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Prostate cancer is a commonly diagnosed cancer in men. The ethanolic extract of propolis (EEP) and its phenolic compounds
possess immunomodulatory, chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL/APO2L) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic
to normal cells. We examined the cytotoxic and apoptotic effects of EEP and phenolic compounds isolated from propolis in
combination with TRAIL on two prostate cancer cell lines, hormone-sensitivity LNCaP and hormone-refractory DU145. The
cytotoxicity was evaluated by MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-
FITC/propidium iodide. The prostate cancer cell lines were proved to be resistant to TRAIL-induced apoptosis. Our study
demonstrated that EEP and its components significantly sensitize to TRAIL-induced death in prostate cancer cells. The percentage
of the apoptotic cells after cotreatment with 50 ug mL~! EEP and 100 ng mL~! TRAIL increased to 74.9 = 0.7% for LNCaP and 57.4
+ 0.7% for DU145 cells. The strongest cytotoxic effect on LNCaP cells was exhibited by apigenin, kaempferid, galangin and caffeic
acid phenylethyl ester (CAPE) in combination with TRAIL (53.51 + 0.68-66.06 + 0.62% death cells). In this work, we showed
that EEP markedly augmented TRAIL-mediated apoptosis in prostate cancer cells and suggested the significant role of propolis in

chemoprevention of prostate cancer.

1. Introduction

Prostate cancer is a commonly diagnosed cancer in men, and
it is the second leading cause of death due to cancer in men
in the European Union and in the USA. The rate of prostate
cancer among all new cancer cases has been estimated
at 12% in the EU and 29% in the USA. The molecular
mechanisms responsible for the initiation and progression
of prostate cancer have not been elucidated, and the only
established risk factors for this disease include age, ethnic
group, diet and hereditary susceptibility [1]. Prostate cancer
behavior is mostly unpredictable; however, its longer time of
progression to malignancy and metastasis provides broader
possibilities for its managements, including the suitability
for chemopreventive intervention. Chemoprevention is a
rapidly growing area of uro-oncology, which focuses on
prevention of prostate cancer using naturally occurring or
synthetic agents [2, 3]. Many plant and animal extracts show

various biological activities, such as immunopotentiating
and antitumor properties [4-6].

Propolis (bee glue) is a resinous hive product collected
by honey bees from many plant sources. Propolis usu-
ally contains a variety of different chemical compounds,
including phenolic acids or their esters, flavonoids (flavones,
flavanones, flavonols, dihydroflavonols and chalcones), ter-
penes, aromatic aldehydes and alcohols, fatty acids, stilbenes
and f-steroids [7, 8]. Propolis cannot be used in its crude
form, and so it must be purified by extraction to remove the
inert material and preserve the polyphenolic fraction. The
ethanolic extract of propolis (EEP) has attracted researchers’
interest in the last decades because of its biological and phar-
macological properties, such as immunomodulatory and
anticancer effects [9-11]. Several mechanisms contribute
to the overall cancer preventive and antitumor properties
of propolis and its phenolic components. Further study
demonstrated that flavonoids, phenolic acids, as well as EEP
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inhibit the cancer cells proliferation and tumor growth,
induce cell-cycle arrest and apoptosis [10—-14].

The target of much research has been on discovery
of natural and synthetic compounds that can be used in
the prevention of cancer. Epidemiological and preclinical
evidence suggest that polyphenols isolated from propolis
possess cancer chemopreventive properties [12]. Due to the
fact that propolis is a rich source of plant phenolics and
polyphenolics, it can be used as a dietary supplement in
prostate cancer prevention.

The role of host immune functions has become increas-
ingly important in our understanding of the mechanisms
involved in cancer prevention. EEP stimulated nonspecific
immunity, activated humoral immunity, and enhanced cell-
mediated immunity [10, 15]. The increase of the host
immune defence by propolis against tumor cells suggests that
immunomodulatory effects of EEP may be involved in cancer
chemoprevention.

Tumor necrosis factor-related apoptosis inducing ligand
(TRAIL), a member of TNF superfamily, selectively induces
apoptosis in cancer cells with no toxicity against normal tis-
sues. Soluble, or expressed on lymphocytes T, macrophages
and NK cells molecules, TRAIL plays an important role in
immune surveillance and defence mechanisms against tumor
cells. The cytotoxic effector functions of those immune cells
are important for enabling the immune system to cope
efficiently with malignancy. TRAIL induces programed death
in various cancer cells through its interaction with the death
receptor TRAIL-R1 and/or TRAIL-R2 [16].

However, some tumor cells are resistant to TRAIL-
mediated cytotoxicity. The decreased expression of death
receptors TRAIL-R1 and TRAIL-R2 or increased expression
of antiapoptotic protein in cancer cells are involved in
TRAIL-resistance. We and others have shown that TRAIL-
resistant prostate cancer cells can be sensitized by chemother-
apeutic agents, ionizing radiation, or dietary polyphenols
[17-19].

In this work, we investigated the apoptotic and/or
cytotoxic effect of EEP and some of its phenolic derivatives
in combination with TRAIL on prostate cancer cells. We
showed for the first time that EEP sensitizes prostate cancer
cells to TRAIL-induced apoptosis. Our results indicated
that EEP markedly augments TRAIL-mediated apoptosis
in hormone-sensitivity LNCaP and hormone-refractory
DU145 prostate cancer cells. The TRAIL-mediated cytotoxic
and apoptotic pathways may be a target of the chemopre-
ventive agents in prostate cancer cells, and the overcome of
TRAIL-resistance by propolis and its phenolic components
may be one of the mechanisms responsible for their cancer
preventive effects.

2. Methods

2.1. Propolis Sample and EEP. Propolis was collected manu-
ally from beehives located in southern Poland (The Carpathi-
ans, Nowy Sacz region) and kept desiccated pending its
processing. It was extracted in 95% (v/v) ethyl alcohol, in
a hermetically closed glass vessel for 4 days at 37°C, under
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occasional shaking. The ethanolic extract was then filtered
through a Whatman filter paper no 4 and evaporated in a
rotary evaporator, under reduced pressure at 60°C. The same
collection and extraction procedures were used throughout
all our laboratory studies [9]. EEP was dissolved in DMSO
(50 mg mL~"), and the final concentration of DMSO in the
culture medium was controlled at 0.1% (v/v).

2.2. Flavonoids and Phenolic Acids. Propolis samples from
various geographical areas contain different compounds.
The major active components of propolis from Poland are
flavonoids and phenolic acids or their esters [7]. All tested
compounds were detected in our sample of EEP as described
previously [9]. Table 1 presents the structures of compounds
found in the tested sample of EEP. Chrysin, apigenin,
acacetin, galangin, kaempferol, kaempferid, quercetin, cin-
nanic acid, o-coumaric acid, m-coumaric acid, p-coumaric
acid, caffeic acid and caffeic acid phenylethyl ester (CAPE)
were purchased from Carl Roth GmbH (Karlsruhe, Ger-
many) and Sigma Chemical Company (St Louis, MO, USA).
The reagents were dissolved in DMSO (flavonoids and phe-
nolic acids—50 mM) and the final concentration of DMSO
in the culture medium was controlled at 0.1% (v/v). The final
concentration of flavonoids and phenolic acids was 50 yM
(chrysin, 12.7 ygmL~'; apigenin, 13.5ugmL™!; acacetin,
14.2 uygmL™!; galangin, 13.5ugmL~!; kaempferol, 14.3 ug
mL™!; kaempferid, 15.0ugmL™!; quercetin, 15.1 uygmL™!;
cinnanic acid, 7.4 ug mL™!; 0-coumaric acid, 8.2 ug mL~!; m-
coumaric acid, 8.2 ug mL™!; p-coumaric acid, 8.2 ugmL™};
caffeic acid, 9.0 ug mL~!; CAPE, 14.2 ygmL™!).

2.3. TRAIL. Recombinant human TRAIL was purchased
from PeproTech (Rocky Hill, NJ, USA).

2.4. Prostate Cancer Cells Culture. The experiments were per-
formed on two human prostate cancer cell lines: hormone-
sensitivity LNCaP cells and hormone-refractory DU145 cells
(DSMZ—German Collection of Microorganisms and Cell
Cultures, Braunschweig, Germany). The cells were grown
in monolayer cultures in RPMI 1640 medium containing
10% fetal bovine serum, 4mM vL-glutamine, 100 U mL"!
penicillin and 100 yg mL~! streptomycin and incubated at
37°C in atmosphere containing 5% CO, [19]. Reagents for
cells culture were purchased from PAA The Cell Culture
Company (Pasching, Austria).

2.5. Cytotoxicity Assay. The cytotoxicity was measured by 3-
[4, 5-dimethylthiazol-2-y1]-2,5 diphenyltetrazolium (MTT)
assay as described [19]. The LNCaP cells (2 x 10°mL™!)
and DU145 (1 x 10°mL™') were seeded 48—24h before
the experiments onto a 96-well plate. Various combina-
tions of EEP (5-50ngmL~!) with or without TRAIL (50—
200 ngmL~!), flavonoids (50 uM) with or without TRAIL
(100 ngmL™!), and phenolic acids (50 uM) with or without
TRAIL (100 ng mL ") were added to the cells, and, after 48 h,
the medium was removed, and 20uL of a MTT solution
prepared at 5mgmL~! (Sigma Chemical Company, MO,
USA) were added to each well for 4 h. The resulting crystals
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TasLE 1: Chemical structure of the phenolic compounds used in this study.
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were dissolved in DMSO. Controls included native cells and
medium alone. The spectrophotometric absorbance of each
well was measured using a microplate reader (ELx 800,
Bio-Tek Instruments, Winooski, VT, USA) at 550 nm. The
percent cytotoxicity was calculated by the formula: percent

cytotoxicity (cell death) = (1 — [absorbance of experimental
wells/absorbance of control wells]) x 100%.

2.6. Lactate Dehydrogenase Release Assay. Lactate dehydro-
genase (LDH) is a stable cytosolic enzyme that is released
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FIGURE 1: Induction of cytotoxicity and apoptosis by EEP in prostate cancer cells. The cells were incubated for 48 h with EEP at concentrations
of 050 ug mL~!. Cytotoxic activity of EEP in prostate cancer cells: (a) LNCaP and (b) DU145. The percentage of cell deaths was measured
by MTT cytotoxicity assay. EEP induced apoptosis in prostate cancer cells: (c) LNCaP and (d) DU145. Detection of apoptotic cell death
by annexin V-FITC staining using flow cytometry. The values represent mean + SD of three independent experiments performed in
quadruplicate (n = 12). All differences are statistically significant in relation to control (P < .05).

upon membrane damage in necrotic cells. LDH activity was
measured using a commercial cytotoxicity assay kit (Roche
Diagnostics GmbH, Mannheim, Germany), in which LDH
released in culture supernatants is measured with a coupled
enzymatic assay, resulting in conversion of a tetrazolium salt
into red formazan product. The prostate cancer cells were
treated with EEP in various concentrations (5-50 ngmL~!)
alone and in combination with TRAIL (50-200 ngmL~1!),
phenolic compounds (50 yuM) alone and in combination
with TRAIL (100ngmL™!) for the indicated period of
time. The sample solution (supernatant) was removed, and
LDH released from cells was measured in culture medium.
The maximal release was obtained after treating control
cells with 1% Triton X-100 (Sigma Chemical Company, St.
Louis, MO) for 10 min at room temperature [19]. The
necrotic percentage was expressed using the formula (sample
value/maximal release) x 100%.

2.7. Determination of Apoptotic Cell Death by Annexin
V-FITC Staining. Prostate cancer cell line LNCaP (2 X

10° mL~!)and DU145 (1 x 10° mL~') were seeded in 24-well
plates for 24—48 h and then exposed to EEP and/or TRAIL for
48 h. After 48-h incubation, cancer cells were washed twice
with PBS and resuspended in 1 mL of binding buffer. Five
hundred microliters of cell suspension were then incubated
with 5 uL of annexin V-FITC and 10 yL of propidium iodide
(PI) for 10 min at room temperature in the dark. Annexin V
assay was performed using the Apoptotest-FITC Kit (Dako,
Glostrup, Denmark). The population of annexin V-positive
cells was evaluated by flow cytometry (BD FACScan, Becton
Dickinson Immnunocytometry Systems, San Jose, CA, USA)
[20].

2.8. Statistical Analysis. The results are expressed as mean =+
SD obtained from three separate experiments. The exper-
imental means were compared to the means of untreated
prostate cancer cells harvested parallelly, and the data were
polled for replicate experiments. Statistical significance was
evaluated using one- and multiple-way ANOVA or Kruskal—
Wallis test followed by the Levene post hoc test. P-values < .05
were considered significant.
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Ficure 2: Induction of cytotoxicity and apoptosis by TRAIL in prostate cancer cells. The cells were incubated for 48 h with TRAIL at
concentrations of 0-200 ngmL~'. Cytotoxic activity of TRAIL in prostate cancer cells: (a) LNCaP and (b) DU145. The percentage of cell
deaths was measured by MTT cytotoxicity assay. TRAIL induced apoptosis in prostate cancer cells: (c) LNCaP and (d) DU145. Detection of
apoptotic cell death by annexin V-FITC staining using flow cytometry. The values represent mean + SD of three independent experiments
performed in quadruplicate (n = 12). All differences are statistically significant in relation to control (P < .05).

3. Results

3.1. Induction of Cytotoxicity and Apoptosis by Studied Agents
on Prostate Cancer Cells

3.1.1. EEP. EEP inhibited growth and induced apoptosis in
prostate cancer cells in a dose-dependent manner. The cyto-
toxic and apoptotic effects of EEP on hormone-sensitivity
LNCaP and hormone-refractory DU145 prostate cancer cells
are given in Figure 1. The cells were incubated with 5-
50ugmL~! EEP for 48h. The rate of cytotoxicity upon
treatment cancer cells with 5, 25 and 50 ugmL~! EEP was
5.96 + 0.61, 23.08 + 0.78 and 24.83 + 0.59% for LNCaP
cells and 4.75 + 0.67, 8.20 + 1.12 and 16.63 + 0.77% for
DU145 when compared with untreated control, respectively.
The annexin V assay revealed apoptotic prostate cancer cells
exposed to EEP. We showed that EEP at the concentrations of
5-50 uygmL~! induced 4.95 + 0.54, 23.28 + 0.54 and 24.66 +
0.72% apoptosis in LNCaP cells and 5.44 + 0.45, 8.52 + 0.48
and 17.09 + 0.55% apoptosis in DU145 cells.

3.1.2. TRAIL. TRAIL induced cytotoxic and apoptotic effects
in a dose-dependent manner (Figure 2). We first measured

the cytotoxic activity of TRAIL after 48-h incubation on
prostate cancer cells. The cytotoxicity of TRAIL at the
concentration of 100ng mL~! on LNCaP cells was 15.03 +
0.50%, and on DU145 cells 9.25 + 0.86%. TRAIL increased
the percentage of apoptotic cells. For example, a 48-h
exposure to 100 ng mL~' TRAIL induced apoptosis of 15.46
+ 0.55% LNCaP cells and 10.12 = 0.86% of DU145 cells.
TRAIL was less active against the both prostate cancer cell
lines. We confirmed that hormone-sensitivity LNCaP cells
and hormone-refractory DU145 prostate cancer cells are
resistant to TRAIL.

3.1.3. TRAIL in Combination with EEP. We investigated the
cytotoxic and apoptotic effects of TRAIL in combination
with EEP on prostate cancer cells (Figures 3 and 4). Cotreat-
ment of TRAIL and EEP increased the percentage of cell
death on prostate cancer cells, compared to cytotoxicity of
TRAIL or EEP alone. The cytotoxicity after 48-h incubation
with TRAIL at the concentration of 100 ngmL~!, and EEP
at the concentration of 50 ugmL™' was 73.70 = 0.53%
for hormone-sensitivity LNCaP cells and 55.76 + 0.72%
for hormone-refractory DU145 cells. Then, we tested the
apoptotic effect of TRAIL in combination with EEP on
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F1GURE 3: Cytotoxic activity of TRAIL in combination with EEP in prostate cancer cells. The cells: (a) LNCaP and (b) DU145 were incubated
for 48 h with TRAIL at the concentrations of 100ngmL~! and with EEP at concentrations of 5-50 ug mL~!. The cancer cells: (c) LNCaP
and (d) DU145 were incubated for 48 h with TRAIL at concentrations of 50-200ng mL™! and EEP at the concentration of 50 ygmL™!.
The percentage of cell deaths was measured by MTT cytotoxicity assay. The values represent mean + SD of three independent experiments
performed in quadruplicate (n = 12). All differences are statistically significant in relation to control (P < .05).
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FiGgure 4: TRAIL induced apoptosis in combination with EEP in prostate cancer cells: (a) LNCaP and (b) DU145. Detection of apoptotic cell
death after 48-h cotreatment with TRAIL at the concentration of 100 ngmL~! and EEP the concentration of 50 ug mL~! by annexin V-FITC
staining using flow cytometry. The values represent mean =+ SD of three independent experiments performed in quadruplicate (n = 12). All

differences are statistically significant in relation to control (P < .05).

prostate cancer cells. We found that EEP strongly enhanced
TRAIL-induced apoptosis in cancer cells. The percentage
of apoptotic cells after exposure to 100 ngmL™' TRAIL in
combination with 50 ygmL™! EEP increased to 74.94 =+
0.74% for LNCaP cells and to 57.39 + 0.67% for DU145 cells.
Our results indicated that EEP enhanced apoptosis inducing
potential of TRAIL in hormone-sensitivity LNCaP and
hormone-refractory DU145 prostate cancer cells. Propolis

restored sensitivity of prostate cancer cell lines to TRAIL-
induced cell death.

The necrotic cell death percentage of prostate cancer cells
incubated with TRAIL and/or EEP examined by LDH test
was near 0.

The sequence of drug administration is important to
obtain maximum therapeutic benefits in combined therapy.
We therefore examined whether cotreatment of prostate
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(b) TRAIL in combination with EEP phenolic components in prostate
ic compounds at the concentration of 50 uM with or without TRAIL at

the concentration of 100 ng mL™!. The percentage of cell deaths was measured by MTT cytotoxicity assay. The values represent mean = SD

of three independent experiments performed in quadruplicate (n =
.05).

cancer cells with EEP and TRAIL induced greater apop-
tosis than the concurrent pretreatment with EEP followed
by TRAIL and vice versa (Figure5). Interestingly, the
cotreatment of both prostate cancer cell lines with EEP in
combination with TRAIL induced greater apoptosis than
concurrent pretreatment or single agent alone. Reverse
sequence of treatments: pretreatment with EEP followed by
TRAIL or pretreatment with TRAIL followed by EEP resulted

12). All differences are statistically significant in relation to control (P <

in significantly lesser apoptosis than in the cotreatment with
EEP and TRAIL.

3.2. Cytotoxicity of Studied Agents in Prostate Cancer Cells

3.2.1. Phenolic Compounds Detected in Propolis. We inves-
tigated the cytotoxic effect on LNCaP cells of 13 phe-
nolic components of propolis: cinnamic acid, o-coumaric
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acid, m-coumaric acid, p-coumaric acid, caffeic acid,
CAPE, chrysin, apigenin, acacetin, galangin, kaempferol,
kaempferid and quercetin (Figure 6(a)). The strongest cyto-
toxic activity in cancer cells was demonstrated by apigenin
(18.76 = 0.65% cell death). Kaempferol, kaempferid and
quercetin induced few cell deaths (11.42 + 0.68, 13.44 = 0.44
and 13.36 + 0.59%, respectively). The cytotoxicity of other
remaining compounds found in propolis in prostate cancer
cells was below 10%.

3.2.2. TRAIL in Combination with Phenolic Compounds
Detected in Propolis. Cytotoxic effect of TRAIL in combi-
nation with phenolic acids or flavonoids in LNCaP cell
line measured by MTT assay is shown in Figure 6(b). We
tested the effect of a 48-h cotreatment with TRAIL at the
concentration of 100ngmL~! together with 13 phenolic
components of propolis at the concentration of 50 uM on
cytotoxicity of prostate cancer cells. The phenolic acids and
particularly flavonoids restored TRAIL sensitivity in TRAIL-
resistant LNCaP cells. In our study, apigenin, kaempferid,
galangin and CAPE markedly augmented TRAIL mediated
cancer cell deaths (53.51 = 0.68-66.06 *= 0.62%) and
exhibited the strongest cytotoxic effect in combination with
TRAIL on LNCaP cells. The other components found in our

sample of propolis also increased the percentage of TRAIL-
induced cell deaths, compared to cytotoxicity of TRAIL
alone, but the cytotoxicity was below 50%.

The necrotic cell death percentage of LNCaP cells incu-
bated with TRAIL and/or phenolic components examined by
LDH leakage was near 0.

4. Discussion

Epidemiological data support the concept that naturally
occurring anticancer agents in the human diet are safe, and
nontoxic, and they have long-lasting beneficial effects on
human health [12? ]. The potential target for complementary
and alternative medicine (CAM) research has been on
the discovery of natural compounds that can be used in
prevention against prostate cancer.

The study by Li et al. [21] showed that propolis
inhibits cellular proliferation and induces apoptosis in
prostate cancer cells. In our investigation, we also observed
cytotoxic and apoptotic activities of EEP against hormone-
sensitivity LNCaP and hormone-refractory DU145 prostate
cancer cells. Beside antitumor effect, immunomodulatory
properties of propolis have been recorded. We investi-
gated the interaction between propolis and tumor necrosis
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factor-related apoptosis inducing ligand on prostate cancer
cells. Recombinant human TRAIL used in our study is a
soluble protein based on a natural ligand. TRAIL induces
programmed death in various cancer cells, in vitro and in
vivo [16]. However, some tumor cells are resistant to TRAIL-
mediated cytotoxicity. We and others demonstrated that
prostate cancer cell lines, LNCaP and DU145, were resistant
to TRAIL-induced apoptosis [17-19].

Our study showed the impact of propolis on the
anticancer immune defense. Propolis restores sensitivity
of tumor cells to immune effectors mechanisms, such as
TRAIL-induced apoptosis in prostate cancer cells. For the
first time, our results demonstrated that EEP markedly aug-
mented TRAIL-mediated apoptosis in hormone-sensitivity
LNCaP and hormone-refractory DU145 prostate cancer
cells. The rapid tumor growth and progression of hormone
refractory prostate cancer accounts for most of the morbidity
and mortality associated with prostate cancer [1]. The exper-
imental data indicated that propolis is a promising anticancer
agent also for the prevention of hormone-refractory prostate
cancer.

In the field of CAM, immunomodulation through natu-
ral or synthetic substances may be considered as an alterna-
tive for the prevention of neoplasm disease. EEP enhances
the apoptosis-inducing potential of TRAIL and sensitizes
TRAIL-resistant prostate cancer cells. Further investigations
will be required to recognize and explain the molecular
mechanisms and cellular signaling pathways by which EEP
sensitizes cancer cells to TRAIL-induced death. Moreover,
due to heterogenous complex composition of propolis, its
biological activity is variable. The presence in propolis of so
many compounds makes it difficult to know and understand
the direct and indirect effects of EEP upon transduction
pathway of the signal to TRAIL-mediated apoptosis in cancer
cells.

The flavonoids and phenolic components found in
propolis are known to affect the apoptosis of prostate
cancer cells and may play an important role in cancer
chemoprevention [2, 3, 22, 23]. We tested in vitro the
cytotoxicity of 13 compounds detected in our sample of
propolis against prostate cancer. The strongest cytotoxic
activity on LNCaP prostate cancer cells was demonstrated by
apigenin. Shukla and Gupta [22, 24] reported that apigenin
in both in vitro and in vivo studies induced apoptosis in
prostate cancer.

It has been suggested that phenolic compounds isolated
from propolis induce activities of the immune system
and exert antitumor effects [9-15, 21-24]. To investigate
which compounds found in propolis may be responsible
for the enhancement of the apoptosis-inducing potential
of TRAIL, we tested the cytotoxic effect of its phenolic
components in combination with TRAIL on prostate cancer
cells. All detected in our EEP sample compounds used
in combination with TRAIL increased the percentage of
cell deaths compared to cytotoxicity of TRAIL alone. The
phenolic acids and particularly flavonoids restored TRAIL
sensitivity in TRAIL-resistant LNCaP prostate cancer cells.
In our study, apigenin, kaempferid, galangin and CAPE
markedly augmented TRAIL mediated cancer cells death and

exhibited the strongest cytotoxic effect in combination with
TRAIL on LNCaP cells. Apigenin, kaempferid and galangin,
the compounds with the most cytotoxic activity with TRAIL,
have three hydroxyl groups (positions 5, 7 and 3 or 4').
Every tested flavonoid has hydroxyl groups in fifth and
seventh positions. The compounds with only two hydroxyl
groups in fifth and seventh positions (chrysin, acacetin),
or four (kaempferol) and five hydroxyl groups (quercetin)
showed lower cytotoxic activity with TRAIL. The presence
of hydroxyl group in position 3 (galangin versus chrysin)
decreased activity of galangin, but addition of TRAIL
changed this activity. Probably, this activity is dependent on
different mechanisms. The position of hydroxyl groups in
flavone structure and their number are very important in
reaction with reactive oxygen species as well as can influence
cytotoxic and apoptotic activities [25, 26].

In study in vitro on HeLa cell line, we confirmed
that EEP sensitize cancer cells to TRAIL-induced apoptosis
and two components identified in propolis, apigenin and
CAPE, were the most potent agents inducing cell death in
combination with TRAIL in HeLa cells [20]. A similar study
with flavonoids (Figure7) showed that luteolin, apigenin,
kaempferol, baicalein and quercetin synergistically induced
apoptosis with TRAIL in human malignant tumor cells [18,
27-32]. Horinaka et al. [27] reported that luteolin increased
TRAIL-induced apoptosis in HeLa cells through upregula-
tion of death receptor TRAIL-R2. In other investigation,
they also showed the enhanced apoptosis-inducing potential
of TRAIL in prostate cancer cell line DU145, leukemic cell
line Jurkat, and colon cancer cell line DLD1. The combined
use of apigenin and TRAIL caused Bcl-2-interacting domain
cleavage, activation of caspases, and increased expression
of TRAIL-R2 [18]. Yoshida et al. [28] stated that TRAIL-
R2 upregulation by kaempferol augments TRAIL action
in colon cancer cells [28]. Chen et al. [29] showed that
suppression of survivin and induction of TRAIL-R2 by
quercetin contribute to sensitization of lung cancer cells
to TRAIL-induced cytotoxicity. Kim et al. [30] examined
the molecular mechanisms by which quercetin augments
TRAIL-mediated apoptotic death in prostate cancer cells
and confirmed the ability of quercetin to downregulate
survivin expression. Taniguchi et al. [31] indicated that
baicalein increases TRAIL-R2 expression and overcomes
TRAIL resistance in prostate cancer cells.

We demonstrated for the first time that kaempferid,
galangin and CAPE enhance the cytotoxic potential of
TRAIL in prostate cancer cells. Those polyphenols, beside
apigenin, equally firmly sensitize TRAIL-resistant LNCaP
cells. The previous study suggested that flavonoids increase
expression of TRAIL-R2 [18, 27-29, 31]. We hypothesize that
propolis, as one of the richest sources of flavonoids, such as
apigenin, kaempferol, kaempferid, galangin, quercetin and
CAPE, can influence the expression of death receptor TRAIL-
R2, inhibition of antiapoptotic protein (Bcl-2, survivin), or
activation of caspases (Figure 7).

We showed that EEP and its phenolic components in
vitro augmented TRAIL mediated cell death in prostate
cancer, but further study will be required to examine the
molecular mechanisms by which EEP and its compounds act
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on cellular signaling pathways and sensitize prostate cancer
cells to TRAIL-induced apoptosis. Our findings suggest that
the modulation of TRAIL apoptosis pathway may have a
significant potential for prostate cancer chemoprevention,
and the overcome of TRAIL-resistance by propolis and
its phenolic components may be one of the mechanisms
responsible for their cancer preventive effects. The obtained
results confirmed the significance of EEP and its components
in chemoprevention of prostate cancer cells. EEP as a dietary
supplement may be useful in chemoprevention agent against
prostate cancer.
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