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SUMMARY
In this work, we provide a new class of frailty-based competing risks models for clustered failure
times data. This class is based on expanding the competing risks model of Prentice et al. (1978,
Biometrics 34, 541–554) to incorporate frailty variates, with the use of cause-specific proportional
hazards frailty models for all the causes. Parametric and nonparametric maximum likelihood
estimators are proposed. The main advantages of the proposed class of models, in contrast to the
existing models, are: (1) the inclusion of covariates; (2) the flexible structure of the dependency
among the various types of failure times within a cluster; and (3) the unspecified within-subject
dependency structure. The proposed estimation procedures produce the most efficient parametric
and semiparametric estimators and are easy to implement. Simulation studies show that the
proposed methods perform very well in practical situations.
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1. Introduction
In many experimental settings, survival data arise in a clustered form. For example, in
multicenter clinical trials, where failure times are observed for multiple patients in each
center, and in family studies, where ages at onset of a disease are recorded for multiple
members of the same family. Frequently, factors that vary by clusters may exert a powerful
influence on study outcomes. Such cluster effects lead to dependencies among outcomes
within each cluster. It is well known that inferences that ignore the clustering effect can be
seriously misleading (Hougaard, 2000, and references therein). Frailty models (Clayton and
Cuzick, 1985) are becoming increasingly popular for analyzing clustered survival data. In
this approach, the frailties (the random effects) often enter the model multiplicatively to the
hazard function in order to model the correlation among outcomes within a cluster.

Most of the published works dealing with clustered survival data concentrate on estimating
the parameters of one type of event at a time, under the assumption that the censoring
mechanism is independent of the event type of interest conditional on the covariates.
However, this assumption is violated when multiple types of events occur and follow-up of
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some of the events is censored by the onset of the other events. For example, consider a
breast cancer family study with BRCA1 mutation as a covariate. The BRCA1 mutation is
known to markedly increase the risk of multiple cancers: breast, ovarian, and testis cancers
(Risch et al., 2006). Thus, in estimation of breast cancer risk, for example, a subject may be
censored due to death from ovarian cancer or other related causes that occur before the onset
of breast cancer that might otherwise occur. It is well known (Prentice et al., 1978;
Kalbfleisch and Prentice, 2002, Chapter 8, and references therein) that violation of the
independent censoring mechanism as described above may produce biased estimates of
cause-specific marginal hazard function. A possible way to address this problem is to use a
competing risks framework (Kalbfleisch and Prentice, 2002) where the observable
information for a subject is the time to first event among the possible competing events or
censoring for noncompeting reasons.

Limited work has been done on clustered failure time data with competing risks. Bandeen-
Roche and Liang (2002) presented statistical methods for analyzing multivariate failure
times in the presence of competing risks with no covariates and under a multiplicative frailty
effect. Their idea is to model the time to the earliest failure from any cause so that the
overall hazard, which is the summation over the type-specific hazards, equals the standard
frailty model with no competing risks. As a result, the type-specific hazards are being
interpreted as the partition of the overall hazard to the various causes. The work of
Chatterjee, Hartge, and Wacholder (2003) deals with competing risks kin-cohort data where
the covariate of the relatives is unobserved. A piecewise constant nonparametric model of
the cause-specific hazard functions with dichotomous covariate is used. The cause-specific
hazard function is of Prentice et al. (1978). The estimation technique is based on the
“composite-likelihood” approach, where it is assumed that the relatives are independent
given the proband’s covariate. By using the composite-likelihood, the problem is being
simplified to a competing risks problem with no clustered data, and that can be solved by the
method presented in Prentice et al. (1978). Hence, the cause-specific hazards are
consistently estimated, however, the dependence of various competing risks among cluster
members, which is of interest by itself, is not estimated. Katki, Chen, and Parmigiani (2007)
considered a competing risks model for family data with the use of positive-stable copula
model for modeling the dependence among the possible outcomes. However, this specific
choice of copula function induces identical dependence parameters for any pair of outcomes,
an assumption that would likely be violated. Chen et al. (2008) developed a nonparametric
estimator of the cumulative incidence functions under a cause-specific hazard model of
Prentice et al. (1978) with no covariates. The estimators are based on the nonparametric
Nelson–Aalen (Aalen, 1978) estimator of each cause-specific hazard function. It is shown
that the estimators are consistent to the true cumulative incidence functions under the
competing risks model even if event times within cluster are correlated. As in Chatterjee et
al. (2003), the dependence of various competing risks among cluster members is not
estimated.

In this work, we propose a new class of flexible frailty models for competing risks analysis
of clustered survival data with covariates, and proportional hazards frailty model for each
failure type. Flexibility is in the manner of a flexible correlation structure being allowed
among failure types within a cluster. It will be shown that this class of models includes the
model of Bandeen-Roche and Liang (2002) as a special case. Section 2 describes the model
and Section 3 provides examples for the frailty process. The likelihood function and the
parametric and nonparametric maximum likelihood estimators (parametric maximum
likelihood estimators (PMLEs) and nonparametric maximum likelihood estimators
(NPMLEs)) are presented in Section 4. Simulation results are presented in Section 5, where
the proposed PMLEs and NPMLEs are being contrasted with a “naive” approach in which
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the competing risks are mistakenly considered as independent censoring. A data example is
given in Section 6 and a short discussion is given in Section 7.

2. The Proposed Model
We adopt the competing risks model of Prentice et al. (1978) and Kalbfleisch and Prentice
(2002) with the required modifications under a frailty model setting. By this, we avoid
determining the joint distribution of all failure types for a subject, as required by the
approach that uses latent or potential failure times. As a result, our current approach will not
address the question, for example, whether the failure times of different failure types within
a subject are associated, as we are mainly concerned about the cluster-level associations of
failure times of the same or different failure types between subjects. For details regarding
completely modeling the probability laws for competing failure times, readers are referred to
Crowder (2001) and references therein.

Consider n independent clusters, with cluster i, i = 1, …, n, having mi members. For subject
k of cluster i, let  and Cik be the time to the first failure and the censoring time,
respectively, and Zik be a vector of time-independent covariates. For simplicity, we assume
time-independent covariates, but all the developments presented in this article can be
extended readily to the case of time-dependent covariates. Let Jik ∈ {1, …, L} be the type of
the first observed failure and Jik = 0 if censored. Define

. For cluster i, let εi (t) = {εi1 (t), …, εiL (t)} be a
vector-valued random process, t ∈ [0, τ] where τ is the maximal follow-up time. Define ℱit
to be the σ-algebra generated by εi (t) through its history up to and including time t: ℱit = {εi
(u), 0 ⩽ u ⩽ t}.

The overall hazard function of the kth member of cluster i at time t, given the regression
vector Zik and the cluster-level σ-algebra ℱit, is given by

The cause-specific hazard functions are defined by

for j = 1, …, L, where β1, …, βL and λ01 (·), …, λ0L (·) are cause-specific regression
coefficients’ vectors and cause-specific baseline hazard functions, respectively. Although
the vector of covariates Zik is the same for all the failure types, the regression coefficients’
vector can vary among the failure types. Thus, a coefficient can be set to 0 in case its
respective covariate is absent for a particular event. For simplicity of presentation, we
assume that the regression coefficients’ vectors and the cause-specific baseline hazard
functions are identical among a cluster’s members.

If only one of the failure types can occur, then . It
follows that the cause-specific densities equal fjik (t | Zik, ℱit) = λjik (t | Zik, ℱit) Sik (t | Zik,

ℱit), j = 1, …, L, where . Hence, the
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likelihood function can be written in terms of the cause-specific hazards. For the cause-

specific survival function, we have .

The associations between outcomes of members of cluster i are induced by the latent cluster-
specific frailty process history up to the cluster’s maximum observed time, denoted by ℱit̃.
Conditional on the cluster’s frailty process history and the observed covariates, the survival
times within cluster i are assumed to be independent. At any given time ti = (ti1, …, timi), εi
(ti) = {εi (ti1)T, …, εi (timi)

T}T i = 1, …, n are assumed to be independent with density
denoted by f{εi (ti) | θ(ti)} where θ(t) is a vector of unknown parameters.

A multivariate competing risks model involves three types of dependence: (i) Dependence
of failure times of the same failure type between cluster members (e.g., mother and her
daughter with breast cancer). (ii) Dependence of failure times of different failure types
between cluster members (e.g., mother with breast cancer and her daughter with ovarian
cancer). (iii) Dependence of failure times of different failure types within a subject (e.g., a
mother with breast cancer and ovarian cancer). With the above proposed formulation,
associations of types (i) and (ii) are determined by the random process εi (t). The
dependency of type (iii) could come from different sources. Each source can be classified
into one of two types: (a) risks that are being shared by all the family members (e.g.,
exposure to air pollution), and (b) risks that are subject-specific (e.g., average number of
cigarettes smoked per day). The type (a) risks are at the cluster level, and those of type (b)
are at the subject level. The cluster-level dependency is defined by εi (t), however, the
subject-level dependency structure is left unspecified.

3. Examples
Various models can be considered for the distribution of εi (t) i = 1, …, n. Each model
imposes different dependency structure within a cluster. Four examples are presented below.

Example 1: In the special case where βj = 0 for all j = 1 …, L, λ0j (t) = λ0 (t) and exp{εij
(t)} = ωiνij (t) for all j = 1 …, L and t ∈ [0, τ] such that ωi is a single nonnegative
random variable and independent of the nonnegative random vector {νi1 (t), …, νiL (t)},
the above cause-specific hazard model becomes the model provided by Bandeen-Roche
and Liang (2002, equation (6)).

Example 2: If we impose εi (t) = εi, εij = εi for all t ∈ [0, τ] and j = 1, …, L and let εi be a
positive-stable random variable, then the model reduces to the one considered by Katki
et al. (2007) with identical dependence parameters for any pair of outcomes.

Example 3: As a practical motivating example, consider the case where for each j = 1,

…, L,  if the observed time is smaller than or equal to a pre-specified constant,

 otherwise. Let  with density function f (ε |
θ) and unknown vector of parameters θ. Then, for each family i, εi is being determined
by the observed data of the family and its distribution, f (εi | θi)—the marginal
distribution of f (ε | θ), since εi and θi are subvectors of ε and θ, respectively (including ε
and θ). In family studies, this corresponds to a situation that early onset cases (e.g.,
breast or ovarian cancers) may have a different etiology from cases with late onset.

Example 4: Let εi (t) ≡ εi for all t ∈ [0, τ], and consider a multivariate normal
distribution for εi, which provides a flexible and unrestricted covariance matrix. Since
this case is considered in the simulation study and the real data analysis, we explore our
proposed model under the multivariate normal frailty distribution, by using the cause-
specific cross-ratio of Bandeen-Roche and Liang (2002). This provides us a simple tool
in understanding the dependency imposed by this specific frailty model.
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The cross-ratio function of Bandeen-Roche and Liang (2002) can be interpreted as a local
dependency measure of two failure times of different types. Specifically, let  and
(Ji1, Ji2) be survival times and failure types of two cluster members, respectively. The cause-
specific cross-ratio of  of types Ji1 = j1 and Ji2 = j2 is defined as

where S (·, ·) denotes the survival function of  and f (·, ·, j1, j2) denotes the density
function of  of types (j1, j2). Hence, CRj1, j2 (t1, t2) is the ratio of the risk of one
member to fail at t1 due to cause j1 given the other member failed at t2 due to cause j2 to the
risk given the other member not yet failed at all by t2. CRj1, j2 (t1, t2) = 1 indicates
independence of  of j1 and j2 failure types at (t1, t2), and CRj1, j2 (t1, t2) > 1(<1)
indicates positive (negative) correlated  of j1 and j2 failure types at (t1, t2).
Straightforward algebra shows that under the multivariate normal frailty model, if corr (εj1,
εj2) = 0, CRj1, j2 (t1, t2) = 1 for all t1, t2 ∈ [0, τ]. Figure 1 depicts the above cross-ratio
function of two failure types, j1 = 1 and j2 = 2, under the multivariate normal frailty model
with mean zero and various covariance matrices. For simplicity, there are no covariates in
the model and each conditional hazard function at time t, given the frailty variates, equals 1/
(1 − t)0 ⩽ t ⩽ 1. It is evident that the cross ratio is a nonlinear decreasing function of t1 and
t2 as often the situation in family studies (Fan, Prentice, and Hsu, 2000). The cross-ratio
function is also a nonlinear increasing function of the variances/covariance components of
the covariance matrix. The above conclusions hold for any multivariate normal frailty
model, and the hazard functions and the regression coefficients affect the slopes of the CR
curves. It should also be noted that the covariance components of the covariance matrix are
allowed to be negative, yielding CRj1, j2 (t1, t2) < 1.

4. The Likelihood Function, PMLEs, and NPMLEs
Denote the observed data of cluster i, i = 1, …, n, by (Ti, Zi, Ji, δi) where Ti = (Ti1, …,

Timi), , Ji = (Ji1, …, Jimi), and δi = (δi1, …, δimi). For the construction of
the likelihood function, we assume the following: (1) Conditional on Zi and ℱit̃, the
censoring times are independent of the failure times and noninformative for the frailty
process and {βj, λ0j, j = 1, …, L}. (2) The frailty process is independent of Zi. (3) The
covariates’ effect is subject specific, namely fTik, Jik | Zi, εi (t, j | Zi, ℱit̃) = fTik, Jik | Zik, εi (t, j |
Zik, ℱit̃). Hence, the likelihood function, under any choice of distributions f{εi (ti) | θ(ti)}, is
proportional to

(1)

where Nik (t) = δik I (Tik ⩽ t) and Yik (t) = I (Tik ⩾ t) are the failure counting process and the

at-risk process, respectively. Alternatively, let the counting processes  be

defined at time t by , j = 1, …, L. Then, the above likelihood can also
be written as
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(2)

It is easy to see that if the εij (·)’s, j = 1, …, L, are independent, the above likelihood function
factors into a separate components for each cause-specific hazard function λj {t | Z, εj (t)}.
The jth factor is precisely the likelihood that would be obtained if failures of types other
than j were regarded as being censored and the time-dependent frailty variate εij (·) accounts
for the unobservable cluster-level effect related to failure type j. This result is in the spirit of
Prentice et al. (1978, Section 2). However, the case of independent εij (·)’s does not imply
that the L risks are not competing with each other. It only means that the failure time of type
j of one cluster member is independent of the failure time of type k ≠ j of any other cluster
member. However, different failure types can still compete with each other at subject level.

Based on the above likelihood function, various estimation procedures can be proposed. In
what follows, we provide two estimation techniques, one that yields PMLEs for the case
where λ01 (·), …, λ0L (·) are of a parametric form, and another that provides NPMLEs when
the baseline hazard functions are left unspecified.

4.1 PMLEs
In parametric regression models, where the baseline hazard functions follow a parametric
form such as the generalized gamma, log-normal, or log-logistic, one may maximize the
likelihood function (2) directly with respect to βj j = 1, …, J, the parameters of the frailty
process and the parameters involved with Λ0j j = 1, …, J, by using numerical integration.
Alternatively, we provide a simple EM-algorithm for computing the PMLEs: (1) Estimate
the conditional expectation of exp{εij (t)} given the observed data and the current
parameters’ values, denoted by μ̂ij (t). This conditional expectation can be written explicitly
for each specific density f{εi (·) | θ(·)} by using Bayes’ theorem. (2) Estimate βj j = 1, …, J
and the parameters involved with λ0j (·)j = 1, …, J by maximizing

(3) Estimate θ(·) by maximizing , where Ê is defined as the
conditional expectation given the observed data and the current parameters’ estimated
values. Again, this conditional expectation can be written explicitly for each specific density
by using Bayes’ theorem. (4) Repeat Steps (1)–(3) until convergence is reached with respect
to all the parameters’ estimates.

Continuing Example 3 above, for each i = 1 …, n, k = 1, …, mi, and j = 1, …, L, let

 and
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Then, the conditional expectation of exp{εij (t)} becomes

with h = 1 if , and h = 2 otherwise, where θ̃ is a subvector of θ and is being determined

by the joint distribution of . In addition, let θ(r−1) be the current estimated values of
θ. Then, the rth estimate of θ is the solution of the following equations:

Usually, the integrals in the above calculations require numerical integration procedures
such as Gaussian quadrature approximations.

It is well known (Kalbfleisch and Prentice, 2002, among many others) that parametric
regression models often involve stronger distribution assumptions regarding the baseline
hazard function than it is suitable to make. If the parametric models of the baseline hazard
functions are incorrect, the above PMLEs are inconsistent. Therefore, in the following
section, we provide an estimation technique for unspecified baseline hazard functions that is
expected to suffer from some efficiency loss in comparison to the PMLEs, as long as the
baseline hazards are correctly specified.

4.2 NPMLEs
The following NPMLEs is based on the seminal paper of Zeng and Lin (2007). That is, we
regard the maximum partial likelihood estimators and the associated Breslow (1972)
estimators of the cumulative baseline hazard functions as NPMLEs in that they maximize
the nonparametric likelihood where the cumulative baseline hazard functions are regarded as
infinite dimensional parameters.

Specifically, the NPMLEs can be obtained by the following EM algorithm. For j = 1, …, L
define

and

In the M-step, we solve the complete-data score equation conditional on the observed data

and the current parameter estimates. Hence for the estimation of  we solve
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(3)

where  are defined analogously to  while replacing the unknown
exp{εij (t)} by its conditional expectation given the observed data and the current
parameters’ values, μ ̂ij (t) of Step (1) of the PMLEs algorithm.

For the estimation of the cumulative baseline hazard functions,

, we define the estimator of the jth cumulative baseline hazard
by a step function with jumps at the observed failure times of type j, and is given by

(4)

Finally, we estimate θ(·) as in Step (3) of the PMLEs algorithm.

To summarize, the following is our proposed NPMLE estimation procedure: (i) Given the
values of θ and Λ0j, j = 1, …, L, estimate βj, j = 1 …, L, by solving (3). (ii) Given the values
of θ and βj, j = 1, …, L, estimate Λ0j, j = 1, …, L, by using (4). (iii) Given the values of βj

and Λ0j, j = 1, …, L, estimate θ by maximizing . (iv) Repeat Steps
(i)–(iii) until convergence is reached with respect to all the parameters’ estimates.

Denote the true values of ℬ, θ, and = (Λ01, …, Λ0L) by ℬo, θo, and o and their NPMLEs
by ℬ̂, θ ̂, and 𝒜 ̂. Based on Zeng and Lin (2007), it can be shown that for bounded cluster size
mi as the total number of clusters n goes to infinity: (i) ℬ̂ is strongly consistent for ℬo. (ii) θ̂
is strongly consistent for θo. (iii) 𝒜 ̂(·) uniformly converges to o (·). (iv) n1/2{ℬ̂ − ℬo, θ ̂ − θo,
𝒜 ̂ − o} converges weakly to a zero-mean Gaussian process, and the limiting covariance
matrix of {ℬ̂, θ ̂} achieves the semiparametric efficiency bound. A detailed list of the
technical conditions required for the above asymptotic results can be found in Zeng and Lin
(2007, Appendix B, Conditions D1–D4 and D6–D8).

For the variance and covariance estimates, we treat the likelihood as a parametric likelihood
of the regression coefficients and the jump sizes of the baseline hazard functions. Hence, the
inverted observed information matrix is the variance–covariance estimated matrix of all the
parameters’ estimates {ℬ̂, θ ̂, 𝒜 ̂}. However, in practice, this procedure often does not work
because of the large dimension of the observed information matrix. When the interest lies
only in the regression coefficients and the frailty process parameters, the profile likelihood
approach of Murphy and van der Vaart (2000) is recommended. For estimating the variance
of the cumulative baseline hazard estimator as well, the bootstrap approach is recommended
(e.g., Kosorok, Lee, and Fine, 2004), with cluster as the sampling unit.

5. Simulation Study
The following simulation studies are aimed to evaluate the finite-sample properties of the
proposed model and estimation procedure. We considered L = 2 competing risks, 500 and
1000 clusters and two members within each cluster. The cluster-level dependency was
constructed through a zero-mean multivariate normal distribution of the frailty variate ε(t) ≡
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ε = (ε1, ε2) with . In addition, we considered a single U[0, 1]
distributed covariate with regression coefficients β1 = 0.5 and β2 = 2.5 for the two failure
types, respectively. Given (β1, β2, ε1, ε2) and the covariate, we generated the earliest failure
time, To, of each cluster member, from an exponential distribution with parameter γ = ∑j
exp(βj Z + εj). Note that Pr (J = j | To = t) = γj/γ where γj = exp(βj Z + εj). Hence, for
generating the failure type of each cluster member, a Bernoulli random value, x, was
sampled with probability of success γ1/γ, so that x = 1(x = 0) implies J = 1(J = 2). In
addition, independent censoring times were generated from U[0, 0.3]. The integrals were
approximated by a two-dimensional Gauss–Hermite quadrature with 20 × 20 function
evaluations from a one-dimensional Gauss–Hermite quadrature. Results are based on 200
simulated data sets. Table 1 summarizes the censoring rates and the average number of
observed events under each scenario.

We contrasted the proposed PMLEs and NPMLEs with those of the naive analysis that treats
competing risks as independent censoring (see Appendix for details). It should be noted that
the naive estimation procedure coincides with the proposed PMLE and NPMLE in case the
frailty variates εj j = 1, …, J are independent, which in the current context, ρ12 = 0.

The results are presented in Table 2 which include the empirical means and standard
deviations of the estimates. It is evident that both PMLEs and NPMLEs perform very well in
terms of bias and PMLEs are generally more efficient than NPMLEs. In contrast, the naive
approach suffers from substantially biased estimate of the regression coefficient β1 and some
bias in estimation of  and Λ01. Almost no bias is presented in the estimates of β2, , and
Λ02. This can be explained by the sampling design in which we set β1 = 0.5 and β2 = 2.5, so
that event type j = 2 is rarely censored by event type j = 1, while event type j = 1 is often
censored by event type j = 2.

In order to evaluate the efficiency loss due to the unnecessary modeling of the dependency
between the frailty variates, we provide, in Table 3, simulation results of the above setting
but with ρ12 = 0 and (β1, β2) = (1, 1) or (β1, β2) = (0.5, 2.5). Under (β1, β2) = (1, 1), we
observed negligible efficiency loss, if any, with respect to all the parameters for both
PMLEs and NPMLEs. With (β1, β2) = (0.5, 2.5), where event of type j = 2 tends to censor
the other event type but not vice versa, the NPMLE of β1 corresponds to j = 1 suffers from
some efficiency loss (relative efficiency is about 80%) in comparison to the other regression
coefficient β2 (relative efficiency is about 109%). In all the other cases, the efficiency loss, if
any, is very small.

Next, we consider the robustness of the proposed model and the estimation technique when
the frailty distribution of ε is misspecified. Specifically, we assumed a multivariate normal
frailty model but the true frailty variates were generated from a multivariate skewed-normal
distribution (Azzalini and Dalla Valle, 1996). An L-dimensional random variable X is said
to have a multivariate skewed-normal distribution if it is continuous with density function
2ϕL (x; Ω)Φ(αT x) where x ∈ ℛL, ϕL (x; Ω) is the L-dimensional normal density with zero
mean and correlation matrix Ω, Φ(·) is the standard normal distribution function, and α is a
L-dimensional vector. When the shape parameter α, which regulates skewness, equals zero,
the above density reduces to the multivariate normal density with zero mean and correlation
matrix Ω. Figures 2 and 3 provide a graphical demonstration of the discrepancy between the
bivariate normal distribution and the skewed-normal distribution with α = (50, 50)T and
correlation parameter of 0.8, used in the following simulation results. Table 4 presents
simulation results under the skewed-normal distribution with shape parameter of α = (50,
50)T and the correlation parameter value of Ω equals 0.8. The rest of the sampling design is
the same as of Table 2. The results indicate that even under misspecification of the frailty
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distribution the PMLEs and NPMLEs of ℬ and  based on the multivariate normal
distribution, introduce only a small bias in contrast to the naive approach treating the other
event as censored.

Table 5 aimed to study the effect of misspecification of the baseline hazard functions. The
true baseline hazard functions are Λ0j (t) = ψj t2/3 with ψj = 1, j = 1, 2, and the analysis was
performed as if Λ0j (t) = ψj t, j = 1, 2. As expected, the PMLEs are severely biased with
respect to all the parameters, while the NPMLEs are not.

In the Web Appendix we present additional simulation results for the following cases: (1)
small number of clusters, such as 100; (2) two independent covariates; (3) two dependent
covariates; and (4) skewed covariate. In short, it is evident that our methods performs
reasonably well under these scenarios as well.

6. Real Data Analysis: The Washington Ashkenazi Kin-Cohort Study
To illustrate the utility of our proposed model and estimation procedure, we analyze data
from the Washington Ashkenazi Kin-Cohort Study (WAS; Struewing et al., 1997). In this
study, blood samples and questionnaires were collected from Ashkenazi Jewish men and
women volunteers living in the Washington, DC area. Based on blood samples, volunteers
were tested for specific mutations in BRCA1 and BRCA2 genes. The questionnaire included
information on cancer and mortality history of the first-degree relatives of the volunteers.

Currently, we consider a subset of the data consisting of female first-degree relatives of
volunteers (mother, sisters and daughters); two competing events: breast (j = 1) and ovarian
(j = 2) cancers; and a binary covariate that takes a value of 1 or 0 according to presence or
absence of any BRCA1/2 mutations in the volunteer’s blood sample. The data consists of
4153 families with 2–8 relatives (12206 subjects). A total of 896 and 99 subjects were
observed with breast cancer and ovarian cancer, respectively, as their first event. Only 10
families were observed with the two types of events among the relatives (exactly one event
of each type). For the analysis of these data we used only the nonparametric approach as it is
not obvious which parametric form would fit best for the misspecified baseline hazard
functions, if any. Given our simulation results for the misspecified baseline hazard function,
the NPMLEs may be more appropriate here.

Table 6 presents the NPMLEs based on the two-dimensional normal frailty model for the
association of outcomes of family members. Namely, (εi1, εi2)T are bivariate time-
independent normally distributed with mean zero and the covariance matrix consists of the
parameters . We used a time-independent distribution for the frailty process due
to the small number of families with two types of events. The weighted bootstrap approach
of Kosorok et al. (2004, Section 4) was used for calculating the standard errors and a total of
50 bootstrap data sets were generated. It is evident that the presence of any BRCA1/2
mutation in the volunteer’s blood sample increases the risk of breast or ovarian cancers
among her first-degree relatives, and the cumulative baseline hazard of breast cancer is
much higher than that of ovarian cancer. In addition, the familial dependence of relatives’
ovarian cancer ages at onset  is much stronger than that of breast cancer

. The familial dependence between age at breast cancer onset of one relative and
age at ovarian cancer onset of another relative was observed to be relatively weak (ρ̂12 =
0.1247). Without adjusting for the volunteer’s BRCA1/2 mutations’ status, the familial

Supplementary Materials
The Web Appendix, referred to in Section 5, is available under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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dependencies for breast cancer, ovarian cancer, and the correlation between ovarian and
breast cancer are 0.9404, 1.7527, and 0.2099, respectively, indicating that volunteer’s
BRCA1/2 mutations’ status explained partly the familial dependence of breast and ovarian
cancers and particularly the correlation between breast and ovarian cancers. Two possible
naive analyses exist, where in each analysis the risk’s parameters of one type of cancer are
being estimated and the other type of cancer is being considered as independent censoring.
In these data, the estimates of the naive models are fairly close to those based on the
proposed competing risks model. For example, β̂1 and β̂2 were 1.4055 (SD 0.2239) and
1.5118 (SD 0.4695), respectively, and  were 0.9416 (SD 0.5285) and 1.6436 (SD
0.7454), respectively. This is probably because ρ̂12 is close to zero. However, it can be seen
that the competing risks modeling provides a more comprehensive analysis of multiple
failure types in cluster settings than the analysis that deals with one failure type at a time. It
can also be seen that the efficiency loss due to estimation of ρ12, when this parameter is
close to zero, is very small. This result strengthens our confidence in the general usage of
competing risks modeling for this type of data.

7. Discussion
The proposed class of models can be easily extended to the case in which the regression
coefficients’ vectors or the cause-specific hazard functions also vary among individuals
within a cluster. For example, in a family study, mothers and daughters may not have the
same regression coefficients or cause-specific baseline hazard functions.

The proposed PMLEs and NPMLEs can be easily implemented. For example, for NPMLEs,
within each maximization step of the EM algorithm, the estimates of the regression
coefficients and the cumulative baseline hazard functions can be computed by using built-in
statistical packages such as coxph of R with an offset term.

Our proposed approaches require numerical integration for which many numerical routines
have been developed. We used the Gauss–Hermite quadrature. For this method, it is
generally recommended that the nodes are symmetric about zero and 15L function
evaluations from one-dimensional Gauss–Hermite quadrature usually provide a very good
approximation in most applications, as long as L ⩽ 5. Most statistical and mathematical
software packages provide one-dimensional Gauss–Hermite quadrature calculations, which
can be easily adopted for the multivariate case.

Fine, Jiang, and Chappell (2001) proposed a semi-competing risks model, in which one
event may censor another event, but not vice versa. In continuation of the BRCA1 example
in the Introduction, the semi-competing risks model describes more precisely the situation
where the onset of breast cancer does not prevent the death from ovarian cancer, but the
death from ovarian cancer or any other related cause precludes the onset of breast cancer.
The development of our multivariate frailty model to semi-competing risks situation is
worth pursuing and could be a topic of future work.

Frailty models require the specification of the distribution of the random effects. Hougaard
(2000) provides a comprehensive discussion of the theoretical properties and the fit of
various frailty distributions for a noncompeting risks setting. Hsu, Gorfine, and Malone
(2007) show by simulation that the bias in the marginal parameters, under a noncompeting
risks setting, are generally 10% or lower under the assumed Gamma model and
misspecification of the frailty distribution. We also showed here that our model is robust
under the assumed multivariate normal frailty model when the true distribution is skewed.
However, it is worthwhile to develop diagnostic approaches, tests, and graphical procedures
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for model checking and model selection to ensure the fitted model is as close to the true
model as possible.
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APPENDIX

Estimation Procedures for the Naive PMLEs and NPMLEs
Consider the situation where the jth failure type is of interest and all other failure types are
considered as independent censoring events, under a time-independent multivariate normally
distributed frailty variate. The naive PMLEs and NPMLEs are obtained by the following
steps: (1) Estimate exp{εij} by μ ̂ij which are defined as

(A.1)

while replacing the unknown parameters with their current estimated values. (2) Estimate βj
and the parameters involved with λ0j (·) by maximizing

for PMLE, and estimate βj and λ0j (·) by maximizing

for NPMLE. (3) Estimate  by

(A.2)

while replacing the unknown parameters with their current estimated values. (4) Repeat
steps (1)–(3) until convergence.
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Figure 1.
The cross-ratio function under the multivariate normal frailty model with various covariance
matrices.
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Figure 2.
The bivariate normal density function with mean zero and correlation parameter of 0.8. This
figure appears in color in the electronic version of this article.
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Figure 3.
The bivariate skewed-normal density function with correlation parameter of 0.8 and α = (50,
50)T. This figure appears in color in the electronic version of this article.
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Table 1

Summary of simulation settings: censoring rates and average (standard deviation, SD) number of observed
events under the ρ12 = 0.5. Each cluster consists of two members.

500 clusters 1000 clusters

Censoring rate 48% 48%

Average (SD) number of individuals with observed event type j = 1 135.0 (12.30) 268.6 (16.26)

Average (SD) number of individuals with observed event type j = 2 376.5 (17.9) 754.9 (22.88)

Average (SD) number of families with two different types of observed events 47.7 (6.60) 94.8 (9.25)

Average (SD) number of families with two identical observed events of type j = 1 14.7 (3.80) 28.2 (5.35)

Average (SD) number of families with two identical observed events of type j = 2 93.7 (8.85) 188.4 (12.19)
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Table 6

Analysis of the Washington Ashkenazi Kin-Cohort Data using the proposed NPMLE approach

Estimator Bootstrap SD

Breast cancer

β1 1.3910 0.2167

0.8718 0.5362

Λ01(50) 0.0298 0.0061

Λ01(60) 0.0578 0.0108

Λ01(70) 0.0966 0.0165

Λ01(80) 0.1395 0.0215

Ovarian cancer

β2 1.5420 0.4361

1.7240 0.7811

Λ02(50) 0.0014 0.0006

Λ02(60) 0.0035 0.0014

Λ02(70) 0.0067 0.0028

Λ02(80) 0.0096 0.0038

Familial correlation between breast and ovarian cancers

ρ12 0.1247 0.0981
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