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whether this particular response to recurrent obstructive apneas 
in brain PtO2 also occurs in other tissues. Moreover, there are 
no data available to indicate whether the brain PtO2 response 
is similar when the animal is subjected to obstructive apneas or 
to intermittent hypoxia (which excludes recurrent hypercapnia).

The present study was designed to test the following hypoth-
eses. First, the dynamic changes in brain PtO2 in response to 
obstructive apneas or to intermittent hypoxia differ from those 
in other organs on account of specific mechanisms regulating 
cerebral circulation.12 Second, the increased mean PtO2, with 
the persistence of PtO2 swings observed in brain tissue in re-
sponse to obstructive apneas, is a source of oxidative stress that 
could explain the neurological/cognitive consequences of OSA. 
To this end, we measured PtO2 in cerebral cortex, skeletal mus-
cle and visceral fat tissues in rats subjected to noninvasive re-
current obstructive apneas and to intermittent hypoxia, in both 
cases with the same degree of arterial oxygen desaturations. To 
assess the potential oxidative stress induced by obstructive ap-
neas and by intermittent hypoxia, consumption of endogenous 
antioxidant reduced glutathione (GSH) and lipid peroxidation 
in tissues was also measured.

MATERIALS AND METHODS

Animal Preparation
This study was carried out on 98 Sprague-Dawley male rats 

(300-350 g) and was approved by the Animal Experimentation 

INTRODUCTION
Obstructive sleep apnea (OSA), which is reported in about 

4% and in 2% of middle-aged men and women, respectively,1,2 
is characterized by recurrent episodes of partial or complete 
obstruction of the upper airway during sleep, with consequent 
decreases in oxygen saturation. Cyclical changes in oxygen sat-
uration mimicking OSA have been related to oxygen-reactive 
species production3,4 and neuronal apoptosis5-8 and/or necrosis.9 
These deleterious effects caused in part by intermittent hypoxia 
in brain tissue can contribute to the development of cognitive 
impairment associated with OSA.7,10

In a rat model of obstructive apneas we recently documented 
a rapid increase in oxygen partial pressure (PtO2) in cerebral cor-
tex in response to obstructive apneas, despite recurrent cyclical 
changes in arterial oxygen saturation (SpO2).

11 The interpreta-
tion of this result was that the brain could be partially protected 
from recurrent obstructive apneas, probably through compen-
satory mechanisms such as hypercapnia, but it is not known 
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software, Unisense A/S, Denmark). The oxygen sensor was in-
serted 2 mm from the tissue surface by a micrometric positioner 
and then slightly retracted (≈ 0.5 mm). The basal value of PtO2 
had to be within the 30-50 mm Hg range and also remained 
stable before experiments. PtO2 and SpO2 signals were continu-
ously sampled at 60 Hz and stored for subsequent analysis.

Application of Obstructive Apneas and Intermittent Hypoxia
Twenty-four animals were subjected to recurrent obstructive 

apneas with a duration of 15 s each and 60 apneas/h for 1 h 
during PtO2 measurements of cerebral cortex (n = 8), skeletal 
muscle (n = 8), and visceral fat (n = 8) tissues. The obstructive 
apnea model used was based on a previously described meth-
od13 which mimicked the cyclical airway obstructions and oxy-
gen desaturations observed in severe OSA patients.14 Briefly, 
this model consists of a nasal mask with 2 tubes, one open to 
the atmosphere and the other connected to an airflow source to 
avoid rebreathing during spontaneous breathing. Electrovalves 
positioned in each tube were synchronically closed to generate 
controlled obstructive apneas (Figure 1A).

In another group of 26 rats, the animals were subjected to 
intermittent hypoxia for 1 h during PtO2 measurements of ce-
rebral cortex (n = 8), skeletal muscle (n = 9), and visceral fat 
(n = 9) tissues. To this end, the noninvasive model for applying 
obstructive apneas was modified to apply intermittent hypoxia. 
In this case, one tube of the nasal mask remained open to the 
atmosphere, but the other tube was connected to a controlled 
3-way electrovalve to connect the input of the nasal mask with 
either room air (21% O2) or hypoxic air with 5% O2 (Figure 1B). 
The timing used for intermittent hypoxia was identical to that 
used during obstructive apneas, reaching similar values of SpO2 
desaturations (Figure 2A).

Measurement of Glutathione, Vascular Endothelial Growth 
Factor, and Hsp-70 in Tissues

A second series of 24 animals was anesthetized and subject-
ed to obstructive apneas (n = 8), intermittent hypoxia (n = 8), or 
control (spontaneously breathing room air; n = 8), according to 
the protocol described above but without exposing the tissues 
or inserting the PtO2 microelectrode, thus avoiding any surgical 
intervention. After 1 h, the animals were sacrificed by exsangui-
nation, and tissue samples were excised and stored at −80°C for 
further measurement of the levels of GSH, vascular endothelial 
growth factor (VEGF), and heat shock protein (Hsp-70).

The cortex of one brain hemisphere was dissected out and a 
portion of visceral fat and gracilis muscle were also obtained 
for biochemical determinations. Total (GSx) and oxidized 
(GSSG) glutathione concentration (nmol/mg of protein) were 
measured as described,15 with minor modifications.16 Tissue 
was sonicated in 3.3% 5-sulfosalicylic acid (1 mL per 200 mg 
of tissue) and centrifuged at 12,000 xg for 30 min at 4°C. The 
supernatant was used to determine GSx and GSSG, whereas the 
pellet was used to determine total protein concentration (Brad-
ford Method, Bio-Rad). The reaction is based on the oxidation 
of DTNB (5,5’-dithio-bis-(2-nitrobenzoic acid)) followed by 
measurement at 405-412 nm in a spectrophotometer. The for-
mation of GSSG was determined in 100 μL of the supernatant 
after the addition of 2 μL of 2-vinylpyridine. The content of 
GSH was estimated as follows: GSH = GSx − (2*GSSG). De-

Ethical Committee (CEEA) of the University of Barcelona. Fif-
ty rats were anesthetized intraperitoneally with urethane 10% 
(1 g/kg), and the skeletal muscle (gracilis muscle) (n = 17), vis-
ceral (intra-abdominal) fat (n = 17), or cerebral cortex (2 mm 
anterior to bregma and 2 mm left from midline) (n = 16), tissues 
were exposed for PtO2 measurement. Arterial blood saturation 
(SpO2) was measured by a pulse oximeter positioned in the rat 
leg (504; Critical Care Systems, Inc., Waukesha, WI), and the 
rats were randomly subjected to either obstructive apneas (n = 
24) or intermittent hypoxia (n = 26). In another 2 groups, each 
with 24 animals, markers of oxidative stress and hypoxic acti-
vation were assessed in different tissues.

Tissue Oxygen Partial Pressure Measurements
Real-time PtO2 measurements were made in the tissues of 

the anesthetized animals by a modified Clark’s polarographic 
fast-response oxygen micro-electrode pipette (OX-50, Uni-
sense A/S, Denmark; 50 μm tip diameter, 90% response time < 
2 s). The spatial resolution is equal to the outside tip diameter 
of the sensor. The oxygen micro-electrode was connected to 
an amplified picoammeter (Unisense A/S, Denmark) and then 
was calibrated in water with 100% O2, 21% O2, and oxygen-
free solutions (NaOH 0.1 M, sodium ascorbate 0.1 M; MicOX 

Figure 1—Experimental setup. Anesthetized animals were subjected to 
recurrent obstructive apneas (A) or to intermittent hypoxia test (B). EV, 
electrovalves. See text for explanation.

A

B

Obstructive apneas
15 s of apnea
60 apenas/h for 1 h

Intermittent hypoxia
15 s of hypoxia (5% O2)
60 hypoxic events/h for 1 h

EV

EV

21% O2

EV

21% O2

5% O2



SLEEP, Vol. 34, No. 8, 2011 1129 OSA and Intermittent Hypoxia in Cerebral Oxygenation—Almendros et al

Figure 2—Time course of the maximum (Δ) and minimum (▼) values of arterial oxygen saturation (SpO2) (A) and oxygen partial pressure (PtO2) in cerebral 
cortex (B), skeletal muscle (C), and visceral fat (D) during application of recurrent obstructive apneas or intermittent hypoxia. Baseline value is represented 
by an open circle. Results are shown as mean ± SE. Time dependence within obstructive apneas or intermittent hypoxia groups: *P < 0.05 respect with to 
baseline, †P < 0.05 respect with to the first apneic event. Comparisons between obstructive apneas vs. intermittent hypoxia for corresponding values in each 
tissue: #P < 0.05.
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analysis followed by the Dunnett multiple comparison test. All 
data are presented as mean ± SE.

RESULTS
SpO2 presented a stable cyclical pattern, with constant maxi-

mum and minimum values, during the entire duration of the ex-
periment. Remarkably, no significant differences in the cyclical 
SpO2 desaturations were observed after the application of either 
obstructive apneas (from 93.9 ± 0.5 %O2 to 82.9 ± 1.3 %O2) or 
intermittent hypoxia stimuli (from 93.8 ± 0.5 %O2 to 81.3 ± 2.1 
%O2) (Figure 2A).

When comparing intermittent hypoxia and obstructive ap-
neas, a significantly different pattern was observed in cerebral 
cortex PtO2, which experienced a fast increase during the ob-
structive apnea protocol (Figure 2B). Moreover, the maximum 
PtO2 in cerebral cortex showed a significant increase from 38.2 
± 3.4 mm Hg at baseline to 54.8 ± 5.9 mm Hg after 60 min of 
recurrent obstructive apneas (P < 0.001, df = 7, F = 1.361). The 
minimum values attained at the end of the hypoxic period were 
also increased (P < 0.001, df = 6, F = 1.799) from 30.3 ± 3.3 mm 
Hg at the first apneic event to 44.4 ± 5.1 mm Hg at 60 min. In-
terestingly, this type of increase did not occur in those animals 
subjected to intermittent hypoxia, where both maximum and 
minimum values presented a tendency to decrease, showing (in 
both cases) statistical differences in the interaction between in-
tervention (apneas/intermittent hypoxia) and time (P < 0.001, df 
= 7, F = 7.423 and P = 0.001, df = 6, F = 4.165, for maximum 
and minimum values, respectively) (Figure 2B). In contrast, 
skeletal muscle and visceral fat PtO2 presented a stable pattern, 
similar to that of SpO2, without any differences between the ap-
plication of obstructive apneas or intermittent hypoxia during 
the 1 h studied (Figure 2C and 2D).

GSH in brain tissue from rats subjected to obstructive apneas 
(46.21% ± 15.21%) was significantly (P = 0.023) lower than 
in the controls (100% ± 14.67%), indicating a fast consump-
tion of this natural antioxidant during the period of obstructive 
apneas. In contrast, in brain GSH levels after intermittent hy-
poxia (104.0% ± 15.5%) were not significantly different from 
controls (Figure 3A). Furthermore, the GSH content in fat (Fig-
ure 3B) and muscle (Figure 3C) did not significantly change 
after either obstructive apneas or intermittent hypoxia. The fast 
consumption of GSH in brain tissue might be due to the oxida-
tive stress generated by the increased brain oxygenation during 
obstructive apneas. In support of this, the levels of LPO were 
significantly increased (P < 0.05) in the brain after obstructive 
apneas (5.81 ± 1.35 µM) compared to control (2.07 ± 0.57 µM), 
whereas only a nonsignificant tendency to higher LPO levels 
was observed after the intermittent hypoxia challenge (4.41 ± 
0.71 µM) (Figure 4A). Moreover, the increase of LPO result-
ing from obstructive apneas was not found in skeletal muscle 
samples (Figure 4B).

VEGF protein levels in brain tissue did not differ between all 
groups (values are expressed as percentage of controls and are 
the group mean ± SE): obstructive apneas (88.9% ± 6.5%), in-
termittent hypoxia (87.7% ± 3.6%), and control animals (100% 
± 5.1%). Likewise, no changes were found in the expression of 
Hsp-70 between these conditions: obstructive apneas (117.3% 
± 25.1%), intermittent hypoxia (72.8% ± 11.6%), and control 
groups (100% ± 15.9%).

termination of GSH was also done from visceral fat and skeletal 
muscle samples.

The cortex of the remaining hemisphere was used for protein 
extraction and Western blotting. Total protein was extracted us-
ing radioimmunoassay buffer (RIPA) containing 0.01M PBS, 
sodium dodecyl sulphate, sodium deoxycholate, the non-ionic 
detergent Igepal, and the complete protease inhibitor cocktail 
(Boehringer Mannheim, Mannheim, Germany). The protein 
concentration of samples (solubilized in 800 µL of NaOH 0.2 
N) was determined with the Bradford assay (Bio-Rad, Hercu-
les CA, USA). Twenty-five μg of the protein extracts were run 
in denaturing 10% polyacrylamide gels and were transferred 
to a polyvinylidene difluoride membrane (Immobilon-P, Mil-
lipore, Bedford, MA, USA). Membranes were incubated over-
night at 4°C with one of the following primary antibodies: 
Anti-Hsp72/73 (Ab-1) mouse mAb (Hsp-70) (Calbiochem) 
diluted 1:2000, and a rabbit polyclonal antibody against VEGF 
(#ab46154, Abcam) diluted 1:500. A mouse monoclonal an-
tibody against β-actin (Clone AC-15, Sigma-Aldrich) diluted 
1:100,000 was used as loading control. The optical density of 
the bands was measured by densitometric analysis (Versadoc, 
Bio-Rad). Band intensity was divided by the intensity of β-actin 
to correct for differences in the amount of protein loaded in 
each gel. Samples were loaded into several gels that always 
contained samples from the 3 experimental groups. Then, to 
correct for differences in the exposure of different blots, the 
percent changes versus controls within each blot were calcu-
lated. In this way, samples were normalized allowing for com-
parisons using several blots.

Lipid Peroxidation Measurements
In a third series of 24 animals, treatment and groups iden-

tical to the second series, brain and skeletal tissue samples 
were used for measurement of lipid peroxidation as a marker 
of oxidative stress. Tissue lipid peroxidation was assessed by 
measuring the content of lipid hydroperoxide (LPO) using an 
Assay Kit (#705002, Cayman Chemical, USA) that measures 
the hydroperoxides directly utilizing the redox reactions with 
ferrous ions after lipid hydroperoxide extraction into chloro-
form. The assay was carried out following the instructions of 
the manufacturer.

Data Processing and Statistical Analysis
Both arterial SpO2 and PtO2 of cerebral cortex, skeletal 

muscle, and visceral fat tissues were measured at baseline and 
at the minimum and maximum attained during the first swing 
in PtO2 caused by obstructive apneas or intermittent hypoxia, 
and during the following PtO2 swings every 10 min up to 1 h. 
Two-way repeated measures ANOVA was used to examine the 
time dependence of the maximum (7 degrees of freedom [df]; 
baseline, first event and every 10 min up to 1 h) and minimum 
values (6 df; first event and every 10 min up to 1 h) of PtO2 in all 
the tissues investigated, and also to know whether there was a 
significant difference between intervention (obstructive apneas 
vs. intermittent hypoxia) for the same time-points. Similarly to 
PtO2, comparisons between corresponding maximum and mini-
mum values of SpO2 during both interventions were tested by 
2-way repeated-measures ANOVA. The differences in GSH, 
VEGF, Hsp-70, and LPO were assessed by 1-way ANOVA 
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The experimental setting for applying obstructive apneas was 
based on a previously reported experimental model of OSA13 
that mimicked the recurrent asphyxia and inspiratory efforts in 
severe OSA patients. In contrast, the intermittent hypoxia pro-
tocol used in this work was chosen to replicate only the cycli-
cal arterial desaturations of the obstructive apnea protocol. The 
differences observed when the animals were subjected to both 
stimuli suggest that the use of obstructive apneas appears to be 
more adequate than the more commonly used setting of inter-
mittent hypoxia to investigate the mechanisms involved in the 
brain response to OSA.

The increase in cerebral cortex PtO2 during recurrent ob-
structive apneas suggests the presence of a number of com-
pensatory mechanisms that increase the availability of oxygen 
in cerebral tissue in response to this stimulus, but not during 
application of intermittent hypoxia. This differential response 
could be due to the concomitant hypercapnia generated during 
the recurrent asphyxia in those animals undergoing the obstruc-
tive apnea protocol. A high level of CO2 has been suggested that 
could modulate brain tissue oxygenation during airway occlu-
sion.17 Indeed, hypercapnia induces a higher delivery of oxygen 
from erythrocytes,18 and by inducing vasodilation,19 it promotes 
adaptive changes in cerebral hemodynamics that increase cere-
bral blood flow17,20,21 and can cause hyperperfusion.22 In addition 
to hypercapnia, other mechanisms might contribute to adaptive 

DISCUSSION
This study reveals a rapid recovery of PtO2 values in ce-

rebral cortex, but not in the other tissues analyzed in animals 
subjected to recurrent obstructive apneas. In contrast, this par-
ticular brain tissue response was not found in animals subjected 
to intermittent hypoxia, although these data may suggest that 
cerebral cortex could be protected in some way from hypoxic 
periods caused by obstructive apneas. The decrease in antioxi-
dant GSH and the increase in lipid peroxidation observed in 
brain tissue during obstructive apneas—but not during the in-
termittent hypoxia—suggest that the response of increased PtO2 
in brain tissue occurs at expenses of generating oxidative stress.

Figure 3—Glutathione (GSH) levels in cerebral cortex (A), skeletal 
muscle (B), and visceral fat (C) tissues in control animals and in animals 
subjected to recurrent obstructive apneas or intermittent hypoxia. Results 
are shown as mean ± SE. *P < 0.05.
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events in both protocols were similar to those observed in SpO2 
(Figure 2). These results provide new insights into PtO2 behav-
ior in skeletal muscle during obstructive apneas, as previous 
data were recorded only in response to intermittent hypoxia.29 
Interestingly, the PtO2 response observed in visceral fat tissue 
was similar to that found in skeletal muscle. Therefore, both 
skeletal muscle and visceral fat tissues were under hypoxic 
conditions with respect to baseline during either recurrent ob-
structive apneas or intermittent hypoxia, and no evidence for 
increased oxidative stress was found in these tissues after 1 h of 
challenge. However, the hypoxic condition of fat tissue could 
worsen the local hypoxic environment under obesity, a common 
condition in OSA patients, since it is associated with adipocyte 
hypertrophy and enhanced adipokine and leptin production.30 
Overall, the PtO2 patterns experienced by all the tissues inves-
tigated suggest a selective increase of oxygen supply for apneic 
events in cerebral cortex tissue, but not in skeletal muscle and 
visceral fat, which is also supported by a rapid induction of oxi-
dative stress and consumption of GSH antioxidant in cerebral 
cortex compared to the other tissues. These findings could be 
explained in part by a preferential redistribution of blood flow 
to essential organs after arterial chemoreceptors are activated 
by hypoxemia.31,32

Our findings were taken from young healthy animals to iso-
late the effects of obstructive apneas or intermittent hypoxia 
stimuli on tissue oxygenation. Accordingly, direct transla-
tion of the results to patients with OSA would require further 
investigation in animals that mimic more closely the patho-
physiology of the syndrome. For instance, OSA is commonly 
associated with aging, obesity, and hypertension, which can 
promote endothelial dysfunction33; and chronic exposure to 
OSA may affect cerebral circulation.34 Taking into account the 
fact that hemodynamic changes induced by obstructive apneas 
could be affected by age35 and endothelial dysfunction,36 the 
PtO2 behavior observed in the cerebral cortex of young healthy 
animals could be compromised by these coexistent factors. 
Therefore, future studies focusing on the PtO2 response to ap-
neas in aged, obese, diabetic, or hypertensive groups of ani-
mals would be of great interest in ascertaining how each of 
these factors affects brain tissue oxygenation and oxidative 
stress in patients with OSA.
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