, 36].

2.1. DNA Methylation. Mammalian DNA methylation is
unevenly dispersed over much of the genome in a pattern
described as global methylation [36]. DNA methylation
consists of the addition of a methyl group to position 5 of
cytosine (m5C) at cytosine-phosphate-guanine (CpG) din-
ucleotides and occurs symmetrically on both DNA strands.
Regions dense in CpG dinucleotides, known as CpG islands,
are found near promoters of many human genes [37].
In general, promoter DNA methylation is associated with
repression of the corresponding gene [38, 39]. However, this
association is not always straightforward. Genes associated
with methylation-free CpG islands often remain silent while
genes that correspond to methylated promoters occasionally
undergo transcription. This relationship may depend on the
content of promoter CpG dinucleotides, where methylation
of high content CpG promoters usually represses transcrip-
tion, while methylation of low content CpG promoters can
either activate or repress transcription [40]. Occasionally,
DNA methylation may require additional epigenetic events
to occur concomitantly for transcription to be affected [41].

DNA methyltransferases (DNMTs) catalyze the methy-
lation of CpGs. Two DNMTs, DNMT3a and DNMT3b, are
responsible for de novo DNA methylation during embryonic
development and cell differentiation [42]. During cell divi-
sion, a third DNMT, DNMT1, recognizes hemimethylated
DNA and ensures methylation profile fidelity by catalyzing
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the methylation of its corresponding daughter strand [43].
DNA methylation is crucial for many processes including
long-term gene silencing [41, 44], proper development
[45–48], X chromosome inactivation [49], and genomic
imprinting [50–53].

Though DNA methylation occurs in all cells, the unique
pattern of methylation varies based on cell type [54].
Bibikova et al. [55] investigated the DNA methylation status
of over 1500 CpG sites in 14 human ES cell lines and
compared it to the methylation status of 38 non-ES cells
lines. Using bead array and cluster analyses and methylation-
specific polymerase chain reaction (PCR), the authors
reported that, based on methylation profiles, human ES cells
contain a unique epigenetic signature [55]. This finding may
have implications on ES cell pluripotency and developmental
potential. We have recently begun to uncover methylation
patterns unique to MSCs as well (see below) [56, 57].

Currently, the “gold-standard” method to analyze DNA
methylation patterns is bisulfite genomic sequencing [58].
This methodology consists of the bisulfite-mediated chem-
ical conversion of unmethylated cytosine in CpG dinu-
cleotides to uracil whereas methylated cytosines remain
protected from chemical conversion [59]. PCR then sub-
stitutes uracils with thymidines and subsequent sequencing
illustrates the methylation state of the original sequence. A
quantitative assessment of the extent of methylation can be
evaluated by bacterial cloning of the PCR products.

2.2. Histone Modifications. Chromatin, which is comprised
of DNA and proteins, refers to the state in which DNA and
these proteins are packaged within eukaryotic cell nuclei.
As described above, chromatin can be packaged loosely as
euchromatin, which facilitates gene transcription, or tightly
as heterochromatin, which facilitates gene repression. The
nucleosome is the fundamental unit of chromatin and is
composed of 2 subunits of each of the four core histone
proteins (H2A, H2B, H3, H4) around which 147 base pairs
of DNA are wrapped. Histones are small basic proteins
that are predominantly globular in nature other than their
unstructured N-terminal “tails”. Subsequent to histone pro-
tein translation, N-terminal tails can be covalently modified
in numerous ways to regulate gene expression [35]. The most
thoroughly investigated histone modifications are acetylation
and methylation.

The histone code hypothesis suggests that “distinct modifi-
cations, on one or more tails, act sequentially or in combina-
tion to form a “histone code” that is read by other
proteins to bring about distinct downstream events” [65–
67]. Histone codes can be transient or stable; if stable,
these codes constitute epigenetic regulation as they imply
heritability [67, 68]. Epigenetic regulation mediated by
histone modification is dynamic in nature and inherently
complex. For example, the methylation of histone lysine
residues, catalyzed by histone methyltransferases (HMTs),
can correlate with either transcriptional activation and
repression [69]. Trimethylation of lysine 4 of histone H3
(H3K4me3) marks euchromatin and gene activation. In
contrast, H3K27me3 and H3K9me3 signal heterochromatin
and gene repression. The H3K27me3 mark is thought to

be critical to the “stemness” of stem cells [70, 71], as
H3K27 demethylation triggers cellular differentiation [72–
74]. Further adding to histone modification complexity, the
ability of HMTs to methylate H3K9 in order to silence
transcription often depends on the methylation status of
adjacent lysine residues on H3 [18, 75]. HMTs and histone
demethylases (HDMs) work in tandem to determine the level
of histone lysine methylation found within a cell [76].

Histone acetylation is also a widely studied histone
modification. The opposing activities of histone acetyltrans-
ferases (HATs) and histone acetyl-deacetylases (HDACs)
are responsible for the level of cellular histone acetylation
[76]. In general, acetylation of histone lysine residues corre-
lates with transcriptional activation whereas histone lysine
deacetylation silences gene transcription. Acetylation of
H3K9 (H3K9ac) and acetylation of H4K16 (H4K16ac) are
common marks found on euchromatin near genes that are
actively being transcribed [56]. Although histone modifica-
tions mainly act by altering chromatin architecture, specific
modifications (e.g., H3K4me3 and H3K9ac) also mediate
gene regulation by recruiting and tethering transcriptional
modulators to chromatin [77–81].

Chromatin immunoprecipitation (ChIP) assays, which
were originally designed to study RNA polymerase II behav-
ior [82–85], have allowed researchers to map the positioning
of histone modifications within the genome or onto indi-
vidual promoters [86]. A specific histone modification can
be immunoprecipitated so that DNA sequences associated
with it can be identified by PCR [86]. Researchers can
also indentify histone proteins that are associated with a
particular region of the genome using ChIP.

Various lines of evidence suggest that chromatin within
undifferentiated ES cells is generally less compact, and thus
more “transcription-permissive”, compared with differenti-
ated cells [87]. For example, pericentric heterochromatin
progressively clusters as human and mouse ES cells differen-
tiate [88, 89]. In addition, using fluorescence recovery aft-
er photobleaching (FRAP), a technique that measures
the exchange rate of chromatin-associated proteins [90],
Meshorer and colleagues [91] demonstrated that ES cells
contain hyperdynamic chromatin proteins that loosely bind
to chromatin. As ES cells begin to differentiate, these hyper-
dynamic proteins become immobilized on chromatin, which
signal lineage commitment of these cells [91]. Indeed, the
loose association of chromatin and its structural proteins
may be an important marker of cellular pluripotency. Less
well defined is the association of specific histone modi-
fications to MSC cell fate. Collas et al. [56] have described
the presence of bivalent histone marks (H3K4me3 and
H3K27me3) on lineage-specific promoters in undifferen-
tiated MSCs derived from adipose tissue. This finding,
in addition to evidence that these same lineage-specific
promoters are hypomethylated (see below), may suggest
that adipogenic promoters in MSCs are preprogrammed for
adipogenic stimulation [56].

Researchers investigating differences in histone modifi-
cation patterns between epidermal stem cells and terminally
differentiated cells of the epidermal lineage found that Myc-
induced differentiation of adult stem cells correlates with
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Table 1: Examples of clinical applications of mesenchymal stem cells.

Author Year Indication Outcome

Bang et al. [60] 2005 Cerebral ischemia
Functional recovery after ischemic stroke improved in MSC-treated
patients compared to control patients

Dill et al. [61] 2009 IHD Intracoronary MSC administration improved LVF after STEMI

Horwitz et al. [62] 2002
Metabolic bone

disease
5 of 6 OI patients showed accelerated bone growth velocity after IV
infusion of allogeneic MSCs

Marcacci et al. [63] 2007
Critical size bone

defect
Implantation of HA scaffolds seeded with MSCs into diaphysis
defects resulted in fusion between implant and host bone

Wakitani et al. [64] 2007 Cartilage defect
Direct site transplantation of MSCs into articular cartilage defects
resulted in clinical symptom improvement and defect repair

MSC: mesenchymal stem cell; IDH: ischemic heart disease; LVF: left ventricular function; STEMI: ST-segment elevated myocardial infarction; OI: osteogenesis
imperfecta; IV: intravenous; HA: hydroxyapatite.

numerous chromatin modifications [92]. Specifically, qui-
escent epidermal stem cells were found to contain high
levels of H3K9me3 and H4K20me3 and low levels of
H4 acetylation and H4K20me1 (a modification generally
associated with gene activation) [92]. As Myc-treated stem
cells underwent differentiation, there was a corresponding
increase in H4 acetylation as well as the silencing H3K9me2
and H4K20me2 marks [92]. These data suggest that a single
transcription factor has the ability to induce widespread
change in chromatin state, though it remains unclear how
Myc-induced differentiation of epidermal stem cells induces
an increase in chromatin modifications associated with
both gene activation and gene silencing. More importantly,
alterations in chromatin architecture, largely mediated by
epigenetic phenomena, probably underlie numerous mech-
anisms that facilitate cell differentiation. By elucidating
avenues to manipulate such phenomena, we can potentially
improve our ability to attenuate pathologies associated with
tissue degeneration by directing cell fate.

3. Mesenchymal Stem Cells: Epigenetic
Characteristics and Potency

Though MSCs have attracted significant attention for their
potential to regenerate tissue, we have yet to identify a cell
marker specific to MSCs. In order facilitate a more consistent
approach to the study of MSC biology, the International
Society of Cryotherapy has proposed that human MSCs meet
the following criteria: (1) plastic adherence of cultured cells
in standard culture conditions; (2) expression of CD105,
CD73, and CD90 and lack of expression of CD34, CD45,
CD14 or CD11b, CD79α or CD19, and HLA-DR surface
molecules; (3) the capacity to differentiate into osteoblasts,
adipocytes, and chondroblasts in vitro [93]. Populations of
multipotent cells derived from adipose tissue, bone marrow,
and skeletal muscle have all been found to meet these
defined criteria in vitro [94–98]. Not surprisingly, these
differing populations of MSCs are closely related in various
capacities. For example, MSCs derived from adipose tissue
(adipocyte-derived stem cells; ASCs), as well as MSCs derived
from bone marrow (bone marrow MSCs; BMMSCs), express
similar gene expression profiles [99–101], surface markers

[94, 98], and share a similar differentiation potential [98,
102]. Sorensen et al. [103] reported that DNA methylation
profiles between MSCs isolated from human adipose tissue,
bone marrow, and muscle are also similar. In contrast, MSC
promoter methylation profiles are distinct from other cell
types, including human ES cells, multipotent ES cell-derived
mesenchymal cells, and hematopoietic stem cells (HSCs)
[103, 104].

As phenotypic, transcriptomic, functional, and now,
epigenetic evidence suggests that MSCs isolated from various
tissues are related, it is plausible that MSCs originate from
a common origin [112]. To this end, pericytes, which
have been isolated within mesodermal tissues including
fat, bone, and muscle, have been found to contain several
characteristic features to MSCs [113–115]. As such, authors
have hypothesized that MSC populations may be traced to a
pericytic origin [112, 113].

3.1. Epigenetic Profile of MSCs in Culture. In the last two
decades, MSCs have been isolated from many animal [116–
122] and human tissues [123–131]. Excitement regarding
their use for tissue engineering purposes in part stems from
the finding that MSCs navigate toward injured tissue [132]
and are considered MHC II negative cells, lacking the co-
stimulatory molecules CD40, CD80, and CD86 [133]. As a
result, they can be allogeneically transplanted without the
need for immunosuppression of the recipient. Indeed, the
therapeutic potential of MSC-based treatment for a variety
of conditions has already been demonstrated in humans [60–
64, 134–140]. Specifically, investigators have evaluated their
efficacy in the treatment of critical size bone defects, cartilage
degeneration, metabolic bone disease, ischemic heart disease,
and cerebral ischemia (Table 1). Nevertheless, obstacles have
limited the widespread use of MSCs. In general, it has proven
difficult to harvest large quantities of MSCs from many
tissues, especially that of bone marrow [4]. As a result,
MSCs must be expanded ex vivo after their isolation to be
used for therapeutic purposes. A potential concern regarding
this strategy, however, stems from the finding that MSCs
display variable proliferative and differentiation capacities
in culture [141]. In contrast to early-passage MSCs, late-
passage MSCs have a reduced differentiation potential [142].
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Moreover, MSCs may undergo malignant transformation in
vitro, though this finding is controversial [143–145]. Studies
addressing such concerns have documented that late-passage
MSCs display normal karyotypes [146–148] and genomic
stability [149], yet their behavior change in culture implies
alterations of some aspect of their regulation.

Epigenetic profiles of nonmesenchymal-derived cells
occasionally display instability in culture [157–159]. To
evaluate if similar phenomena occur in MSCs, Dahl and col-
leagues [57] examined CpG methylation patterns in human
BMMSC cultures for 170 cell cycle- and cancer-related
promoters. Nearly 90% of these genes maintained their
methylation profile between early and late passage, indicating
that MSC cultures derived from bone marrow have a
stable CpG methylation status in vitro. Furthermore, the
methylation profile of ASCs remains consistent up to at least
4 passages in vitro, which corresponds to 20 population
doublings from a single cell [160]. Further studies are
required to assess the methylation status of ASCs after longer
periods in culture (i.e., after 15 passages), but it appears
unlikely that alterations of promoter DNA methylation are
responsible for the reduced differentiation capacity seen in
late-passage MSCs [150].

In contrast, histone modification patterns have been im-
plicated in variable cell behavior in culture. Under normal
conditions, adipogenic and myogenic promoter regions in
ASCs are associated with a bivalent combination of histone
modifications. Specifically, promoter regions are enriched
with H3K4me3 and H3K27me3, while lacking H3K9me3
and H3K9ac [161, 162]. As early passage ASCs differentiate,
there is a corresponding rise in H3K9 acetylation and H3K27
demethylation, thereby relieving H3K4me3/H3K27me3
bivalency. In contrast, late-passage MSCs are associated with
H3K27me3 maintenance and minimal H3K9 acetylation
[161]. There is also global upregulation of the Polycomb
repressor complex protein ExH2 (an enzyme that catalyzes
the methylation of H3K27) and a global increase of
H3K9 deacetylation in long-term cultured MSCs [161].
From this data, it appears that histone modification-
mediated epigenetic alterations in late-passage MSCs may be
responsible for a deceased ability to differentiate as cultured
MSCs age. However, further studies are needed to more fully
characterize this epigenetic variability on a global scale.

3.2. Are MSCs Pluripotent from an Epigenetic Standpoint?

Pluripotent cells have the ability to become cell types of
all lineages in the body whereas multipotent cells differ-
entiate into various cell types from one lineage. MSCs are
often referred to as multipotent given their proclivity to
form cell types within the mesodermal lineage. Recently,
Jaenisch and Young [163] noted that it is unclear whether
a truly pluripotent stem cell can be isolated from the adult
animal. However, analyses have demonstrated that certain
populations of MSCs have the ability to differentiate into
cell types from all 3 germ layers [164–169]. Jiang et al.
[170] localized a cell within human BMMSC cultures that,
upon stimulation, could differentiate into mesenchymal,
neuroectodermal, endodermal [171], and endothelial tissues

[172, 173]. After injection into early blastocysts, the authors
reported that this population of MSCs contributed to most
or all adult cell types, thereby indicating pluripotency [170].
D’Ippolito and colleagues [174] also isolated a unique
subpopulation of human bone marrow stromal cells, termed
marrow-isolated adult multilineage inducible (MIAMI) cells,
which could differentiate into mature cells of all 3 germ
layers. Nevertheless, MSCs have not yet met more stringent
criteria for pluripotency, including germline contribution or
tetraploid complementation [163].

Presently, it is generally accepted that MSCs are confined
to the mesodermal lineage, but under certain conditions
can differentiate into most or all tissues. This notion of
lineage-restriction has been supported by epigenetic studies
from the laboratory of Collas et al. [103, 112, 160, 175].
MSC lineage-specific promoters are largely hypomethylated
in MSCs. In contrast, the endothelial promoter for CD31
is fully methylated in ASCs and BMMSCs, which correlates
with a lack of CD31 expression in MSCs. Furthermore,
using methylated DNA immunoprecipitation (MeDIP), it
was found that hypermethylated genes in MSCs are often
associated with regulation of development, transcription,
signaling, and metabolic functions. Interestingly, many pro-
moters of genes expressed in nonmesodermal derived cells
remain hypomethylated in MSCs, even though MSCs gen-
erally do not differentiate into cells that express these genes.
Thus, the Collas et al. laboratory has proposed that strong
methylation of lineage specification and developmental pro-
moters may restrict MSC differentiation capacity; however,
hypomethylation of lineage-specification promoters is of
little predictive value in differentiation capacity [112]. This is
consistent with a lineage-priming molecular model of MSC
differentiation capacity, which posits that MSCs express a
subset of genes corresponding to differentiation pathways
to which they can commit [176]. Furthermore, in ES cells,
methylation occurs on pluripotency-associated loci as cells
lose pluripotency (i.e., during differentiation) [159, 177].
Taken together, epigenetic data support the notion that
MSCs are better classified as multipotent than pluripotent.

4. Epigenetic Control of MSC Cell Fate

Questions of how the epigenetic state of a cell influences
fate determination have predominately focused on ES cells.
In ES cells, for example, lineage-specific promoters that
are associated with terminal differentiation are often DNA
methylated [178]. This presumably impedes improper or
premature differentiation toward a specific lineage, thereby
preserving pluripotency. Recently, studies have found that
some of these same promoter regions are unmethylated in
MSCs [112], indicating that the epigenetic state of ES cells
changes as they differentiate into MSCs. However, whether
these epigenetic alterations are the cause or result of ES
cell fate decisions remains unclear. Furthermore, the mech-
anisms underlying MSC differentiation toward a particular
cell type within the mesodermal lineage have yet to be fully
elucidated. Here, we review epigenetic regulation associated
with osteogenic differentiation (Table 2) and adipogenic
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Table 2: Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells.

Epigenetic regulation Target Finding Reference

DNA methylation OC
Reduced promoter DNA methylation is associated with
osteogenic differentiation

Villagra et al. [105]

DNA methylation OPN
Mechanically induced promoter DNA demethylation is
associated with accelerated osteogenic differentiation

Arnsdorf et al. [106]

DNA methylation Brachyury
Promoter DNA methylation is associated with osteogenic
differentiation

Dansranjavin et al. [107]

DNA methylation Trip10
Promoter DNA methylation is associated with accelerated
osteogenic differentiation

Hsiao et al. [108]

Histone modification OC
Acetylation of H3 and H4 is associated with OC expression
and osteogenic differentiation

Shen et al. [109]

Histone modification HOXA10
HOXA10-mediated chromatin acetylation and H3K4
methylation promotes transcription of osteogenic genes

Hassan et al. [110]

Histone modification AP-2α

H3K4 and H3K36 methylation is associated with AP-2α
expression and subsequent osteogenic differentiation.
Mutations in demethylation-related proteins (e.g., BCOR)
are associated with the OFCD syndrome

Fan et al. [111]

OC: osteocalcin; OPN: osteopontin; Trip10: thyroid hormone receptor interactor-10; BCOR: BCL-6 corepressor; OFCD: oculo-facial-cardio-dental.

differentiation (Table 3) of MSCs, as these pathways have
been the most widely investigated.

4.1. Osteogenic Differentiation. Osteogenic differentiation of
MSCs is a complex process that is tightly controlled by
numerous signaling pathways and transcription factors [11].
Runt-related transcription factor 2 (Runx2) is considered
a master regulator of osteogenic differentiation and is
expressed at many stages of bone development and matura-
tion [179–181]. Runx2 transcriptional activity is itself subject
to robust regulation, as demonstrated by its association with
numerous coactivators and corepressors [181–184]. It is
becoming increasingly clear that epigenetic regulation is also
crucial to Runx2 activity and thus osteogenic differentiation.
Epigenetic regulation generally results in structural changes
in chromatin that alter the binding ability of Runx2 and
other transcription factors to osteogenic promoter regions.
The most thoroughly studied promoter of the osteogenic
lineage is the promoter for osteocalcin (OC), which contains
binding sites for many factors crucial to the activation of
osteoblast-specific genes including Runx2 [105, 109, 185–
188]. Acetylation of histones H3 and H4, as well as a
decreased level of DNA methylation, increases accessibility
of the OC promoter to osteo-inductive transcription factors
[105, 109, 185]. Furthermore, HOXA10-mediated chro-
matin hyperacetylation and H3K4 Trimethylation induce
chromatin structural changes that facilitate Runx2-mediated
activation of genes that encode OC and other osteoblastic
phenotypic markers [110]. In addition, CreMM/CHD9,
a recently characterized member of the CHD chromatin
remodeler family [189–191], has been detected in MSCs
near newly formed adult bone [192]. CReMM/CHD9 binds
to promoters for both Runx2 and OC during osteogenic
gene expression. Though CReMM/CHD9 is thought to alter
chromatin architecture via DNA-dependent ATPase activity,
the exact epigenetic mechanism linking CReMM/CHD9 to
osteogenic differentiation is unknown [192].

Skeletal loading and loading-induced dynamic fluid
flow are also key regulators of osteogenic differentiation
[193–199]. A recent investigation addressed whether these
regulators act via epigenetic modifications [106]. Mechani-
cally induced differentiation is associated with a decreased
level of DNA methylation at the promoter for osteopontin
(OPN; an important factor for bone remodeling) as well
as increased OPN expression and osteogenic differentia-
tion. Similarly, biologically-induced osteogenic differenti-
ation of MSCs (using growth media supplemented with
β-glycerolphosphate, ascorbic acid, and dexamethasone)
correlates with a decrease in OPN promoter methylation as
well as increased OPN expression [106].

It is not surprising that modifications of epigenetic
regulation at genes crucial to osteogenic differentiation
occur as MSCs become osteoblasts. However, recent evi-
dence suggests that alterations of epigenetic regulation may
occur on a more global scale as MSCs differentiate toward
bone. For example, methylation at the promoter region
for the mesodermal transcription factor Brachyury, which
silences brachyury expression, is associated with osteo-
induction of MSCs [107]. In addition, Hsiao and colleagues
[108] reported that thyroid hormone receptor interactor-
10 (Trip10), an adaptor protein involved in diverse cellular
functions, is epigenetically modified during human BMMSC
differentiation. The authors elected to investigate whether
variation of Trip10 epigenetic regulation could alter MSC
differentiation patterns because of its association with the
H3K27me3 mark. Interestingly, after transfection of MSCs
with in vitro-methylated Trip10 promoter DNA, MSCs
underwent progressive cytosine methylation of the endoge-
nous Trip10 promoter, which led to reduced Trip10 expres-
sion and accelerated MSC differentiation toward osteogenic
and neuronal lineages [108]. In addition to demonstrating
that Trip10 expression levels are associated with osteogenic
differentiation, this study illustrated how manipulation of
the MSC epigenome in a manner distinct from classic nuclear
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Table 3: Epigenetic regulation of adipogenic differentiation of mesenchymal stem cells.

Epigenetic regulation Target Finding Reference

DNA methylation PPARγ2, lep, fabp4, lpl
Promoters for these 4 adipogenic genes are hypomethylated in
ASCs

Noer et al. [150]

DNA methylation PPARγ
Expression of PPARγ is regulated by promoter DNA methylation.
Promoter methylation corresponds to a decreased expression of
PPARγ and decreased adipogenic differentiation

Fujiki et al. [151]

DNA methylation Glut4
Promoter DNA demethylation occurs as cells undergo adipogenic
differentiation

Yokomori et al. [152]

DNA methylation Lep
The Lep promoter region is highly methylated in preadipocytes but
is unmethylated in terminally differentiated adipocytes

Melzner et al. [234]

DNA methylation Agouti
Genistein-mediated DNA hypermethylation of a retrotransposon
upstream of Agouti is associated with decreased obesity

Dolinoy et al. [153]

Histone modification ApM1

H3 hyperacetylation and H3K4me3 at the apM1 promoter region
correlate with early adipogenic differentiation. Inhibition of H3K4
methylation results in decreased apM1 expression and decreased
adipogenesis

Musri et al. [154]

Histone modification Multiple gene promoters
Downregulation of HDACs is required for adipogenic
differentiation

Yoo et al. [155]

Histone modification PPARγ gene targets

Unphosphorylated RB recruits HDAC3 to promoters of PPARγ
gene targets, which decreases adipogenic differentiation. Inhibition
of HDAC3 activity results in PPARγ activation, and subsequent
adipogenesis

Fajas et al. [156]

PPARγ: peroxisome proliferator-activated receptor-gamma; lep: leptin; fabp4: fatty acid-binding protein 4; lpl: lipoprotein lipase; ASC: adipose-derived stem
cell; Glut4: glucose transporter type 4; ApM1: adiponectin; H3K4me3: Trimethylation of lysine 4 on histone 3; HDAC: histone deacetylase; RB: retinoblastoma.

reprogramming (see below) could be utilized as a therapeutic
modality. However, further studies regarding the long-term
effects of this type of epigenetic manipulation are necessary
before it can be widely used in humans.

Support for the role of epigenetic regulation in MSC
osteogenic differentiation has also come from reports of
abnormal bony development. Oculo-facial-cardio-dental
(OFCD) syndrome is characterized by teeth with excessively
long roots and craniofacial, eye, and cardiac abnormalities
[200–204]. Genetic studies have associated this X-linked
dominant syndrome to mutations of the BCL-6 corepres-
sor (BCOR) protein [204]. Under normal conditions, the
repressive actions of BCOR are mediated by chromatin mod-
ifications via interactions with HDACs, HDMs, and H2A
ubiquitin ligase [205–207]. MSCs have been isolated from
dental and craniofacial tissues [208–210], which led Fan et
al. [111] to investigate whether BCOR mutations enhance the
osteo/dentinogenic potential of MSCs. Using gain- and loss-
of-function assays, the authors demonstrated that the AP-2α
-+, is largely responsible for the osteo/dentinogenic capacity
of MSCs. The methylation of H3K4 and H3K36 at the AP-
2α promoter is associated with gene activation [211, 212].
BCOR normally catalyzes the demethylation of H3K4me3
and H3K36me2 [213, 214], but fails to do so when mutated
[111]. The resultant methylation impedes the binding of the
BCL-6 repressor protein to the AP-2α promoter, leading to
uncontrolled AP-2α expression. As such, a BCOR mutation
that impairs its demethylating activity permits uncontrolled
osteo/dentinogenic differentiation of MSCs in the OFCD
syndrome [111].

4.2. Adipogenic Differentiation. The development of adipo-
cytes during adipogenic differentiation of MSCs occurs
in two phases [131, 215]. The first phase, determination,
is the commitment of MSCs to the adipogenic lineage,
which entails losing the ability to differentiate into another
lineage. The second stage, differentiation, occurs as MSCs
begin to express the phenotypic characteristics of a mature
adipocyte. Similar to osteogenic differentiation, adipogenesis
is a highly coordinated process that involves numerous
transcription factors performing specific functions at various
time points [216–218]. Just as Runx2 serves as a master
regulator of osteogenic differentiation, the nuclear hormone
receptor peroxisome proliferator-activated receptor-gamma
(PPAR-γ) has a significant role in adipogenic differentiation
[219, 220]. In addition, many coregulators and transcription
factors central to adipogenesis have chromatin-modifying
activities [221–223], supporting the role of epigenetic reg-
ulation during the differentiation of MSCs to adipocytes.

Noer et al. [160] examined the DNA methylation profile
of both adipogenic and nonadipogenic genes in human ASCs
using bisulfite genomic sequencing. The promoters for four
adipogenic genes—PPARγ2, leptin (lep), fatty acid-binding
protein 4 (fabp4), and lipoprotein lipase (lpl)—were found
to be hypomethylated in freshly harvested human ASCs
[160]. Interestingly, the CpG methylation profiles between
and within donors were described as mosaic (i.e., they were
not uniform) [160], which is consistent with stem cells found
elsewhere in the body [224, 225]. Of note, mosaic CpG
methylation is believed to stem from stochastic methylating
events at various CpG sites due to environmental-, health-,
and age-related factors [226–229]. Noer and colleagues



8 Stem Cells International

[160] also noted that promoter regions for housekeeping
genes such as GAPDH and LMNB1 were unmethylated
whereas nonadipogenic lineage-specification gene promoters
(Myogenin, myogenic; CD31/PECAM1 and CD144/CDH5,
endothelial) were hypermethylated. These findings suggest
that the commitment of MSCs to the adipogenic lineage
may be reflected by a particular epigenetic signature in
which adipogenic gene promoters are hypomethylated while
nonadipogenic promoters are methylated. In vitro analyses
have correlated the demethylation of various adipogenic
promoters, including that of PPARγ, with adipogenic dif-
ferentiation in murine cell lines as well [151, 230, 231].
However, the pattern of promoter DNA methylation in ASCs
does not always correlate with protein expression [101, 160].
This indicates that additional regulatory layers are necessary
for adipogenic differentiation.

Specific histone-mediated chromatin architecture mod-
ifications have been documented as multipotent MSCs
become “preadipocytes” during determination [232].
H3K4me2, an active mark of transcription, has been iden-
tified at promoters of adipogenic genes including adiponectin
(apM1), glut4, and lep during determination [154]. As cells
progress toward committed adipocyte precursors during
differentiation, further characteristic epigenetic marks have
been described. In addition to promoter DNA demethylation
at glut4 and lep [152, 233, 234], these promoters also undergo
H3K9 demethylation, H3 acetylation, and H3K4 Trimethyla-
tion [154, 232], all of which are epigenetic marks of gene acti-
vation. Furthermore, the downregulation of cellular HDACs
during differentiation appears to facilitate adipogenic line-
age commitment, while its overexpression attenuates it [155].
Interestingly, unphosphorylated retinoblastoma (Rb) protein
recruits HDAC3 to promoters of PPARγ gene targets, thereby
inhibiting the transcription of their associated genes and
thus repressing adipogenic differentiation [156, 235].

MSC differentiation is required for proper tissue devel-
opment and repair, but it can be detrimental when it occurs
excessively. A example of this lies in the obesity epidemic
currently plaguing the United States and globally [236]. As
epigenetic regulation has become an increasingly recognized
programming factor in the process of adipogenesis, it could
follow that epigenetic deregulation has a role in the devel-
opment of obesity. In fact, induced methylation alterations
have been linked to obesity in mice [153, 237]. It is hopeful
that further study of the epigenetic regulation of adipogenic
differentiation will provide insight into potential therapies
for obesity and related metabolic disorders.

5. Nuclear Reprogramming of Mesenchymal
Stem Cells

Direct epigenetic manipulation (e.g., by transfection of
methylated DNA) has not been widely used in humans
because the long-term effects of such therapies are unknown.
The epigenetic program of a cell can be altered in other ways,
however. Several strategies have been employed to reprogram
somatic cells to a pluripotent embryonic state. We will briefly
summarize these strategies as they have been extensively
reviewed previously [163, 238, 239].

Somatic cell nuclear transfer (SCNT), also referred to
as nuclear transplantation (NT), is the process by which
the nucleus of a somatic donor cell is introduced into an
enucleated oocyte. SCNT has been used to generate cloned
animals including the cloned sheep Dolly [240]. SCNT also
mediates the creation of genetically matched replacement
cells. As such, SCNT is of great medical interest as it has
the potential to circumvent immunologic incompatibility
associated with cells donated from a source other than the
patient. Moreover, nuclear reprogramming of MSCs has
been most widely studied in the context of SCNT. Another
cellular reprogramming strategy consists of fusing somatic
cells with ES cells to produce a hybrid that demonstrates ES-
like features including pluripotency. However, a shortcoming
of this approach is the resultant tetraploidy of reprogrammed
cells. A third strategy involves the transient incubation of
somatic cells with extracts of ES cells devoid of their nuclei.
This method has been utilized to enhance somatic cell
pluripotency in vitro without creating cells with 4 sets of
chromosomes. Finally, Takahashi and Yamanaka engineered
a groundbreaking nuclear reprogramming strategy with
the creation of induced pluripotential stem (iPS) cells in
2006 [241]. The authors successfully reprogrammed mouse
embryonic/adult fibroblasts to pluripotent ES-like stem cells
(iPS cells) by introducing the transcription factors Oct4,
Sox2, c-Myc, and Klf4 into differentiated cells via viral-
mediated transduction [242, 243]. The ectopic expression
of these reprogramming factors in infected cells initiates a
sequence of epigenetic events in endogenous genes critical
for the maintenance of pluripotency and lineage specification
of ES cells, thereby activating the pluripotential state of
iPS cells [76, 163, 241, 244]. Using a combination of
similar factors, authors have also isolated iPS cells from
human fibroblasts [242, 245, 246]. However, the finding
that mice derived from iPS cells often develop malignancies
has considerably hindered the application of this technique
[247]. Interestingly, the oncogenic transcription factor c-Myc
may not be necessary to reprogram cells, though it facilitates
a speedy and efficient reprogramming process [246, 248,
249]. The factor or combination of factors essential to
reprogramming still remains unclear, as does the specific
molecular circuitry underlying pluripotency. Nevertheless,
because nuclear reprogramming carries the potential to
create patient-specific cells allowing for customized therapy,
it is currently of great interest to many investigators.

Within the last few years, research has revealed specific
epigenetic modifications that occur during the processes
of differentiation and reprogramming. For example, as ES
cells commit to a particular lineage, the transcription factor
Oct4, which is thought to be necessary to maintain ES
cell pluripotency, is rapidly silenced. Epigenetically, Oct4
silencing correlates with a loss of gene activity marks
(H3K4me3, H3K7ac, and H3K9ac), as well as an increase
of gene silencing marks (H3K9me3 and DNA methylation)
at the Oct4 promoter [163, 250]. In order to generate iPS
cells from somatic cells, these silencing marks must be pro-
gressively removed from the Oct4 promoter. Furthermore,
lineage-specification genes must be repressed in order to
dedifferentiate a cell during the reprogramming process.
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iPS cells display chromatin modifications that prevent the
transcription of genes encoding developmental regulators,
thus maintaining pluripotency by repressing differentiation
[163, 251, 252]. The promoters of pluripotency regulators
also exhibit decreased DNA methylation patterns in iPS cells
[247, 251, 252]. Taken together, these data indicate that
epigenetic remodeling is an essential element to the nuclear
reprogramming of somatic cells.

Although progress has been made in the field of nuclear
reprogramming, there are still limitations to its therapeutic
application. SCNT, for example, is an inherently inefficient
process. Most clones die soon after implantation or are
born with severe abnormalities due to faulty reprogramming
[253, 254]. Some authors have hypothesized that, compared
to terminally differentiated cells, less differentiated cell types
may increase SCNT efficiency as they may be more easily
reprogrammed. Faast and colleagues [255] examined if
MSCs could increase the SCNT efficiency compared to
terminally differentiated fibroblasts in a pig model. The
use of MSCs did not increase cleavage rates compared to
adult fibroblasts obtained from the same animal, but the
percentage of embryos that developed to the blastocyst stage
was almost doubled [255]. These findings were consistent
with earlier studies that demonstrated improved SCNT
efficiency using ES cells compared to differentiated somatic
cells [256–260]. Jin et al. [261] also reported that compared
to fetal fibroblasts, porcine MSCs have greater donor cell
potential. In contrast, other investigators have noted that no
significant difference exists between the number of MSCs
that reach the blastocyst stage compared to fibroblasts after
SCNT [262, 263]. Recently, Brero et al. [264] evaluated the
efficiency of nuclear reprogramming by SCNT in MSCs and
adult fibroblasts in a rabbit model by monitoring levels of
histone modifications associated with transcriptionally active
euchromatin (H3K4me2/3) or transcriptionally repressive
facultative heterochromatin (H3K27me3). Subsequent to
SCNT, H3K27me3 was found to be reprogrammed (i.e.,
largely undetectable) in both MSCs and adult fibroblasts,
which was consistent with H3K27me3 patterns in con-
trol embryos. However, the reprogramming status of the
H3K4me2/3 mark largely depended on cell type as it was
inconsistent between MSCs, fibroblasts, and control embryos
[264]. Based on the development of cloned embryos to the
blastocyst stage as well as the level of reprogrammed histone
modifications, the authors reported that MSCs were not
better nucleus donors than adult fibroblasts [264]. It remains
unclear why reports differ with respect to cloning efficiency
using donor cells at different stages of development, but
variations in methodology, technique, and species may be
responsible. Further studies to address this issue will be
required.

Because SCNT has proven to be an inefficient process
regardless of the nuclear donor used, investigators have
attempted to improve SCNT pharmacologically. The HDAC
inhibitor Trichostatin A (TSA) has been shown to increase
SCNT efficiency in mice [265, 266], pigs [267, 268], cattle
[269, 270], and rabbits [271], though these findings are not
universal [272, 273]. TSA reversibly binds to and inhibits
the actions of HDACs, thereby causing acetylated histones to

accumulate in cells [274]. TSA has also been shown to affect
DNA methylation, DNMT expression levels, and heterochro-
matin remodeling [275–277]. Indeed, as epigenetic factors
dynamically interact with one another, agents targeting epi-
genetic mechanisms have pleiotropic effects. To further eval-
uate the epigenetic factors modified by TSA, Martinez-Diaz
and colleagues [278] assessed changes in epigenetic markers
in pre- and postimplantation organism development after
SCNT and TSA treatment using porcine bone marrow cells
(BMCs; putative MSCs) and fetal fibroblasts. While TSA
treatment increased the immunofluorescent (IF) signal of
H3K14ac in embryos derived from both cell types, it did not
increase the IF signal of H3K9me2. The authors also reported
that TSA treatment accelerated the rate of development to
the blastocyst stage for fibroblast-derived embryos but not
for embryos derived from BMCs. Furthermore, embryos
reconstructed from fibroblasts developed postimplantation
with and without TSA treatment, whereas TSA treatment
was necessary for postimplantation development in BMC-
derived embryos [278]. This study partially clarified the
epigenetic actions of TSA treatment during SCNT. However,
it further demonstrated that the question of whether less
differentiated cells (in this case BMCs) are more amenable to
nuclear reprogramming than further differentiated cell types
has yet to be solved.

6. Outlook

Stem-cell-based therapy may eventually serve as a potential
remedy to many human pathologies previously thought to be
incurable. MSCs in particular are promising for conditions
requiring the regeneration of tissue such as bone and
cartilage defects. However, before such treatments become
readily available, we must further elucidate the mechanisms
responsible for stem cell behavior. As we have discussed,
MSCs are subject to many levels of control. Epigenetic
phenomena have only recently been identified as important
regulators of MSC fate. Numerous epigenetic modifications
occur concomitantly during both osteogenic and adipogenic
differentiation of MSCs. While much knowledge has been
generated regarding the epigenetic modifications responsible
for MSC differentiation, further investigation to this end will
augment our ability to use MSCs therapeutically. Indeed,
it is conceivable that manipulation of epigenetic signatures
associated with multipotency and pluripotency, as well as
modifications associated with lineage-specific differentia-
tion, could direct patient-specific therapy. Identification of
the factors necessary to reprogram mesenchymal-derived
somatic cells to less differentiated states can also provide
insight into the regulation of MSC fate determination.
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