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Type 2 diabetes is a metabolic disease that profoundly affects
energy homeostasis. The disease involves failure at several levels
and subsystems and is characterized by insulin resistance in tar-
get cells and tissues (i.e. by impaired intracellular insulin signal-
ing). We have previously used an iterative experimental-theo-
retical approach to unravel the early insulin signaling events in
primary human adipocytes. That study, likemost insulin signal-
ing studies, is based on in vitro experimental examination of
cells, and the in vivo relevance of such studies for human beings
has not been systematically examined. Herein, we develop a
hierarchical model of the adipose tissue, which links intracellu-
lar insulin control of glucose transport in human primary adi-
pocytes with whole-body glucose homeostasis. An iterative
approach between experiments and minimal modeling allowed
us to conclude that it is not possible to scale up the experimen-
tally determined glucose uptake by the isolated adipocytes to
match the glucose uptake profile of the adipose tissue in vivo.
However, a model that additionally includes insulin effects on
blood flow in the adipose tissue andGLUT4 translocation due to
cell handling can explain all data, but neither of these additions
is sufficient independently. We also extend the minimal model
to include hierarchical dynamic links to more detailed models
(both to our own models and to those by others), which act as
submodules that can be turned on or off. The resulting multi-
level hierarchical model can merge detailed results on different
subsystems into a coherent understanding of whole-body glu-
cose homeostasis. This hierarchical modeling can potentially
create bridges between other experimental model systems and
the in vivo human situation and offers a framework for system-
atic evaluationof the physiological relevance of in vitroobtained
molecular/cellular experimental data.

The incidence of type 2 diabetes is rapidly increasing inmany
parts of the world, to a large extent the result of overeating and
a sedentary life style. The disease is characterized by malfunc-
tioning energy homeostasis, in particular glucose homeostasis,
which is due to both insulin resistance in insulin-responding
tissues and to insufficient insulin release by the pancreatic
�-cells. Insulin controls the flow of energy substrates between
its target tissues (adipose, muscle, and liver), during both eating
and fasting states, through the insulin signaling network. Insu-
lin signaling in adipocytes is of special interest because resist-
ance of the adipose tissue appears to influence other target tis-
sues of the hormone, in particular muscle and liver, to become
insulin-resistant (1). This insulin resistance in the target organs
progresses to type 2 diabetes when the insulin-producing
�-cells fail to compensate by releasing more insulin. Energy
homeostasis is a complex process, involving several layers of
regulation, multiple organs, different cell types, and many hor-
mones and metabolites. This complexity has hampered pro-
gress toward understanding the pathogenesis and treatment of
the disease. This complexity is also the main reason why math-
ematical modeling increasingly is used as a tool to complement
and analyze experimental results when untangling various bio-
logical subsystems. Nevertheless, although such modeling is
mainstream in physics and engineering, its application to biol-
ogy and medicine is still in its infancy.
Insulin signaling is initiated by insulin binding to the insulin

receptor (IR),3 which has been modeled to some extent (2–5).
These modeling efforts have considered nonlinear behaviors,
such as cooperativity (4) and the effects of more than one insu-
lin molecule binding to the IR (5). Binding of insulin leads to
rapid autophosphorylation and endocytosis of the insulin-au-
tophosphorylated insulin-IR complex and an increased recep-
tor tyrosine protein kinase activity toward downstream signal
mediators, such as the insulin receptor substrate-1 (IRS1). The
dynamics of the IR-IRS1 interaction have also beenmodeled (6,
7), and we recently completed a comprehensive and integrated
experimental/modeling-based analysis of the early molecular
events in IR signal transduction (8). Therein, we sorted out the
importance of different possible feedback mechanisms during
the first phase of the signaling and concluded that a negative
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feedback mechanism that requires endocytosis of IR is an
essential part of the first 5 min of signaling. Notably, these con-
clusionswere drawnwithout relying on knownor uniquely esti-
mated parameter values. Furthermore, many other plausible
mechanisms, such as insulin degradation, competitive inhibi-
tion, and endocytosis or feedbacks on their own, could be
rejected as sole mechanistic explanations for the experimental
observations. Note that such rejections are strong conclusions
and at least as important as the ultimately proposed model (8).
More downstream events in insulin signaling have been less

modeled, but one earlier model by Sedaghat et al. (7) involves
many of themost studied signaling intermediates.However, the
model suffers from problems such as unrealistic parameters
and concentrations. There are also some similarly detailed
models that have been developed using alternative frameworks,
in particular Boolean networks (9, 10). Boolean networks are
good for preliminary modeling of a system, but Boolean net-
works do not make use of the full information content in data
and cannot accurately investigate either gradual and quantita-
tive changes or feedbacks and other cyclic mechanisms.
Regarding connection of intracellular signaling with whole-
body glucose homeostasis, Chew et al. (11) have connected the
Sedaghat model (7) with a previously published whole-body
model (12). They link the two levels simply by scaling up cellu-
lar glucose uptake to the whole-body level. A more detailed
description of that link is included in the multilevel model by
Kim et al. (13), but this model is based on little data, especially
compared with the high complexity of the model. The discrep-
ancy between the complexity in themodel byKim et al. (13) and
the information content in the data severely limits the possibil-
ities to validate the model and to use their modeling approach
to draw conclusions. Another potentially interesting multilevel
modeling initiative is the PhysioLab platform, developed by the
company Entelos (14). This platform is, however, commercial
and therefore not available to the scientific community. An
interesting recent model by Dalla Man et al. (15) describes
whole-body glucose homeostasis in an organ-based manner.
The glucose and insulin fluxes in this model are particularly
interesting because they are based on virtually model-indepen-
dent measurements in more than 200 healthy human subjects.
Notably, a type 1 diabetes version of this model has been
accepted by the Food and Drug Administration as a possible
replacement for studies on animals when certifying certain
insulin treatments. TheDallaManmodel is nevertheless of lim-
ited use in, for example, drug screening or identification of drug
targets because it lacks intracellular details regarding signaling
andmetabolic pathways. In summary, existingmodels for insu-
lin signaling and whole-body glucose homeostasis are either
focusing on one level only or are so overparameterized that they
fail to draw the kind of strong conclusions that can be drawn
from minimal models and a hypothesis-testing approach.
Most modeling of energy homeostasis and insulin signaling

is,moreover, based ondata obtained in cell lines or animals, and
the relevance of these model systems for the true in vivo situa-
tion in human beings is usually not known. Isolated primary
human cells from biopsies or surgery, such as isolated adi-
pocytes, arguably constitute a highly relevant experimental
model system to study the molecular and cellular basis of

human physiology and human disease, such as type 2 diabetes.
These model systems are nonetheless in vitro models, and the
relation between an isolated cell system and the same cells in
the intact organism (i.e. in vivo) has to be sorted out to fully
exploit the understanding and therapeutic potential of experi-
mental research at themolecular/cellular level. Linking the two
levels is important in drug development because the intracellu-
lar level is where metabolic and other types of dysfunctions
occur and where drugs act, whereas the whole-body level is
where diseases aremanifested and clinical diagnosis is possible.
Herein, we extend our previously developed parameter-free

modeling approach (8) to a hierarchical multilevel modeling
framework, which we use to link insulin signaling in isolated
human adipocytes with whole-body glucose homeostasis. In
this process, we can reach strong conclusions because of
already published high quality data of the in vivo organ fluxes in
response to a meal (15). In our newmodeling framework, these
in vivo fluxes serve as constraints to an adipocyte-based organ
model and allow us to conclude (as opposed to just propose)
that in vitro insulin signaling and control of glucose uptake in
isolated adipocytes is insufficient to explain the in vivo glucose
uptake profile of the adipose tissue.We also proposemechanis-
tic explanations for the observed discrepancy, which are pre-
sented in aminimal acceptablemodel.We also extend thismin-
imal model into a detailed hierarchical model where differently
detailed submodules of the insulin signaling network can be
turned on or off and which also allows for future inclusion of
more details as newknowledge anddata are obtained.Ourwork
demonstrates for the first time a methodology to (i) assess the
physiological relevance of molecular/cellular data obtained in
in vitro experimental model systems and (ii) merge such data in
an expandable and internally consistent body of knowledge for
whole-body glucose homeostasis.

MATERIALS AND METHODS

Subjects—Informed consent was obtained from all partici-
pating individuals. The procedures were approved by the
Regional Ethics Committee at Linköping University and were
performed in accordance with the Declaration of Helsinki.
Abdominal subcutaneous fat was obtained, during elective sur-
gery with general anesthesia, from female patients recruited
consecutively at the Clinic of Obstetrics and Gynecology at the
University Hospital in Linköping. The patients were usually
subjected to hysterectomy and they were not diagnosed with
diabetes.
Glucose uptake (see below) was determined at 0.5 mM 2-de-

oxyglucose in adipocytes obtained from subjects 39–76 years in
age (average 50 years) with bodymass index (BMI) of 19.2–28.2
kg/m2 (average 23.0 kg/m2) and at 5 mM 2-deoxyglucose from
subjects 35–74 years in age (average 55 years)withBMIof 23.2–
36.2 kg/m2 (average 27.2 kg/m2).

We calculated percentage of body fat fromBMI, bodyweight,
age, and gender according to Ref. 16 and thus obtained each
individual’s volume of adipose tissue. We then calculated the
whole-body glucose uptake inmg of glucose/kg of bodyweight/
min (same unit as in the Dalla Man model (15)) by accounting
for the adipose tissue volume and the body weight of each
subject.
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Isolation and Incubation of Adipocytes—Adipocytes were
isolated from subcutaneous adipose tissue by collagenase (type
1; Worthington) digestion as described previously (17). Cells
were washed in Krebs-Ringer solution (0.12 M NaCl, 4.7 mM

KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, and 1.2 mM KH2PO4) con-
taining 20 mM HEPES, pH 7.40, 1% (w/v) fatty acid-free bovine
serum albumin, 100 nM phenylisopropyladenosine, and 0.5
units/ml adenosine deaminase with 2mM glucose, at 37 °C on a
shaking water bath (18). After overnight incubation (18) cells
were washed and incubated with insulin (19).
Protein Phosphorylation—The protein phosphorylation data

used were compiled from previous (18, 20) and unpublished
work. In brief, cell incubations were terminated by separating
cells from medium using centrifugation through dinonylphta-
late. Tominimize postincubation signalingmodifications in the
cells and proteinmodifications, which can occur during immu-
noprecipitation, the cells were immediately dissolved in SDS
and�-mercaptoethanol with protease and protein phosphatase
inhibitors, frozen within 10 s, and thawed in boiling water for
further processing (17). Equal volumes of cells as determined by
lipocrit (i.e. total cell volume)were subjected to SDS-PAGE and
immunoblotting (18). The phosphorylation of IRS1, IR, and
protein kinase B (PKB) was normalized to the amount of IRS1,
IR, and PKB protein, respectively, in each sample.
Determination of Glucose Transport—After transfer of cells

to mediumwithout glucose, cells were incubated with the indi-
cated concentrations of insulin for 15min, when glucose trans-
port was determined as uptake of 0.05 mM or 0.5 mM 2-deoxy-
D-[1-3H]glucose (18, 21), as indicated, during 30 min. To
determine the transport at 5 mM of 2-deoxy-D-[1-3H]glucose,
cells were incubated with or without 100 nM of insulin for 20
min, when glucose uptake was determined every minute for 5
min. The slope of the linear uptake curve was used to calculate
the rate of uptake. 2-Deoxyglucose at 5 mM had no untoward
effects on the cells because we ascertained that the uptake of
2-deoxyglucose at 5 mM was comparable with 2-deoxyglucose
at 50 �M in the presence of 5 mM glucose.
Modeling—We used a model-based approach to elucidate

the relation between in vitro insulin signaling in primary
human adipocytes and the in vivo whole-body glucose homeo-
stasis.We thus did not aim to develop a single model but rather
to utilize many models to analyze, evaluate, and compare dif-
ferent hypotheses regarding how a link between intracellular
insulin signaling and whole-body glucose homeostasis can and
cannot be constructed. In a first phase, we developed models
that link insulin signaling in the adipocytes with the adipose
tissue level. In this phase, conclusions were drawn, and it
resulted in a number of rejections and aminimalmodel that can
explain the link. In a second phase, we inserted the minimal
adipose tissue model as a module in the whole-body Dalla Man
model (15) and also addedmore signaling details obtained from
other studies. The resulting model thus bridges all three levels
(whole-body, organ, and intracellular), although the model
from the first phase only bridges the organ and intracellular
levels.
Hypothesis, Model Structure, and Model—We follow the

notations of Ref. 8 and distinguish between a hypothesis, a
model structure, and a model. A hypothesis corresponds to an

overall property of the studied set of assumptions (models),
usually corresponding to the presence or absence of a specific
mechanism.We study four hypotheses, which are denotedMa,
Mb,Mc, andMd, and which correspond to the assumption that
only insulin signaling (Ma), insulin signaling plus handling-in-
duced effects on basal GLUT4 translocation (Mb), insulin sig-
naling plus insulin effects on the blood flow (Mc), or insulin
signaling plus both handling-induced effects on GLUT4 trans-
location and insulin effects on blood flow (Md) is sufficient to
explain the link between the intracellular and organ level. A
model structure is a collection of a set of ordinary differential
equations,

ẋ �
dx

dt
� f�x,p� (Eq. 1)

y � g� x,p� (Eq. 2)

where x represents the states (concentrations of substances), p
represents the kinetic rate constants, y contains the measure-
ment signals (determined, for example, by SDS-PAGE and
immunoblotting), and f and g are nonlinear functions, which
describe a set of specific dynamic/mechanistic assumptions. A
model structure is hence a specific instance of a hypothesis, and
themodel structures for hypothesisMa are denotedMa1,Ma2,
Ma3, etc. A model is a model structure with specified initial
conditions and with values for the kinetic and measurement
parameters. The hypotheses, model structures, and models are
introduced under “Results” and in supplemental Tables S1 and
S2. All model structures are specified in full detail in supple-
mental Figs. S1 and S2, and the principles of constructing and
simulating a model from these are given in the supplemental
Methods. All model equations and simulations files are avail-
able as supplementary material.
Optimization and Statistical Testing—The optimization is

centered on a cost function, V(p), that is given by the sum of
least squares,

V� p� � �
i � 1

N � y�i� � ŷ�i,p��2

��i�2 (Eq. 3)

where y(i) is the measured signal, ŷ(i,p) is the simulated curve,
and this summation is done over all measured mean points,
where the index i runs both over different time points and
measurement signals. For the optimization, we used the Sys-
tems Biology Toolbox for Matlab (22) and its simannealing-
SBAO function, which is a combination of a global simulated
annealing approach with a local, but not gradient-based, down-
hill simplex approach. For the uncertainty analysis of the pre-
dictions, we also performed a modified approach,
simannealingSBAOclustering (8, 23), giving widely different
but still acceptable parameters. Note that shared properties
among all found acceptable parameters, also when the param-
eters are unidentifiable, indicate uniquely identified predic-
tions (referred to as core predictions) (8). In the figures, we
show simulations of models for each of the found extreme
acceptable parameter sets (i.e. the ones that contain a maxi-
mumor aminimumvalue). In other words, in our approach, we
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do not deal with parameter values for the rate constants (for
instance describing the rate of phosphorylation of IR) but cir-
cumvent the problem of determining these parameters by
examining a point approximation of all parameters that give an
acceptable agreement with the measurement data.
The statistical tests were performed primarily using �2 tests,

but we also used a likelihood ratio test (8, 24) to characterize
significant differences between models/model structures.
Regarding degrees of freedom in the �2 test, we tested N-6 and
tested N-9 and N-12, corresponding to a compensation for the
normalization of data and corresponding to normalization plus
an additional three and six identifiable parameters, respective-
ly;Ndenotes the number of data points. Regarding significance,
we tested both 95 and 99%. The uncertainties in the data and in
the adipose tissue module constraints were estimated by the
S.E. because we worked with models for an “average subject.”
The results of the optimizations and statistical tests are sum-
marized under “Results” and in supplemental Tables S1 and S2,
and all Matlab files used for the optimizations and statistical
tests are available as supplemental material.
Differences between Our Approach and Traditional Large

Scale Gray Box Modeling—Our minimal modeling approach is
described in detail elsewhere (8). The approach differs in sev-
eral ways from traditional systems biology approaches. These
differences are summarized inTable 1, where it should be noted
that we have taken a simplified view of traditional modeling in
order to make the main points clear (e.g. also traditional mod-
eling may involve more than onemodel, but our point is that in
our approach we examine more models than are common;
herein we examined �15 model structures corresponding to
four different hypotheses). The focus of our approach is to iden-
tifymodels that can be rejected because rejections are one of the
two main conclusions in our approach. The other type of main
conclusions are made up by the core predictions, which are
shared properties among all acceptable parameters. The han-
dling of parameter values is a key difference between our
approach andmost others because (i) parameter values are usu-
ally not known and not uniquely identifiable based on existing
data, and (ii) such non-identifiability implies that correspond-
ing predictions are weak and non-final. In contrast, the two
types of conclusions we seek, model rejections and core predic-
tions, are strong because they are valid for the entire model
structure (instead of for a model; i.e. a model structure with
specified parameters) and because theywill not be revised in the
future, as long as the existing data are not erroneous.
Hierarchical Modeling—Herein we extended our previously

developed modeling framework to be able to obtain similarly
strong conclusions in multilevel hierarchical modeling. The

multilevel models (denoted M1–M3) have different extents of
detail included as submodules. To be able to connect the mod-
els consisting of different scales and levels of details, we used a
hierarchical, module-based approach. The technical term for
this approach is object-oriented modeling, and we used one of
the most common object-oriented languages, Modelica, which
can handle multiple domains. An object (which we will refer to
as amodule or a submodule) is a replaceable unit with input and
output signals that must be fulfilled, to maintain the correct
communicationwith the other objects in themodel.We refer to
such input and output signals as module constraints (Fig. 1),
where the input signal parts of module constraints are referred
to as input constraints and where the outputs that should be
produced by the module are referred to as output constraints.
(In our case, the input-output constraints correspond to inter-
stitial insulin and glucose concentrations and to glucose uptake,
respectively.) These module constraints were used in the min-
imal modeling cycle while testing hypotheses (Fig. 2A).
Themain idea in extending our previous approach (8) was to

develop a minimal model for the adipose tissue that bridges
insulin signaling with the adipose tissue input-output profiles
(Fig. 2A). Then, in the second phase (Fig. 2B), we included the
adipose tissuemodule in the whole-body DallaManmodel (15)
and added details corresponding to previous knowledge. In the
first phase, we can draw strong conclusions, and in the second
phase, we can achieve a detailed and multilevel model.
To simulate the Modelica code, we used the software Math-

Modelica (by MathCore Engineering AB, SE58330 Linköping,
Sweden), which is a modeling tool for analysis of dynamical sys-
tems, traditionallyused in the fieldofmechanics.MathModelica is
built up by component libraries for matching applications. By
gathering the components in libraries, it is easy to reuse and
replace the created components and to develop new ones that
fit into an existing hierarchical model. For modeling of biolog-
ical systems, there is a recently developed BioChem library
available (available on the Mathcore Web site). Both Math-
Modelica and the Systems Biology Toolbox for Matlab support
the systems biology markup language (SBML), and it is thus
possible to transfer created models to other software
applications.

RESULTS

We developed a mathematical model for insulin signaling in
the adipose tissue, whichwe inserted as a dynamicmodule in an
existing model for whole-body glucose homeostasis by Dalla
Man et al. (15). Because of our modified hypothesis-testing
approach depicted in Fig. 2, this resulted in a detailed model
that, nonetheless, allows conclusions to be drawn, rather than

TABLE 1
Characterizing features of traditional large scale gray box modeling and the conclusive minimal modeling approach demonstrated herein

Feature Traditional modeling Our approach

Number of models One Many
Mechanistically based model structures Yes Yes
Included mechanisms All known and relevant As few as possible, only those necessary
Main insights from comparing with data Model can explain the data Something crucial is missing
Parameter values A single set of values, from literature and fitting All acceptable parameters
Prediction identification Simulation Shared properties among all acceptable parameters
Type of predictions Non-unique suggestions Uniquely identified
Finality of conclusions No, will be revised in the future Yes, both rejections and core predictions are final
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mere suggestions and descriptions. An important addition to
our earlier approach (8) was that inputs consist of both exper-
imental data andmodule constraints (Figs. 1 and 2). These con-
straints are mandatory for the dynamic fitting of the organ
module to the rest of the whole-body model. The constraints
allowed for a conventional hypothesis-testing approach during
model development (i.e. despite a high complexity of the com-
binedmultilevel model, the constraints allowed for the study of
isolated subsystems and subproblems, with real conclusive
statements, such as rejections of hypotheses, core predictions,
and minimal models). Once found, the minimal model was
inserted as a module in the whole-bodymodel (Fig. 2B). Where
detailed data or prior models are available, these could subse-
quently be filled in as submodules to various parts of the mini-
mal model to obtain a more detailed version of the model (Fig.
2B).
Identification of theAdipose TissueModule Constraints—We

first identified the input and output module constraints that
ensure that our developed adipose tissue models fit in with the
whole-body level. For this, we made use of the organ fluxes of
insulin and glucose that have been obtained experimentally in
the modeling effort by Dalla Man et al. (15, 26, 27). These data
provide the glucose uptake of the combined insulin-sensitive
tissues, mainly corresponding to muscle and fat, which in that
model is described by one entity. To relate our insulin signaling
to these data, we determined the adipose tissue contribution to
the combined tissue data. Previous studies in humans have
shown that in the fasting state and in the postprandial insulin-
stimulated states,�20%of the glucose consumption by insulin-
responding tissues can be attributed to the adipose tissue, and
80% is attributable tomuscle tissues (Table 2). This fractionwas
preserved between the two relevant physiological states (fasting

and eating) covered by the DallaManmodel (15).We therefore
subdivided the Dalla Man model’s insulin-responding glucose
uptake entity in twoparts,muscle and adipose tissue,with static
80/20 proportions. The glucose uptake profile of the adipose
tissue module, when the Dalla Manmodel simulates the break-
down of a meal, is depicted in Fig. 1C. Fig. 1C thus depicts the
output constraints of the module (i.e. the mandated output of
the developed adipose tissue module to which the model is
fitted). The glucose uptake by the adipose tissuemodule should
be obtained with the corresponding tissue concentrations of
glucose and insulin (Fig. 1,A and B) as input constraints. These
adipose tissue module constraints (Fig. 1) are part of all three
data sets (Z1–3) used below.

There are two additional concerns regarding the module
constraints. First, the reported proportions for glucose uptake
by the adipose and muscle tissues range between 15 and 30%
(Table 2). We therefore tested also other proportions in this
range, and none of the key conclusions herein were affected by
such changes to the organ constraints (see below). Second, the
interstitial concentration of insulin has in the DallaManmodel
an unrealistic behavior when approaching steady state; it
becomes very slightly negative (Fig. 1A, broken line). Because
the sizes of the negative concentrations are small, unrealistic,
and lead to numerical and interpretation problems, we shifted
the curve to positive values (Fig. 1A, continuous line).
Accounting for Adiposity, Gender, Age, and Insulin Sensitivity—

This study centers on the combination of two data sets (one in
vivo set and one in vitro set) that have been obtained for two
different populations. Differences in populations include gen-
der, body weight, body constitution (fat/muscle proportions),
etc. and require a careful choice of scaling and conversion into
a common unit when comparing the data. The derivation of a

FIGURE 1. Module constraints. The behavior of an adipose tissue module inserted in a whole-body model is governed by input and output constraints. Input
constraints are used as inputs to the module, and the resulting output of the model must fit the output constraints. A and B, input constraints from the Dalla
Man model in response to a meal (15). A, dashed line, interstitial insulin concentration; solid line, our modified interstitial insulin concentration that is restricted
to positive values. B, interstitial glucose concentration. C, output constraints calculated from the Dalla Man model in response to a meal; rate of glucose uptake
by the adipose tissue module.
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common unit for total uptake of glucose by the adipose tissue is
obviously dependent on the amount of adipose tissue; more
adipose tissue can take up more glucose. However, insulin
resistance in the adipose tissue is manifested in a reducedmax-
imal rate of glucose uptake by the adipocytes (19, 28). The over-
all effect of increased adiposity is thus the result of these two
opposing effects. We therefore examined how adiposity corre-
lated to glucose uptake in adipocytes isolated from subjects
exhibiting a wide range of obesity (measured as BMI). The rate
of glucose uptake by the adipocytes significantly decreasedwith
increasing BMI of the cell donor, bothmaximal rate in response
to insulin andbasal rate in the absence of the hormone (Fig. 3A).
Thus, both insulin-stimulated and basal glucose uptake were
negatively correlated with obesity. Interestingly, this effect of
obesity on glucose uptake disappeared by unit conversion from
uptake per cell, or a volume of cells, to whole-body uptake (Fig.
3B) (see “Materials and Methods”). This means that per kg of

body weight, the increased amount of fat is exactly compen-
sated for by the insulin resistance.We thus used this unit (mg of
glucose/kg of bodyweight/min) in linking the adipocyte in vitro
and in vivo data.
A First Attempt at a Minimal Adipose Tissue Model—To

create a minimal, insulin signaling-controlled adipose tissue
module for glucose uptake, we included insulin activation of IR,
which via phosphorylation of IRS1 and protein kinase B/Akt
(PKB) enhances glucose uptake through the insulin-regulated
glucose transporter (GLUT4). This signaling sequence is per-
haps the most established path between insulin binding and
glucose uptake. The actual situation involves multiple feed-
backs, branch points, dependences on location, and cross-talk
with other regulatory subsystems, but, as we will show,many of
our important conclusions hold also for this simplified signal-
ing network. In addition to glucose uptake by GLUT4, we
included glucose transporter-1 (GLUT1)-catalyzed uptake of

FIGURE 2. Modeling strategy. In the minimal modeling cycle (A), mechanistic hypotheses are tested against experimental data sets, and conclusions are
drawn. Conclusions are in the form of core predictions (uniquely identified predictions) and rejected hypotheses. Non-rejected (i.e. acceptable) minimal
models can be included as organ modules when creating multilevel models (B), provided that the module constraints are fulfilled. The minimal model can
further be extended with more details, as long as the submodules fit their relevant module constraints. The result is a hierarchical multilevel model with
optional submodules of varying complexity.

TABLE 2
Adipose tissue glucose uptake compared with muscle glucose uptake

Nutritional state Total adipose tissue glucose uptake Total muscle glucose uptake Ratio of adipose tissue/muscle Reference

Postabsorptive state 5% of total glucose uptake 20% of total glucose uptake 20/80 40
Postprandial state 7–15% of total glucose uptake 35–40% of total glucose uptake 15–30/70–85 40
Euglycemic hyperinsulinemia 9.5% of total glucose uptake 52.5% of total glucose uptake 15/85 41
Postprandial state 120 �mol/min 650 �mol/min 16/84 25
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glucose, which is not significantly stimulated by insulin. The
resulting model structure is denoted Ma1 (supplemental Fig.
S1) because it is the first model that belongs to our first hypoth-
esis, Ma (Table 3). The Ma hypothesis has as the common
denominator that model structures only include insulin effects
on glucose uptake via the insulin signaling cascade, which is
assumed to be independent of whether the cells are in an in vivo
or in an in vitro situation. The differential equations of a model
structure are given in Fig. 4. Allmodel structures are graphically
depicted in supplemental Figs. S1 and S2, and the model equa-
tions are available as supplemental material.
We complemented the input and output module constraints

described above (Fig. 1) with experimental dose-response data
for insulin stimulation of IR autophosphorylation (Fig. 5A),
receptor phosphorylation of IRS1 (Fig. 5B), phosphorylation of
PKB at threonine 308 (Fig. 5C), and glucose uptake by isolated
primary human adipocytes (Fig. 5D). This combined data set is
referred to as data set Z1 (Table 4).

We fitted the model Ma1 to the data set Z1 (see “Materials
andMethods”), but despite extensive searches in the parameter
space, we could not find an acceptable fit. That even the best fits
were unacceptable was formally tested using a �2 test (see
“Materials andMethods”), which rejected the modelMa1 with
a significance of �0.05. We examined several variations of the
same hypothesis, involving feedbacks (models Ma2 and Ma3,
supplemental Fig. S1), Hill equations (modelMa4, supplemen-
tal Fig. S1), a basal translocation of GLUT4 (model Ma5, sup-
plemental Fig. S1), more signaling intermediates (modelsMa6
and Ma7, supplemental Fig. S1), more complex signaling
involving branch points (model Ma7, supplemental Fig. S1),
and IR endocytosis (modelMa6, supplemental Fig. S1). Differ-
ent significance levels and degrees of freedom were tested (see
“Materials and Methods”), and the results are summarized in
Table 3 and Table S1. Some of the tests are on the border of
rejections (Ma4 passes a test with 31 but not with 28 degrees of
freedom;Ma3 is rejected with a significance of p� 0.05 but not
p � 0.01). Because of these ambiguities, we complemented the
�2 test with a likelihood ratio test, which indicates that the two
nested models Ma1 and Ma2 are significantly different
(�2(Ma1)� �2(Ma2)� 54.2� 40.9� 13.3� �2 (1,� � 0.01)�
6.63). In other words, the added parameter in modelMa2 cor-
responding to the positive feedback contributes significantly to
the fit of the model to data. In summary, the two models Ma2
andMa6 pass all tests and thus move to the next step: identifi-
cation of experimentally testable core predictions (Fig. 2A).
TheMinimalModeling Reveals That Insulin-stimulatedGlu-

cose Uptake in Isolated Adipocytes Cannot Account for the
Observed in Vivo Glucose Uptake by the Adipose Tissue—We
sought to identify an approximation of all acceptable parame-
ters forMa2, using as threshold a �2 test with significance level
of 0.05 and 34 degrees of freedom (Fig. 5, A–E). The glucose
uptake data in data set Z1 were determined at 0.5 mM glucose, a
subphysiological concentration (29–31). The predicted dose-
response curves by Ma2 for glucose uptake by the adipose tis-
sue at physiological (5 mM) glucose are shown in Fig. 5F. As can
be seen, also when accounting for the uncertainty in the predic-
tion due to the lack of specific parameter values, a distinct curve
is obtained. A similar prediction is also produced by the model
structure Ma6 (supplemental Fig. S3). These predictions thus
fulfill the conditions for an experimental test; they are core
predictions (8) that are physiologically relevant/interesting and
that can be experimentally tested.
We thus determined glucose uptake by isolated adipocytes at

5mM glucose (Fig. 5G). The expanded data set containing these
newglucose uptake data plus data setZ1 is denotedZ2 (Table 4).
In the next step of the minimal modeling cycle (Fig. 2A), we
tested the model structures Ma2 and Ma6 with the expanded
data setZ2. Optimization plus statistical tests showed that none
of these models were acceptable with 36 degrees of freedom,
even for � � 0.01 (Table 3 and supplemental Table S1). We
further examined models Ma2 and Ma6 with a modified data
set Z2, using two different subdivisions of the adipose/muscle
tissue compartments (15/85 or 30/70), and this also led to rejec-
tions of bothMa2 andMa6.

FIGURE 3. Glucose uptake by isolated adipocytes in relation to BMI. A, rate
of glucose uptake, with (filled circles) or without (open circles) 100 nM insulin, in
relation to BMI of the individual cell donor. B, rate of glucose uptake, with
(filled circles) or without (open circles) 100 nM insulin, multiplied by the fat
tissue volume (in liters, calculated as described under “Materials and Meth-
ods”) and divided by body weight (in kg) of the individual cell donor. Indi-
cated are p values for correlation between rate of glucose uptake and BMI.

TABLE 3
Summary of tested hypotheses

Hypothesis
Data set

Z1 Z2

Ma, intracellular signaling OK Rejected
Mb, in vitro/in vivo different basal GLUT4 translocation OK Rejected
Mc, in vitro/in vivo different blood flow OK Rejected
Md, multiple in vitro/in vivo differences OK OK
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Extension of the Model to Include Effects Other than Insulin
Signaling for Control of Glucose Uptake—The above analysis
showed that all models corresponding to hypothesis Ma are
rejected. The rejection ofMameans that something more than
mere in vitro intracellular insulin signaling to increased glucose
uptake is needed to obtain an adipose tissuemodule compatible
with in vivo determination of adipose tissue glucose fluxes. We
refer to such differences as in vitro/in vivo differences, and they
can correspond to differentmechanisms. Basal translocation of
GLUT4, and thus basal glucose uptake, is a possible in vitro/in
vivo difference because it has been reported that GLUT4 can
artifactually translocate to the plasmamembrane in response to
cell handling (32). It is also possible that the lack of counter-
regulatory factors in the isolated cell system can cause an
increased translocation of GLUT4 in the absence of insulin.We
refer to a model incorporating this GLUT4 translocation
hypothesis asMb (Table 3 and supplemental Fig. S2). Another
possibility is that insulin signaling to enhanced glucose uptake
by the adipocytes is not the only effect of insulin in the adipose
tissue that enhances glucose uptake. Insulin has, for instance,
effects on the blood flow (33) that could affect the availability of
glucose and insulin in the local interstitial tissue surrounding
the adipocytes, which in turnwould effect glucose uptake by the
adipocytes.We refer to this blood flow hypothesis asMc (Table
3 and supplemental Fig. S2).
The results from optimization ofmodel structures belonging

to hypothesesMb orMcwith respect to data setZ2 are summa-
rized in Table 3 and supplemental Table S2. Mb and Mc were
implemented by six model structures together, whereof all are

rejected. We thus rejected both hypotheses Mb and Mc. A
shared property among Mb and Mc is the single included in
vitro/in vivo difference. The next step was therefore to create
variants of the hypotheses with more than one in vitro/in vivo
difference. We refer to the multiple in vitro/in vivo difference
hypothesis as Md. None of the model structures in Md were
rejected when fitting them to the data set Z2 (Table 3 and sup-
plemental Table S2). Additionally, the best model from the
hypothesisMd,Md3, is significantly better than the best mod-
els from the hypotheses Ma, Mb, and Mc (�2(Ma2) �
�2(Md3)� 66.8� 33.8� 33� �2(2,� � 0.01)� 9.2;�2(Mb2)�
�2(Md3) � 54.6 � 33.8 � 20.8 (equal number of parameters);
�2(Mc2) � �2(Md3) � 49.5 � 33.8 � 15.7 � �2(1, � � 0.01) �
6.6). For our furthermultilevelmodeling, we thus choseMd3 as
our minimal model.
Construction of Hierarchical Multilevel Models with Plug-in

Submodules for GreaterMechanistic Detail in Insulin Signaling—
At this point, we had obtained a minimal model (Md3) and left
the iterative scheme in Fig. 2A in order to progress to the next
phase (Fig. 2B). Here we addedmore known signaling interme-
diates and more mechanistic details, as plug-in submodules, to
the minimal model Md3. For more mechanistic details in
upstream insulin signaling, we used a previously developed
model (see Ref. 8; therein referred to as Mifa). Mifa describes
the first few min of the IR-IRS1 phosphorylation dynamics,
which involve IR endocytosis and generation of a negative feed-
back. The Mifa model can explain all of our available data for
this subsystem, including time series to single and multiple
insulin stimulations at different concentrations, responses to

FIGURE 4. Example of model equations. The model equations for Ma2 demonstrate how the models are formulated. The states are the simulated signaling
proteins that are phosphorylated (indicated with p) or non-phosphorylated. Insulin and glucose, the input constraints, are functions of time. Glucose uptake,
the output constraint, is given by an expression depending both on insulin (via GLUT4 in the plasma membrane (GLUT4pm)) and glucose. The model
parameters (i.e. the rate constants) are searched for in the optimization process while fitting models to experimental data and output constraints. The complete
model equations for all models are available as supplemental material.
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inhibition of endocytosis, and measurements of the amount of
internalized receptors (8). We merged this data set for the IR-
IRS1 subsystem with the data set Z2 and denoted the resulting
data set Z3 (Table 4). We then merged the Mifa model as a
submodule within the minimal modelMd3 and referred to the
resulting detailedmodel asM1 (Table 5). Fitting the parameters

FIGURE 5. Simulations by model Ma2 in comparison with data sets Z1 and Z2. A–D, dose response to increasing concentrations of insulin. A, IR phospho-
rylation; B, IRS1 phosphorylation; C, PKB phosphorylation; D, glucose uptake. Simulated results are depicted as blue solid lines (one line for each extreme
acceptable parameter set), and experimental data are depicted as red filled circles with error bars (�S.E.). Experimental data are from isolated adipocytes.
E, glucose uptake of the adipose tissue in response to a meal. Simulated results are depicted as blue solid lines (one line for each extreme acceptable parameter
set), and experimental data are depicted as red filled circles with error bars (�S.E.). Experimental data are from the Dalla Man model (15). F, predicted glucose
uptake (blue solid lines) with 5 mM glucose in the medium. G, experimentally determined (red bars, �S.E.) versus fitted/simulated (blue bars) glucose uptake for
the isolated adipocytes in the presence of 5 mM glucose, with or without 100 nM insulin, as indicated.

TABLE 4
Contents of data sets Z1–Z3

Data set
Adipose tissue

module constraints
Dose-response

phosphorylation data
Glucose uptake
(0.5 mM glucose)

Glucose uptake
(5 mM glucose)

Dynamic
phosphorylation dataa

Z1 X X X
Z2 X X X X
Z3 X X X X X

a Data from Ref. 8.

TABLE 5
Summary of the detailed hierarchical models
The model equations are available upon request.

Detailed model Included modules/submodules

M1 Md3 	 Mifa (from Ref. 8)
M2 M1 	 downstream signaling details
M3 M2 	 Kiselyov model (from Ref. 5)
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inM1 showed that it can explain the Z3 data set (supplemental
Fig. S4).
Downstream insulin signaling to control of glucose uptake

involves branching and feedbacks; we therefore next included
more details regarding some of the most well established such
mechanisms (Fig. 6). First, the signaling from IRS1 to PKB
involves several steps, in particular the phosphoinositide 3-ki-
nase (PI3K) and phosphoinositide-dependent kinase-1 (PDK1).
Second, signaling from PDK1 to GLUT4 has two branches: one
involving PKB and one involving protein kinaseC�/	 (PKC�/	).
Finally, some of the known or hypothesized feedbacks include
feedback from PKB, via the mammalian target of rapamycin
(mTOR) to serine phosphorylation of IRS1, and another one
from PKC�/	 to serine phosphorylation of IRS1; serine-phos-
phorylation of IRS1 is believed to increase or decrease the tyro-
sine phosphorylation of IRS1 and thus affect the insulin signal-
ing through IRS1 (19, 34, 35). All of these mechanisms were
added toM1, and the resultingmodel denotedM2 (Table 5) can
also explain theZ3 data set (supplemental Fig. S5). At this point,
we thus had a detailed hierarchical model of glucose homeosta-
sis with optional adipose tissue plug-in submodules, represent-
ing different extents of mechanistic detail in the insulin
signaling.
Merging of our Hierarchical Model with Models of Others—

We next continued to show how we could further expand the
hierarchical model M2 by merging it with models and insights
obtained by others.

In a recentwork byKiselyov et al. (5), the binding of insulin to
IR, with a focus on the importance of double and triple binding
of insulin to its receptor, has been modeled. That model con-
tains a more comprehensive description of the insulin-IR bind-
ing dynamics than we have tested (8), and it would thus be
valuable to incorporate that model in our adipose tissue mod-
ule. The model by Kiselyov et al., however, has been developed
for other cell types (IM9 and 293EBN cells) and for low temper-
atures to reduce the effect of endocytosis. It is therefore not
possible to use that model’s data or parameter values, but only
the underlying model structure, in our adipose tissue module.
We thus replaced the structure of the insulin binding reactions
in M2 with those in the Kiselyov model, resulting in a final
detailed model M3 (Fig. 7 and Table 5; see supplemental
material) and fitted that model to the data set Z3 (Fig. 8, A–F).
As can be seen, also M3 can describe all our data. Hence, it is
nowpossible to translate the effects ofmultiple insulin-IR bind-
ing (5) to the correspondingwhole-body effects in response to a
meal (Fig. 9, A–F). We thus have three multilevel models with
differently detailed versions of an adipose tissue module (M1,
M2, andM3) that all can explain the complete data set Z3. This
was possible because the differences between the different
detailed models are restricted to certain well defined areas in
the adipose tissue module. Note also that these localized
switches are easy to turn on or off using our object-oriented
software environment (see “Materials and Methods”). We can
therefore refer to the models (M1, M2, and M3) as the same
hierarchical model with modules and submodules of different
levels of detail.

DISCUSSION

Wehave herein extended a previousmodel for insulin signal-
ing, which focused on the early response of the IR/IRS1 subsys-
tem to insulin (8), to include more mechanistic and down-
stream details and a link to whole-body glucose homeostasis.
This has required a closer examination of the data from the two
levels.
Mostmodeling of energy homeostasis and insulin signaling is

based on data obtained in cell lines or animals, and the rele-
vance of these model systems for the true in vivo situation is
poorly understood. Our experimental model system, primary
human cells from biopsies or surgery, is arguably an unusually
realistic model system. Nonetheless, ours is also an in vitro sys-
tem because the cells have been isolated from their native envi-
ronment in the living human body, the consequences of which
we know little. Our herein presented hierarchical modeling
approach is a first attempt to create a bridge between this in
vitro and the whole-body in vivo situation.
Themodeling analysis revealed that the GLUT1- and insulin

signaling-enhancedGLUT4-mediated uptake of glucose by iso-
lated human adipocytes cannot simply be scaled up to explain
the glucose uptake by the adipose tissue in the intact body. This
is a conclusive statement, and it is supported by different types
of arguments. (i) All models belonging to the hypothesis Ma
(i.e.models that scale up the insulin signaling-mediated glucose
uptake by the isolated adipocytes to the corresponding uptake
by the adipose tissue) fail to describe the data set Z2 and are
rejected by statistical tests. Also, all models from the hypothe-

FIGURE 6. Schematic outline of insulin signaling pathways. Insulin binding
to the IR (brown) causes autophosphorylation of IR at tyrosine; thus activated,
IR will phosphorylate IRS1 at tyrosine to create binding sites for Src homology
2 domain-containing proteins, such as PI3K (PI3kinase). Thus activated, PI3K
will phosphorylate phosphoinositides in the cell membrane, allowing PDK1
to phosphorylate and activate PKB and PKC�/	 (PKC). Thus activated, PKB can
activate mTOR in complex with raptor, through which insulin can control
protein synthesis, autophagy, and mitochondrial function. mTOR and protein
kinase PKC�/	 relay feedback signals (green) to phosphorylation of IRS1 at
serine residues. Blue arrows, downstream signaling by insulin; black arrow,
translocation of insulin-regulated GLUT4 from an intracellular location to the
plasma membrane (thick gray line); hatched lines, poorly defined signal paths;
P, phosphate. GLUT1 is not affected by insulin.
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sesMb andMc, which include single in vitro/in vivo differences,
are rejected. (ii) Acceptable models from the hypothesis Md
(which include multiple in vitro/in vivo differences) are signif-
icantly better than the best models from the hypotheses Ma,
Mb, andMc, asmeasured using likelihood ratio testswith a high
significance (p � 0.01). (iii) We have sought to make our con-
clusions independent of a specificmodel structure, by analyzing
a family ofmodels corresponding to each rejected or acceptable
hypothesis. Also, the conclusions are independent of specific
parameter values because model rejections reject the whole
model structure. This parameter value-independent aspect also
holds for core predictions because they are shared properties
among all acceptable parameters (8). The conclusions, how-
ever, rely on the assumption that we have not overlooked any
crucial acceptable parameters or model structures.
The strength of these conclusions can be illustrated by com-

parison with previously published modeling efforts. Concern-
ing models that include both a whole-body and an intracellular
level, we are not aware of any previous examples that could
draw the types of conclusions described herein. Although the
model byKim et al. (13) includes such additional factors thatwe
have concluded are necessary, Kim et al.have not demonstrated
that these factors are required. On the contrary, they have con-
structed a complete model at once. Such a one-model/one-
parameter value approach allows neither for rejection conclu-
sions nor, because of the extremely high dimensionality of the
parameter space, nor for reliable core predictions. Another
example is the modeling by Chew et al. (11), which is based on
a model where the insulin-stimulated glucose uptake has been
scaled in exactly such a way that we show is not possible. They
have not detected the problem because they have not used
input-output constraints, such as those from the Dalla Man
model; this comparison thus clearly demonstrates the impor-
tance of including such module constraints (Fig. 1).
Although several of the models studied in this paper utilize

previously published model structures, all analyzed models are
in fact new. In particular, we have made use of the Dalla Man

model (inM1–M3), theMifa model from (8) (inMa6,Mb3, and
M1–M3), the Sedaghatmodel (inMa7), and the Kiselyovmodel
(inM3), but these borrowed models only appear in certain well
defined areas. More specifically, the Dalla Man model only
appears in M1–M3 at the whole-body level (i.e. the organ and
subcellular levels are new). Similarly, the Mifa and Sedaghat
models only describe the initial insulin signaling (i.e. the parts of
the models describing downstream links to the glucose uptake
and to the organ level are new). The Kiselyov model appears in
the insulin binding level, and the links from insulin binding to
internalization to downstream signaling are new. This indeed
illustrates one of the strengths of our approach, that different
existing or new models are easily incorporated in the model as
defined submodules.
There are different possible candidates for whatmechanisms

the in vitro/in vivo differences might represent. We examined
in detail two possible mechanisms, blood flow (Mc) and an
increased in vitro basal GLUT4 translocation (Mb). Neither of
those fundamentally different mechanistic hypotheses are suf-
ficient to explain the experimental data set Z2, but multiple in
vitro/in vivo differences, as in the hypothesisMd, are required.
The model structures of both Mb and Mc correspond to fairly
loosely specified mechanisms, and therefore there are other
possible interpretations to the same model equations. For
instance, cell-intercellularmatrix interactions in situ have been
reported to affect glucose uptake (36), and this might be
another explanation for the in vitro/in vivo differences. There
are also hormones and metabolites other than insulin with a
regulatory function in the control of glucose homeostasis that
are not included in the Dalla Man model and thus also not in
our model. Such missing entities could serve as alternative
interpretations of the models corresponding to theMc hypoth-
esis. Irrespective of the actual responsible mechanism(s), our
modeling analysis demonstrates the inadequacy of cell-based
data only to describe insulin-controlled uptake of glucose by
the adipose tissue in vivo. As an important corollary, it was not
possible to simply scale glucose uptake by the isolated adi-

FIGURE 7. Hierarchical, module-based modeling; the final multilevel model M3. The left panel depicts the top level part of the model, which is the
glucose/insulin whole-body model from Ref. 15, but with an adipose tissue module extracted from the original single insulin-dependent tissue. The adipose
tissue module in the middle panel is expanded to show the next level of the model, insulin signaling to enhanced glucose uptake via the GLUT4 translocation.
In the right panel, insulin binding to IR is expanded with the insulin-IR binding model from Ref. 5 and the insulin-IR internalization/feedback model from Ref. 8.
Together, all three panels constitute the final hierarchical model, M3.
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pocytes to match the glucose uptake profile of the adipose tis-
sue in an in vivo setting. Such simple scaling was precluded
because the in vitro cell-based data and the in vivo whole-body
data had been obtained under fundamentally different condi-
tions, such as the addition of insulin to cells versus consumption
of ameal, with very different time scales and insulin concentra-
tion profiles over time. It is, for instance, not feasible to mimic
ingestion of ameal by increasing and decreasing the concentra-
tion of insulin added to isolated adipocytes. In contrast, mod-
eling is well suited to deal with such differences by requiring
that a model explain both the in vitro and in vivo uptake of
glucose, given the corresponding inputs. The rejection of a sim-
ple scaling, moreover, is not trivial because some of the model

structures can explain data set Z1 but not Z2, indicating that
details of the model structure are critical.
These conclusions could not have been drawn from a direct

inspection of data, because the in vitro cell-based data and the
in vivo whole-body data were obtained under fundamentally
different conditions, such as the addition of a constant amount
of insulin (cellular data) versus consumption of a meal leading
to time-varying insulin stimulation (whole-body data). Model-
ing is well suited to deal with such differences by simply requir-
ing that a model explain both the in vitro and in vivo uptake of
glucose, given the corresponding inputs.Moreover, some of the
model structures can explain data set Z1 but not Z2, demon-
strating that details of themodel structure and the details in the

FIGURE 8. Simulations of the final hierarchical model M3 compared with data set Z3. Simulated results are depicted as blue solid lines (one line for each
extreme acceptable parameter set), and experimental data are depicted as red filled circles with error bars (�S.E.). A, IR phosphorylation in response to 100 nM

insulin. Experimental data are from isolated adipocytes. B, IRS1 phosphorylation in response to 100 nM insulin. Experimental data are from isolated adipocytes.
C, IRS1 phosphorylation in response to the first 1.2 nM at 0 min and then 10 nM insulin at 4 min. Experimental data are from isolated adipocytes. D, IRS1
phosphorylation in response to 10 nM insulin. Experimental data are from isolated adipocytes. E, dose response for glucose uptake in response to increasing
concentrations of insulin. Experimental data are from isolated adipocytes. F, glucose uptake by the adipose tissue in response to a meal. Experimental data are
from the Dalla Man model (15).
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data series are critical and that the rejection conclusion is
non-trivial.
A further, potentially alternative interpretation to the data

comes from the differences in the subjects examined. TheDalla
Man data are from non-diabetic, healthy middle-aged men,
whereas the adipocytes examined herein were obtained from
non-diabetic, middle-aged women undergoing abdominal sur-
gery. Such gender differences implicate differences in the
amount and location of body fat, which could have a role in the
observed in vitro/in vivo differences. We have, however, com-
pensated for the extent of obesity and for the fact that we study
women, when translating adipocyte glucose uptake to the
whole-body units of measure used in the Dalla Manmodel (see
“Accounting for Adiposity, Gender, Age, and Insulin Sensitiv-
ity”). Likewise, our testing ofmuscle/adipose tissue proportions
for glucose uptake other than 80/20 means that the key rejec-
tions herein probably hold despite the gender difference. To
summarize, we have identified an important object for further
research: to untangle the quantitative role of these potentially
important components that, in addition to insulin signaling in

the adipocytes, may regulate the glucose uptake in the adipose
tissue. In the future, the model will also have to account for
different fat locales and their properties. In particular, it will
have to account for abdominal subcutaneous versus visceral
adipose tissue (37), the latter of which drains to the portal vein
and the liver and may therefore directly affect liver metabolism
through increased fatty acid release. Future models should also
include data obtained during physical exercise, which entails
insulin-independent stimulation of glucose uptake in muscle.
Finally, insulin signaling is one of many subsystems involved

in whole-body glucose homeostasis. There is currently no con-
sensus regarding which of these subsystems is actually most
important for the overall regulation and which of these subsys-
tems are most decisive for the malfunctioning in type 2 diabe-
tes. We have here demonstrated how pieces of knowledge can
be merged together using a hierarchical modeling approach
and also how such an approach efficiently can pinpoint impor-
tant missing components. Therefore, we believe that our hier-
archical multilevel modeling is an important step toward the
achievement of more comprehensive and internally consistent
views of cellular level and whole-body glucose and energy
homeostasis, which will be required for the eventual under-
standing and sound treatment of type 2 diabetes, in linewith the
Tokyo Declaration from 2008 (38, 39).
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Physiol. 255, E218–E220
30. Schaupp, L., Ellmerer, M., Brunner, G. A., Wutte, A., Sendlhofer, G., Tra-

janoski, Z., Skrabal, F., Pieber, T. R., and Wach, P. (1999) Am. J. Physiol.
276, E401–E408

31. Lindpointner, S., Korsatko, S., Köhler, G., Köhler, H., Schaller, R.,
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